ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Minimal full polarized embeddings of dual polar spaces

Ilaria Cardinali1 , Bart De Bruyn2 and Antonio Pasini1
1Università di Siena Dipartimento di Scienze Matematiche e Informatiche `R. Magari' Pian dei Mantellini, 44 I-53100 Siena Italy Pian dei Mantellini, 44 I-53100 Siena Italy
2Ghent University Department of Pure Mathematics and Computer Algebra Galglaan, 2 B-9000 Gent Belgium Galglaan, 2 B-9000 Gent Belgium

DOI: 10.1007/s10801-006-0013-8

Abstract

Let Δ  be a thick dual polar space of rank n \geq  2 admitting a full polarized embedding e in a finite-dimensional projective space Σ , i.e., for every point x of Δ , e maps the set of points of Δ  at non-maximal distance from x into a hyperplane e\ast ( x) of Σ . Using a result of Kasikova and Shult [11], we are able the show that there exists up to isomorphisms a unique full polarized embedding of Δ  of minimal dimension. We also show that e\ast  realizes a full polarized embedding of Δ  into a subspace of the dual of Σ , and that e\ast  is isomorphic to the minimal full polarized embedding of Δ . In the final section, we will determine the minimal full polarized embeddings of the finite dual polar spaces DQ(2 n, q), DQ  - (2 n+1, q), DH(2 n - 1, q 2) and DW(2 n - 1, q) ( q odd), but the latter only for n\leq  5. We shall prove that the minimal full polarized embeddings of DQ(2 n, q), DQ  - (2 n+1, q) and DH(2 n - 1, q 2) are the `natural' ones, whereas this is not always the case for DW(2 n - 1, q).

Pages: 7–23

Keywords: keywords dual polar space; polarized embedding; universal embedding

Full Text: PDF

References

1. R.J. Blok and A.E. Brouwer, “The geometry far from a residue.” Groups and Geometries (Siena, 1996), 29-38, Trends Math., Birkh\ddot auser, Basel, 1998.
2. A.E. Brouwer and H.A. Wilbrink, “The structure of near polygons with quads,” Geom. Dedicata 14 (1983), 145-176.
3. F. Buekenhout and P.J. Cameron, “Projective and affine geometry over division rings,” Chapter 2 of the Handbook of Incidence Geometry F. Buekenhout (Ed.), Elsevier, Amsterdam, 1995.
4. F. Buekenhout and C. Lef`evre-Percsy, “Generalized quadrangles in projective spaces,” Arch. Math. (Basel) 25 (1974), 540-552.
5. B.N. Cooperstein, “On the generation of dual polar spaces of unitary type over finite fields,” European J. Combin. 18 (1997), 849-856.
6. B.N. Cooperstein, “On the generation of dual polar spaces of symplectic type over finite fields,” J. Combin. Theory Ser A 83 (1998), 221-232.
7. B.N. Cooperstein and E.E. Shult, “A note on embedding and generating dual polar spaces,” Adv. Geom. 1 (2001), 37-48.
8. B. De Bruyn and A. Pasini, “Minimal Scattered Sets and Polarized Embeddings of Dual Polar Spaces,” preprint.
9. K.J. Dienst, “Verallgemeinerte vierecke in projektiven R\ddot aumen.” Arch. Math. (Basel) 35 (1980), 177- 186.
10. J.W.P. Hirschfeld and J.A. Thas, “General Galois Geometries.” Oxford Mathematical Monographs. The Clarendon Press, New York, 1991.
11. A. Kasikova and E.E. Shult, “Absolute embeddings of point-line geometries,” J. Algebra 238 (2001), 265-291.
12. A. Pasini, “Embeddings and expansions,” Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 585-626.
13. M.A. Ronan, “Embeddings and hyperplanes of discrete geometries,” European J. Combin. 8 (1987), 179-185.
14. E.E. Shult, “On Veldkamp lines,” Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299-316.
15. E.E. Shult and A. Yanushka, “Near n-gons and line systems,” Geom. Dedicata 9 (1980), 1-72.
16. J.A. Thas and H. Van Maldeghem, “Embeddings of small generalized polygons,” to appear.
17. J. Tits, Buildings of Spherical Type and Finite BN-pairs, Springer L. N. in Math. 386, Berlin, 1974.
18. A. Wells, “Universal projective embeddings of the grassmannian, half spinor and dual orthogonal geometries,” Quart. J. Math. Oxford 34 (1983), 375-386.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition