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Abstract Neumaier and Seidel (1988) generalized the concept of spherical designs
and defined Euclidean designs in Rn . For an integer t , a finite subset X of Rn given to-
gether with a weight function w is a Euclidean t-design if

∑p
i=1

w(Xi )
|Si |

∫
Si

f (x)dσi (x) =∑
x∈X w(x) f (x) holds for any polynomial f (x) of deg( f ) ≤ t , where {Si , 1 ≤ i ≤ p}

is the set of all the concentric spheres centered at the origin that intersect with X ,
Xi = X ∩ Si , and w : X → R>0. (The case of X ⊂ Sn−1 with w ≡ 1 on X corre-
sponds to a spherical t-design.) In this paper we study antipodal Euclidean (2e + 1)-
designs. We give some new examples of antipodal Euclidean tight 5-designs. We also
give the classification of all antipodal Euclidean tight 3-designs, the classification of
antipodal Euclidean tight 5-designs supported by 2 concentric spheres.

Keywords Euclidean design . Spherical design . 2-distance set . Antipodal . Tight
design

1. Introduction

Delsarte, Goethals and Seidel defined the concept of spherical designs [5]. In the paper
of Neumaier-Seidel [9], they generalized the concept and gave a definition of designs
in the Euclidean space Rn , namely, Euclidean designs. Delsarte and Seidel [6] studied
more precise properties of Euclidean designs on a union of p concentric spheres
centered at the origin. In a joint paper with Eiichi Bannai [3] we slightly generalized
the concept and defined Euclidean designs for finite sets which may possibly contain
the origin. In that paper [3], we gave a new approach to give the lower bound for the
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cardinalities of Euclidean 2e-designs which was obtained by Delsarte and Seidel [6].
This approach gave us the way to understand new properties of Euclidean 2e-designs.
In this paper we apply a similar method, to the one given in [3], to antipodal Euclidean
(2e + 1)-designs and obtain a similar lemma as the one proved in [3]. We also give
some examples of antipodal tight 5-designs which are not in the list of Euclidean
designs given by B. Bajnok (see [1]) recently.

We say that a finite set X ⊂ Rn is supported by p concentric spheres if X intersects
with exactly p concentric spheres centered at the origin. In this paper we first review
the definitions of tightness of the designs and then classify all the antipodal Euclidean
tight 3-designs, and then classify antipodal Euclidean tight 5-designs supported by 2
concentric spheres. (From the definition of antipodal Euclidean tight (2e + 1)-designs
it is easy to see that antipodal Euclidean tight 5-designs must be supported by at least
2 concentric spheres.)

Before stating our main results, we give the definitions and notation we use in this
paper. We assume n ≥ 2 throughout this paper. Let X be a finite set in Rn supported
by p concentric spheres S1, . . . , Sp. In this definition we regard the set consists of
only the origin 0 as a special case of spheres and assume one of Si , 1 ≤ i ≤ p,
may possibly coincide with {0}. Let ri be the radius of Si for i = 1, 2, . . . , p.
We denote the canonical inner product of Rn by (x, y) = ∑n

i=1 xi yi , where x =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn . Let ‖x‖2 = (x, x). Let Xi = X ∩ Si

for i = 1, 2, . . . p. Let dσ (x) be a Haar measure on the unit sphere Sn−1 ⊂ Rn . We
consider a Haar measure dσi (x) on each Si so that |Si | = ri

n−1|Sn−1|. Here |Si | and
|Sn−1| are the surface areas of Si and the unit sphere Sn−1 respectively. Let moreover w

be a positive real valued function on X , that we call the weight function on X . We de-
fine w(Xi ) = ∑

x∈Xi
w(x). Here if ri = 0, then we define 1

|Si |
∫

Si
f (x)dσi (x) = f (0)

for any function f (x) defined on Rn . Let S = ⋃p
i=1 Si . Let εS ∈ {0, 1} be defined

by

εS = 1 if 0 ∈ S, εS = 0 if 0 �∈ S.

We give some more definitions and notations. Let P(Rn) = R[x1, x2, . . . , xn] be
the vector space of polynomials in n variables x1, x2, . . . , xn over the field of real
numbers. Let Homl(Rn) be the subspace of P(Rn) which consists of homogeneous
polynomials of degree l. Let Pl(Rn) = ⊕l

i=0 Homi (Rn). Let Harm(Rn) be the sub-
space of P(Rn) which consists of all the harmonic polynomials. Let Harml(Rn) =
Harm(Rn) ∩ Homl(Rn). Let P∗

l (Rn) = ⊕
i≡l (2)
0≤i≤l

Homi (Rn). Let P(S), Pl(S), Homl(S),
Harm(S), Harml(S) and P∗

l (S) be the sets of corresponding polynomials restricted to
the union S of concentric spheres. For example P(S) = { f |S | f ∈ P(Rn)}.

A finite subset X ⊂ Rn is said to be antipodal if −x ∈ X holds for any x ∈ X . Let
X∗ be a subset of X satisfying

X = X∗ ∪ (−X∗), X∗ ∩ (−X∗) = ∅ or {0},

where −X∗ = {−x | x ∈ X∗}. For a finite subset X ⊂ Rn , we define

A(X ) = {‖x − y‖ | x, y ∈ X, x �= y}.
Springer
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If |A(X )| = s, then we call X an s-distance set. For α ∈ A(X ), we define

vα(x) = |{y ∈ X | ‖x − y‖ = α}|.

If the following condition holds, then we call X a distance invariant set:

“ vα(x) does not depend on the choice of x ∈ X and depends only on α for any
fixed α ∈ A(X ).”

Definition 1.1 (Euclidean design). Let t be a natural number. Let X be a finite set
with a positive weight function w on X . We say that X is a Euclidean t-design, if the
following condition is satisfied:

p∑
i=1

w(Xi )

|Si |
∫

x∈Si

f (x)dσi (x) =
∑
u∈X

w(u) f (u)

for any polynomial f ∈ Pt (Rn).

The following theorem is well known [3, 5, 6].

Theorem 1.2.

(1) Let X be a Euclidean 2e-design, then

|X | ≥ dim(Pe(S))

holds.
(2) Let X be an antipodal Euclidean (2e + 1)-design. Assume w(−x) = w(x) holds

for any x ∈ X. Then

|X∗| ≥ dim(P∗
e (S))

holds.

Remark 1.

(i) Theorem 1.2 was proved by Delsarte and Seidel in [6] (see also [2, 5, 9]). They
also gave dim(Pe(S)) and dim(P∗

e (S)) explicitly. In [3], we gave a different proof
for Theorem 1.2(1). It is not a good method to prove the lower bound itself.
However equations we obtained in the proof are very effective. In the follow-
ing section, we will give a proof of Theorem 1.2(2) using the method given in
[3].

(ii) For spherical (2e + 1)-designs, that is, Euclidean (2e + 1)-designs satisfying p =
1 and w ≡ 1, the inequality given in Theorem 1.2(2) was proved without assuming
X is antipodal, and if equality holds then X was proved to be antipodal [5].
However if p ≥ 2, then there is no good lower bound without assuming X is
antipodal and w(−x) = w(x) for x ∈ X.
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Definition 1.3.

(1) (Tight 2e-design on p concentric spheres).
Let X be a Euclidean 2e-design supported by p concentric spheres. If

|X | = dim(Pe(S))

holds, then we call X a tight 2e-design on p concentric spheres.

(2) (Antipodal tight (2e + 1)-design on p concentric spheres)
Let X be an antipodal Euclidean (2e + 1)-design supported by p concentric
spheres. If w(−x) = w(x) for any x ∈ X and

|X∗| = dim(P∗
e (S))

holds, then we call X an antipodal tight (2e + 1)-design on p concentric spheres.

Remark 2.

(i) If p = 1, X �= {0} and w ≡ 1 on X , then the definitions given above coincide with
the definitions of spherical tight designs [5]. As we mentioned in Remark 1(ii), it
is proved that spherical tight (2e + 1)-designs are antipodal [5].

(ii) We will give a list of the dimensions of subspaces of P(Rn) and P(S) in Section 3.

Definition 1.4.

(1) (Euclidean Tight 2e-design)
Let X be a Euclidean 2e-design X . If

|X | = dim(Pe(S)) = dim(Pe(Rn))

holds, then we call X a Euclidean Tight 2e-design.
(2) (Antipodal Euclidean tight (2e + 1)-design)

Let X be an antipodal Euclidean (2e + 1)-design. If

|X∗| = dim(P∗
e (S)) = dim(P∗

e (Rn))

(
=

[ e
2 ]∑

i=0

(
n + e − 2i − 1

e − 2i

))
holds, then we call X an antipodal Euclidean tight (2e + 1)-design.

Remark 3. If X is a Euclidean tight 2e-design, then we should have |X | =
dim(Pe(S)) = dim(Pe(Rn)). The following example shows the reason why the condi-
tion dim(Pe(S)) = dim(Pe(Rn)) is important. Let X1 and X2 be the sets of the vertices
of regular triangles in R2 defined by

X1 =
{

(1, 0),

(
− 1

2
,

√
3

2

)
,

(
− 1

2
, −

√
3

2

)}
, X2 =

{
(−r, 0),

(
r

2
,

√
3

2
r

)
,

(
r

2
, −

√
3

2
r

)}
.

Let w(x) = 1 for x ∈ X1 and w(x) = 1
r3 for x ∈ X2. Then X = X1 ∪ X2 is a Euclidean

4-design. If r = 1, then X is on the unit circle S1 and we have dim(P2(S)) = 5 <
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dim(P2(R2)) = 6. Therefore X is not a tight 4-design on S = S1. However, if r �=
1, then X is supported by 2 concentric spheres and dim(P2(S)) = dim(P2(R2)) = 6
holds. Hence X is a Euclidean tight 4-design. Similarly examples given in the following
Theorem 1.6 explain why the equality dim(P∗

e (S)) = dim(P∗
e (Rn)) is important in the

definition of antipodal Euclidean tight (2e + 1)-designs.

If X is an antipodal Euclidean 1-design, then |X∗| ≥ dim(P∗
0 (S)) = dim(P∗

0 (Rn)) =
1. Hence X = {0} is an antipodal Euclidean tight 1-design. If we consider the case
0 �∈ X , then any antipodal 2-point set {u, −u} is an antipodal Euclidean tight 1-design,
which is similar to a spherical tight 1-design.

Theorem 1.5. Let X be an antipodal Euclidean tight 3-design in Rn, then X is
similar to one of the following:

X =
p⋃

i=1

Xi with Xi =
{

± ri e j

∣∣∣∣∣ 1 +
i−1∑
l=1

Nl ≤ j ≤
i∑

l=1

Nl

}

and

w(x) = 1

nri
2

for x ∈ Xi and i = 1, . . . , p.

In above Ni = |X∗
i | for i = 1, . . . , p and |X | = 2

∑p
i Ni = 2n.

Remark 4. Examples of antipodal 3-designs as in above are given by Bajnok [1].

Theorem 1.6. Let X be an antipodal Euclidean tight 5-design in Rn supported by 2
concentric spheres. Then X is similar to one of the following:

(1) 0 ∈ X and X\{0} is a tight spherical 5-design.
(2) n = 2. X = X1 ∪ X2, where

X1 = {(±1, 0), (0, ±1)}, X2 =
{(

± r√
2
, ± r√

2

)}
,

w(x) = 1, x ∈ X1 w(x) = 1
r4 , x ∈ X2, r �= 1.

(3) n = 3. X = X1 ∪ X2, where

X1 = {±ei | i = 1, 2, 3}, X2 =
{

r√
3

(ε1, ε2, ε3) | εi ∈ {1, −1}, 1 ≤ i ≤ 3

}
,

r �= 1, w(x) = 1 for x ∈ X1 and w(x) = 9
8r4 for x ∈ X2.
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(4) n = 5. X = X1 ∪ X2 ⊂ V = {(x1, . . . , x6) ∈ R6 | ∑6
i=1 xi = 0} ∼= R5, where

X1 = {±ui | 1 ≤ i ≤ 6},

X2 =
{

r√
6

(ε1, ε2, . . . , ε6)

∣∣∣∣ εi ∈ {1, −1}, |{i |εi = 1}| = 3

}
,

r �= 1, w(x) = 1 for x ∈ X1, w(x) = 27
25r4 for x ∈ X2 and ui = (ui,1, . . . , ui,6), ∈

V are defined by

ui, j =

⎧⎪⎪⎨⎪⎪⎩
− 5√

30
if j = i,

1√
30

otherwise

(5) n = 6. X = X1 ∪ X2, where

X1 = {±ei | 1 ≤ i ≤ 6},

X2 =
{

r√
6

(ε1, ε2, . . . , ε6)

∣∣∣∣ εi ∈ {1, −1}, |{i |εi = 1}| ≡ 0 (mod 2)

}
,

r �= 1, w(x) = 1 for x ∈ X1 and w(x) = 9
8r4 for x ∈ X2.

Remark 5.

(i) Examples (2) and (3) above are given by Bajnok [1]. Examples (4) and (5) are the
newly found ones.

(ii) If X is an antipodal Euclidean tight 5-design, then X must be supported by at
least 2 concentric spheres. The antipodal Euclidean tight 3- and 5-designs in The-
orems 1.5 and 1.6 are non-rigid, because we obtain a distinct antipodal Euclidean
tight 3- or 5-designs by changing one of the radii ri of the spheres which support
the given antipodal Euclidean tight 3- or 5-design and the corresponding weight
w(x), x ∈ Xi . By a recent result on non-rigid Euclidean designs obtained by Ei-
ichi Bannai and Djoko Suprijanto [4], it seems that if a Euclidean tight 2e-design
or an antipodal Euclidean tight (2e + 1)-design which is supported by more than
[ e+εS

2 ] + 1 spheres exists, then there may possibly exist infinitely many Euclidean
tight 2e-designs or antipodal Euclidean tight (2e + 1)-designs respectively. Ac-
tually they showed some of the tight Euclidean designs are strongly non-rigid.
That means there are infinitely many tight Euclidean designs which are not trans-
formed to each other by orthogonal transformations, scaling, or adjustment of
weight functions.

The following Lemma is one of the key lemmas to prove Theorems 1.5 and 1.6.

Lemma 1.7. Let X be an antipodal tight (2e + 1)-design on p concentric spheres.
Let X∗

i = X∗ ∩ Xi . Then the following conditions hold:
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(1) On each Xi , the weight function w is constant.
(2) Each X∗

i is an at most e-distance set.
(3) Each Xi is an at most (e + 1)-distance set.
(4) If the weight function w is constant on X\{0}, then p − εS ≤ e.

As an application of Lemma 1.7, we obtained the following theorem which is very
useful.

Theorem 1.8.

(1) Let X be a tight 2e-design on p concentric spheres. If e − p + εS ≥ 0, then each Xi

is similar to a spherical (2e − 2p + 2εS + 2)-design. Moreover, if p ≤ [ e+2εS+3
2 ],

then each Xi is a distance invariant set.
(2) Let X be an antipodal tight (2e + 1)-design on p concentric spheres. If e −

p + εS ≥ 0, then each Xi is similar to an antipodal spherical (2e − 2p + 2εS +
3)-design. Moreover, if p ≤ [ e+2εS+3

2 ], then each Xi is a distance invariant
set.

In Section 2 we give some basic facts about Euclidean designs including the facts
already known, state and prove Theorem 2.3. Then we give the proof of Theorem 1.8
using Lemma 1.7. In Section 3, we will prove Lemma 1.7. In Section 4 we will prove
Theorem 1.5 and in Section 5 we will prove Theorem 1.6. In Section 6 we will state
some remarks.

2. Basic facts

In this section we give basic facts on Euclidean t-designs which we use to prove our
results. The following theorem is proved in [9].

Theorem 2.1 ([9]). Let X be a finite subset which may possibly contains 0 and with
a weight ω. Then the following (1) and (2) are equivalent:

(1) X is a Euclidean t-design with weight w.
(2)

∑
u∈X w(u) f (u) = 0 for any polynomial f ∈ ‖x‖2 j Harml(Rn)

with 1 ≤ l ≤ t , 0 ≤ j ≤ [ t−l
2 ].

Corollary 2.2. Let X be an antipodal set with weight w satisfying w(−x) = w(x) for
x ∈ X. Then the following (1) and (2) are equivalent:

(1) X is a Euclidean t-design with weight w.
(2)

∑
u∈X∗ w(u)‖u‖2 jϕ(u) = 0 for any polynomial ϕ ∈ Harm2l(Rn)

with 1 ≤ l ≤ [ t
2 ], 0 ≤ j ≤ [ t

2 ] − l.

Applying Theorem 2.1 and Corollary 2.2 we can prove the following theorem.
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Theorem 2.3.

(1) Let X be a t-design supported by p concentric spheres. Assume p ≤ [ t+1
2 ] + εS .

Then ∑
u∈Xi

w(u)ϕ(u) = 0

holds for any i satisfying ri > 0 and ϕ ∈ Harml(Rn) with 1 ≤ l ≤ t − 2p + 2εS +
2. In particular, if w(u) is constant on Xi , then Xi is similar to a spherical (t −
2p + 2εS + 2)-design.

(2) Let X be an antipodal Euclidean t-design supported by p concentric spheres.
Assume w(−x) = w(x) for any x ∈ X and p ≤ [ t

2 ] + εS . Then∑
u∈Xi

w(u)ϕ(u) = 0

holds for any i satisfying ri > 0 and ϕ ∈ Harm2l(Rn) with 1 ≤ l ≤ t − 2p +
2εS + 2. In particular, if w(u) is constant on Xi , then Xi is similar to an antipodal
spherical (2([ t

2 ] − p + εS) + 3)-design.

Proof: We may assume ri > 0 for i = 1, . . . , p − εS .

(1) Theorem 2.1 implies that for any j and l satisfying 1 ≤ l ≤ t and 0 ≤ j ≤ [ t−l
2 ]

the following condition holds:

∑
u∈X

w(u)‖u‖2 jϕ(u) =
p−εS∑
i=1

ri
2 j

∑
u∈Xi

w(u)ϕ(u) = 0, (2.1)

for any ϕ ∈ Harml(Rn). Let p′ = p − εS . Therefore 1 ≤ l ≤ t − 2p′ + 2 implies
[ t−l

2 ] ≥ p′ − 1 and the coefficient matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

r1
2 r2

2 . . . rp′ 2

...
...

...

r1
2[ t−l

2 ] r2
2[ t−l

2 ] . . . rp′ 2[ t−l
2 ]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
of the Eq. (2.1) is of rank p′. Hence∑

u∈Xi

w(u)ϕ(u) = 0

holds for any i and ϕ ∈ Harm2l(Rn) with 1 ≤ l ≤ t − 2p′ + 2 = t − 2p + 2εS +
2. Then Theorem 2.1 implies (1).
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(2) Let X be an antipodal Euclidean t-design. Then Corollary 2.2 implies that for any
l and j satisfying 1 ≤ l ≤ [ t

2 ] and 0 ≤ j ≤ [ t
2 ] − l the following condition holds:

p−εS∑
i=1

ri
2 j

∑
u∈X∗

i

w(u)ϕ(u) = 0 (2.2)

for any i and ϕ ∈ Harm2l(Rn). Therefore [ t
2 ] − l ≥ p′ − 1 implies that the coef-

ficient matrix of the above Eq. (2.2) is of full rank and∑
u∈X∗

i

w(u)ϕ(u) = 0

holds for any i and ϕ ∈ Harm2l(Rn) with 1 ≤ l ≤ [ t
2 ] − p + εS + 1. Since Xi is

antipodal if w is constant on Xi , Corollary 2.2 implies that Xi is similar to an
antipodal spherical (2([ t

2 ] − p + εS) + 3)-design.
�

Proof of Theorem 1.8

(1) Let X be a tight 2e-design on p-concentric spheres. In [2], we proved a lemma
similar to Lemma 1.7, which shows that each Xi is at most an e-distance set and
the weight function is constant on Xi for any tight 2e-design X on p-concentric
spheres. On the other hand Theorem 2.3 implies that Xi is similar to a (2e − 2p +
2εS + 2)-design. Since (2e − 2p + 2εS + 2) ≥ e − 1 holds by the assumption of
Theorem 1.8, Theorem 7.4 in [5] implies that Xi is distance invariant (Theorem
7.4 in [5] shows that every spherical t-design which is at most a (t + 1)-distance
set is distance invariant).

(2) Let X be an antipodal tight (2e + 1)-design on p concentric spheres. Then Lemma
1.7 implies that Xi is at most an (e + 1)-distance set and the weight is constant
on Xi . On the other hand Theorem 2.3 implies that Xi is similar to an antipodal
spherical (2e − 2p + 2εS + 3)-design. The assumption of Theorem 1.8 give (2e −
2p + 2εS + 3) ≥ (e + 1) − 1. Hence Theorem 7.4 in [5] shows that Xi is distance
invariant.

3. Proof of Lemma 1.7

Let S be a union of p concentric spheres centered at the origin. Let e ≥ 1. Then the
following are well known [2, 6, 7]:

(i) dim(Pe(Rn)) =
(

n + e

e

)
.

(ii) dim(P∗
e (Rn)) =

[ e
2 ]∑

i=0

(
n + e − 2i − 1

e − 2i

)
Springer
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(ii) dim(Pe(S)) = εS +
2(p−εS )−1∑

i=0

(
n + e − i − 1

e − i

)
<

(
n + e

e

)
for p ≤ [ e+εS

2 ] .

(iii) dim(Pe(S)) =
e∑

i=0

(
n + e − i − 1

e − i

)
=

(
n + e

e

)
for p ≥ [ e+εS

2 ] + 1.

(iv) dim(P∗
e (S)) = dim(P∗

e (Rn)) =
[ e

2 ]∑
i=0

(
n + e − 2i − 1

e − 2i

)
for p ≥ [ e

2 ] + 1.

(v) dim(P∗
e (S)) =

p−1∑
i=0

(
n + e − 2i − 1

e − 2i

)
< dim(P∗

e (Rn))

for p ≤ [ e
2 ] and e is odd or e is even and 0 �∈ S.

(vi) dim(P∗
e (S)) = 1 +

p−2∑
i=0

(
n + e − 2i − 1

e − 2i

)
< dim(P∗

e (Rn))

for p ≤ [ e
2 ], e is even and 0 ∈ S.

Let X be an antipodal finite subset in Rn supported by p concentric spheres. Let
S be the union of the p concentric spheres. First we define a basis of P∗

e (S). Let
{ϕl,i (x) | 1 ≤ i ≤ hl} be an orthonormal basis of Harml(Rn) with respect to the inner
product

〈 f, g〉 = 1

|Sn−1|
∫

Sn−1
f (x)g(x)dσ (x),

where hl = dim(Harml(Rn)). Let

H0 =
{

g0, j (‖x‖2) | 0 ≤ j ≤ min

{
p − 1,

[
e

2

]}}
and

Hl =
{

gl, j (‖x‖2)ϕl,i (x) | 1 ≤ i ≤ hl , 0 ≤ j ≤ min

{
p − εS − 1,

[
e − l

2

]}}
for 1 ≤ l ≤ e, where gl,ν(‖x‖2) (0 ≤ ν ≤ p − 1) is a polynomial of degree 2ν, which
is linear combinations of 1, ‖x‖2, . . . , ‖x‖2 j and satisfying the following condition:∑

x∈X∗
w(x)‖x‖2l gl, j (‖x‖2)gl, j ′ (‖x‖2) = δ j, j ′ .

Such polynomials always exist because {1, ‖x‖2, . . . , ‖x‖2(p−1)} is a linearly indepen-
dent subset of P(X∗) = { f |X∗ | f ∈ P(Rn)} and for each l

〈 f, g〉l =
∑
x∈X∗

w(x)‖x‖2l f (x)g(x)
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defines a positive definite inner product of P(X∗).

Then Hl is a basis of
⊕min{p−εS−1,[ e−l

2 ]}
j=0 ‖x‖2 j Harml(S). Let

H∗ =
[ e

2 ]⋃
l=0

He−2l .

Since

P∗
e (S) =

[ e
2 ]∑

i=0

Home−2i (S) =
[ e

2 ]∑
i=0

[ e−2i
2 ]∑

j=0

‖x‖2 j Harme−2i−2 j (S)

and H∗ is a linearly independent subset of P∗
e (S), H∗ is a basis of P∗

e (S).
Let M be a matrix whose columns and rows are indexed by X∗ × H∗ whose (x, f )-

entry is given by
√

w(x) f (x) for x ∈ X∗ and f ∈ H∗.

Proposition 3.1. Let X be an antipodal (2e + 1)-design. Let M be the matrix defined
as above for X∗. Then t M M = I holds. Hence we have |X∗| ≥ dim(P∗

e (S)).

Proof: First we prove the case when 0 �∈ X . Since e − 2l1 + 2 j1 + e − 2l2 + 2 j2 ≤
2e, the (ge−2l1, j1ϕe−2l1,i1 , ge−2l2, j2ϕe−2l2,i2 )-entry of t M M is given by∑

x∈X∗
w(x)ge−2l1, j1 (‖x‖2)ϕe−2l1,i1 (x)ge−2l2, j2 (‖x‖2)ϕe−2l2,i2 (x)

= 1

2

p∑
i=1

w(Xi )

|Si |
∫

Si

ge−2l1, j1 (‖x‖2)ge−2l2, j2 (‖x‖2)ϕe−2l1,i1 (x)ϕe−2l2,i2 (x)dσi (x)

= 1

2

p∑
i=1

w(Xi )ge−2l1, j1

(
ri

2
)
ge−2l2, j2

(
ri

2
)
r2(e−l1−l2)

i

|Sn−1|
∫

Sn−1
ϕe−2l1,i1 (x)ϕe−2l2,i2 (x)dσ (x)

= 1

2
δl1,l2δi1,i2

p∑
i=1

w(Xi )r
2(e−2l1)
i ge−2l1, j1

(
ri

2)ge−2l1, j2

(
ri

2)
= 1

2
δl1,l2δi1,i2

∑
x∈X

w(x)‖x‖2(e−2l1)ge−2l1, j1 (‖x‖2)ge−2l1, j2 (‖x‖2)

= δl1,l2δi1,i2

∑
x∈X∗

w(x)‖x‖2(e−2l1)ge−2l1, j1 (‖x‖2)ge−2l1, j2 (‖x‖2) = δl1,l2δi1,i2δ j1, j2 .

Next we consider the case when 0 ∈ X . Let Sp = {0}.
Since X\{0} is also a (2e + 1)-design we have the following:

(i) If e − 2l1 > 0 or e − 2l2 > 0 holds, then∑
x∈X∗

w(x)ge−2l1, j1 (‖x‖2)ϕe−2l1,i1 (x)ge−2l2, j2 (‖x‖2)ϕe−2l2,i2 (x)

= w(0)ge−2l1, j1 (0)ge−2l2, j2 (0)ϕe−2l1,i1 (0)ϕe−2l2,i2 (0)

Springer



402 J Algebr Comb (2006) 24:391–414

+1

2

∑
x∈X\{0}

w(x)ge−2l1, j1 (‖x‖2)ϕe−2l1,i1 (x)ge−2l2, j2 (‖x‖2)ϕe−2l2,i2 (x).

= 1

2

p−1∑
i=1

w(Xi )

|Si |
∫

Si

ge−2l1, j1 (‖x‖2)ge−2l2, j2 (‖x‖2)ϕe−2l1,i1 (x)ϕe−2l2,i2 (x)dσi (x)

= 1

2

p−1∑
i=1

w(Xi )ge−2l1, j1

(
ri

2
)
ge−2l2, j2

(
ri

2
)
r2(e−l1−l2)

i

|Sn−1|
∫

Sn−1
ϕe−2l1,i1 (x)ϕe−2l2,i2 (x)dσ (x)

= 1

2
δl1,l2δi1,i2

p∑
i=1

w(Xi )r
2(e−2l1)
i ge−2l1, j1

(
ri

2)ge−2l1, j2

(
ri

2)
= 1

2
δl1,l2δi1,i2

∑
x∈X

w(x)‖x‖2(e−2l1)ge−2l1, j1 (‖x‖2)ge−2l1, j2 (‖x‖2)

= δl1,l2δi1,i2

∑
x∈X∗

w(x)‖x‖2(e−2l1)ge−2l1, j1 (‖x‖2)ge−2l1, j2 (‖x‖2) = δl1,l2δi1,i2δ j1, j2 .

(ii) If e − 2l1 = e − 2l2 = 0, then∑
x∈X∗

w(x)g0, j1 (‖x‖2)g0, j2 (‖x‖2) = δ j1, j2 .

This completes the proof.
�

Proof of Lemma 1.7

Since |X∗| = dim(P∗
e (S)), M is a square matrix. Hence Proposition 3.1 implies that

M is a regular matrix and t M M = M t M = I .
If x, y �= 0, then the (x, y) entry of M t M is given by the following:

∑
l, j,i

√
w(x)w(y)ge−2l, j (‖x‖2)ge−2l, j (‖y‖2)ϕe−2l,i (x)ϕe−2l,i (y)

=
∑
l, j

√
w(x)w(y)(‖x‖‖y‖)(e−2l)ge−2l, j (‖x‖2)ge−2l, j (‖y‖2)

∑
i

ϕe−2l,i

(
x

‖x‖
)

ϕe−2l,i

(
y

‖y‖
)

=
∑
l, j

√
w(x)w(y)(‖x‖‖y‖)(e−2l)ge−2l, j (‖x‖2)ge−2l, j (‖y‖2)Qe−2l

((
x

‖x‖ ,
y

‖y‖
))

,

where Ql is the Gegenbauer polynomial of degree l (see [2, 3, 5, 7] for the explicit
definition). This implies

w(x)
∑
l, j

‖x‖2(e−2l)ge−2l, j (‖x‖2)2 Qe−2l(1) = 1, (3.1)
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for any x ∈ X∗ satisfying x �= 0 and

∑
l, j

(‖x‖‖y‖)(e−2l)ge−2l, j (‖x‖2)ge−2l, j (‖y‖2)Qe−2l

((
x

‖x‖ ,
y

‖y‖
))

= 0, (3.2)

for any (x, y) ∈ X∗ × X∗ satisfying x, y �= 0 and x �= y. Then Eq. (3.1) implies that
w(x) only depends on ‖x‖2. Hence w(x) is constant on each Xi (Lemma 1.7(1)).
Equation (3.2) implies that for any x, y ∈ X∗

i the inner product (x, y) is a root of the
same polynomial of degree at most e. Hence, each X∗

i is an at most e-distance set
(Lemma 1.7(2)). If w is constant on X\{0}, then all the ri �= 0 are roots of the same
Eq. (3.1) of degree at most e. This implies Lemma 1.7(4). Next we prove Lemma
1.7(3). Let ri > 0 and I (Xi ) = {(x, y) | x, y ∈ Xi , x �= y}. Since Xi is on a sphere,
we have |I (Xi )| = |A(Xi )|. For any x, y ∈ X∗

i , Eq. (3.2) is a polynomial of (x, y)
with degree at most e and the coefficients are functions of ri . This means Eq. (3.2)
depends only on i and does not depend on the choice of X∗

i . Let x, y ∈ Xi . Assume
x �= ±y. Then there is a subset Z ⊂ Xi satisfying x, y ∈ Z , Z ∪ (−Z ) = Xi and
Z ∩ (−Z ) = {0} or ∅. Then (x, y) is a root of Eq. (3.2). Hence I (Xi ) ⊂ {−ri

2} ∪
(set of all the real roots of the Eq. (3.2)). This implies |I (Xi )| ≤ e + 1 and Xi is at
most an (e + 1)-distance set.

4. Antipodal Euclidean tight 3-design

In this section we will prove Theorem 1.5.
Let X be an antipodal tight Euclidean 3-design. Then |X∗| = n. If 0 ∈ X , then

p ≥ 2 and Y = X\{0} is also an antipodal Euclidean 3-design. Then Y is supported by
p − 1(≥1) concentric spheres and |Y ∗| = |X∗\{0}| = n − 1. This is a contradiction.
Hence 0 �∈ X holds. Thus ri > 0 for i = 1, . . . , p. In this case H∗ = H1 holds. Since
w is constant on Xi for each i , let w(x) = wi for x ∈ Xi . Let Ri = ri

2. With these
notation we have

g1,0 = 1√∑p
i=1 Niwi Ri

.

By scaling we may assume

p∑
j=1

N jw j R j = 1.

Then g1,0 = 1 and Eq. (3.1) implies

wi Ri Q1(1) = 1, hence wi = 1

n Ri
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for i = 1, . . . , p, and Eq. (3.2) implies (x, y) = 0 holds for any x, y ∈ X∗ and x �= y.
We may assume

X∗
1 = {r1ei | 1 ≤ i ≤ N1}.

Let x ∈ X∗
2 . Then (x, ei ) = 0 holds for any i = 1, . . . , N1. By a transformation in the

orthogonal group O(n), we may assume x = r2eN1+1. By continuing this argument
we may assume

X∗
i =

{
ri e j | 1 +

i−1∑
l=1

Nl ≤ j ≤
i∑

l=1

Nl

}
.

Hence

Xi =
{

± ri e j | 1 +
i−1∑
l=1

Nl ≤ j ≤
i∑

l=1

Nl

}

and

w(x) = 1

nri
2

for x ∈ Xi and i = 1, . . . , p. This completes the proof.

5. Antipodal Euclidean tight 5-design with p = 2

Let X be an antipodal Euclidean tight 5-design. Then p ≥ 2 and |X∗| =
dim(P∗

2 (Rn)) = (n+1
2

) + 1. In this section we consider the case p = 2. Assume
0 ∈ X . Then X\{0} is similar to an antipodal spherical 5-design. Hence X\{0} is a
spherical tight 5-design. In the following we assume 0 �∈ X .

By assumption we have |X∗| = n2+n+2
2 . We use the same notation given before.

By Lemma 1.7, w(x) is constant on each X∗
i , i = 1, 2. Let wi = w(x) for x ∈ X∗

i and
i = 1, 2. By a similar transformation of Rn and a multiplication with a positive real
number to the weight w we may assume |X1| ≤ |X2|, r1 = w1 = 1. Let w = w2 and
r = r2 �= 1. Let R = r2 and Ni = |X∗

i |, i = 1, 2.
Theorem 1.8 implies that Xi is an antipodal spherical 3-design and distance invari-

ant. Hence Theorem 5.12 in [5] implies |Xi | ≥ 2n and the graph defined on Xi by any
one of the distances in A(Xi ) is regular. Therefore we have

n ≤ N1 ≤ n2 + n + 2

4
≤ N2 ≤ n2 − n + 2

2
.

Springer



J Algebr Comb (2006) 24:391–414 405

The polynomials gl, j (‖x‖2) are given by the following formula:

g0,0(‖x‖2) ≡ 2√
4(1 − w)N1 + 2w(n2 + n + 2)

,

g0,1(‖x‖2) =
√

2N1 + w(n2 + n + 2 − 2N1)

N1w(R − 1)2(n2 + n + 2 − 2N1)

× (2N1 + w(n2 + n + 2 − 2N1))‖x‖2−2N1−wR(n2 + n + 2 − 2N1)

2N1 + w(n2 + n + 2 − 2N1
) ,

g2,0(‖x‖2) ≡ 2√
4N1 + 2wR2(n2 + n + 2 − 2N1)

Then Eq. (3.1) for x ∈ X∗
1 and X∗

2 implies the following Eqs. (5.1) and (5.2) re-
spectively. Also Eq. (3.2) for x, y ∈ X∗

i , x �= y implies the following (5.3) and (5.4)
respectively. Equation (3.2) for x ∈ X∗

1, y ∈ X∗
2 implies the following Eq. (5.5).

wR2(n2 + n + 2 − 2N1) + n(n + 1)N1

(2N1 + wR2(n2 + n + 2 − 2N1))N1
= 1, (5.1)

wR2n(n + 1)(n2 + n + 2 − 2N1) + 4N1

(n2 + n + 2 − 2N1)(2N1 + wR2(n2 + n + 2 − 2N1))
= 1, (5.2)

nN1(n + 2)A2 − 4nN1(n + 2)A + 4wR2(n2 + n + 2 − 2N1) + 4nN1(1 + n)

4N1(2N1 + wR2(n2 + n + 2 − 2N1))
= 0,

where A = ‖x − y‖2 �= 0, x, y ∈ X∗
1), (5.3)

(wn(n + 2)(n2 + n + 2 − 2N1)B2 − 4wRn(n + 2)(n2 + n + 2 − 2N1)B

+ 4wR2n(n + 1)(n2 + n + 2 − 2N1) + 16N1)

× 1

4w(n2 + n + 2 − 2N1)(2N1 + wR2(n2 + n + 2 − 2N1))
= 0,

where B = ‖x − y‖2 �= 0, x, y ∈ X∗
2, (5.4)

(n + 2)(nC2 − 2n(1 + R)C + R2n + 2Rn − 4R + n)

4(2N1 + wR2(n2 + n + 2 − 2N1))
= 0,

where C = ‖x − y‖2, x ∈ X∗
1, y ∈ X∗

2 . (5.5)

Then Eqs. (5.1) and (5.2) are both equivalent to the following equation.

w = N1(n2 + n − 2N1)

R2(N1 − 1)(n2 + n + 2 − 2N1)
. (5.6)
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By substituting this value w in Eqs. (5.3), (5.4) and (5.5) we obtain following Eqs. (5.7),
(5.8) and (5.9) respectively.

n(N1 − 1)A2 − 4n(N1 − 1)A + 4N1(n − 1) = 0, (5.7)

(n2 + n − 2N1)nB2 − 4Rn(n2 + n − 2N1)B

+ 4R2(n − 1)(n2 + n + 2 − 2N1) = 0, (5.8)

nC2 − 2n(R + 1)C + R2n + 2Rn − 4R + n = 0. (5.9)

By solving the above equations we obtain

A = 2n(N1 − 1) ± 2
√

n(N1 − 1)(N1 − n)

n(N1 − 1)
(5.10)

B = 2R
(
n(n2 + n − 2N1) ±

√
n(n2 − n + 2 − 2N1)(n2 + n − 2N1)

)
n(n2 + n − 2N1)

(5.11)

C = n(R + 1) ± 2
√

n R

n
(5.12)

Since n ≤ N1 ≤ n2+n+2
4 ≤ n2−n+2

2 ≤ n2+n
2 , we have positive solutions A, B and C .

Let A1 and A2 be the two solutions of Eq. (5.7) and B1 and B2 be the two solutions
of Eq. (5.8). Assume A1 ≤ A2 and B1 ≤ B2. If N1 = n, then A1 = A2 holds. Also if
n = 2, then N1 = N2 = 2 and B1 = B2 holds. If n ≥ 5, then N2 > n + 1 holds and
X∗

2 is a 2-distance set. For any A1 < A2 and B1 < B2 we define positive real numbers
kA and kB by

A1

A2
= kA − 1

kA
, (5.13)

B1

B2
= kB − 1

kB
. (5.14)

By definition kA, kB > 1 holds. Then if N1 > 2n + 3, then Theorem 2 in [8] implies
that kA and kB are integers. If n ≥ 9, then N2 ≥ n2+n+2

4 > 2n + 3 holds. Therefore, kB

is an integer for n ≥ 9. Equations. (5.13), (5.14), (5.10) and (5.11) imply the following
equations.

(2kA − 1)2 =
(

A2 + A1

A2 − A1

)2

= n(N1 − 1)

N1 − n
(5.15)

(2kB − 1)2 =
(

B2 + B1

B2 − B1

)2

= n(n2 + n − 2N1)

n2 − n + 2 − 2N1
. (5.16)
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Next, we assume n ≥ 9 and study the behavior of the functions G A(x) and G B(x)
defined by

G A(x) = n(x − 1)

x − n
, (5.17)

G B(x) = n(n2 + n − 2x)

n2 − n + 2 − 2x
(5.18)

for n ≤ x ≤ n2+n+2
4 .

Proposition 5.1. Let n ≥ 9. Then

n + 2 < G B(x) < n + 6

holds for n ≤ x ≤ n2+n+2
4 .

Proof: We have dG B (x)
dx = 4n(n−1)

(n2−n+2−2x)2 > 0, G B(n) = n2

n−2 > n + 2 and

G B( n2+n+2
4 ) = n(n+2)

n−2 < n + 6. �

Proposition 5.2. If there exists an antipodal Euclidean tight 5-design in Rn supported
by 2 concentric spheres centered at the origin and 0 �∈ X, then n ≤ 8 holds.

Proof: Assume n ≥ 14. By Proposition 5.1 we have

(2kB − 1)2 = G B(N1) ∈ {n + 3, n + 4, n + 5}.

(i) If (2kB − 1)2 = G B(N1) = n + 3, then n = 4k2
B − 4kB − 2 and

N1 = n2 − n + 6

6
= 2 + 2

3
kB(kB − 1)

(
4k2

B − 4kB − 5
)

is an integer. Since n ≥ 14, we have n2−n+6
6 > 2n + 3. Hence X∗

1 is a 2-distance
set and

(2kA − 1)2 = G A(N1) = G A

(
n2 − n + 6

6

)
= n2

n − 6
= n + 6 + 36

n − 6

is an integer. Therefor n ∈ {15, 18, 24, 42}. If n ∈ {15, 42}, then kB cannot be
an integer. If n ∈ {18, 24}, then kA cannot be an integer.

(ii) If (2kB − 1)2 = G B(N1) = n + 4, then n = 4kB
2 − 4kB − 3 and

N1 = n2 − n + 4

4
= 4kB

4 − 8kB
3 − 3kB

2 + 7kB + 4.
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Since n ≥ 14, N1 > 2n + 3. Hence X∗
1 is a 2-distance set and kA is an integer.

On the other hand we have

(2kA − 1)2 = G A(N1) = G A

(
n2 − n + 4

4

)
= n2

n − 4
= n + 4 + 16

n − 4
.

Hence n = 20. Then kB cannot be an integer.
(iii) If (2kB − 1)2 = G B(N1) = n + 5, then n = 4kB

2 − 4kB − 4 and
N1 = 3n2−3n+10

10 . Since n ≥ 14, 3n2−3n+10
10 > 2n + 3. Hence X∗

1 is a 2-distance
set and kA is an integer. On the other hand we have

(2kA − 1)2 = G A(N1) = G A

(
3n2 − 3n + 10

10

)
= n + 3 + n + 30

3n − 10
.

Since G A(N1) is an integer we have n ≤ 20. However kA cannot be an integer for any
n satisfying 14 ≤ n ≤ 20.

Next we assume 9 ≤ n ≤ 13. Then N2 ≥ n2+n+2
4 > 2n + 3 holds. Hence X∗

2 is a 2-
distance set and kB is an integer. Proposition 5.1 implies that G B(N1) = n + 3, n + 4
or n + 5.

(a) If G B(N1) = n + 3, then n = 4kB
2 − 4kB − 2 as we have seen in the proof of (i).

There is no integer kB which satisfies n = 4kB
2 − 4kB − 2 for 9 ≤ n ≤ 13

(b) If G B(N1) = n + 4, then n = 4kB
2 − 4kB − 3 as we have seen in the proof of (ii).

There is no integer kB which satisfies n = 4kB
2 − 4kB − 3 for 9 ≤ n ≤ 13.

(c) If G B(N1) = n + 5, then n = 4kB
2 − 4kB − 4 as we have seen in the proof of (iii).

There is no integer kB which satisfies n = 4kB
2 − 4kB − 4 for 9 ≤ n ≤ 13. This

completes the proof of Proposition 5.2 �

In the following we discuss the case 2 ≤ n ≤ 8 and prove Theorem 1.6. To elim-
inate the possibilities of existence of antipodal tight Euclidean 5-designs, we used a
computer for calculation. Theorem 1.8 implies that each layer Xi of an antipodal tight
Euclidean 5-design supported by 2 concentric spheres is a distance invariant set.

Let I (Xi ) = {(x, y) | x, y ∈ Xi , x �= y}. If Xi is a 3-distance set, then I (Xi ) =
{−ri

2, αri
2, −αri

2} with a positive real number α. Let u1 ∈ Xi . Since Xi is antipodal
and (x, u1) = αri

2 holds if and only if (−x, u1) = −αri
2, we have

Xi = {
x ∈ Xi | (u1, x) = αri

2} ∪ {
x ∈ Xi | (u1, x) = −αri

2} ∪ {u1, −u1}.

Hence if X1 ( X2 resp.) is a 3-distance set, then the graph defined on Xi by the distance√
A1, or

√
A2 (

√
B1, or

√
B2 resp.) is of valency N1 − 1 (N2 − 1 resp.).

If Xi is a 2-distance set then every distinct vectors in X∗
i are perpendicular to each

other.

Case n = 8. We have |X∗| = 37, 8 ≤ N1 ≤ 18 < 19 ≤ N2.

(i) If N1 ≤ 17, then N2 ≥ 20 > 2 · 8 + 3. Hence L-R-S’s theorem implies that
G B(N1) is the square of an odd integer. Since n = 8 implies G B(N1) = 8 + 56

29−N1
,
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G B(N1) cannot be an integer for any N1 with 8 ≤ N1 ≤ 17. Hence this case does
not occur.

(ii) If N1 = 18 then N2 = 19. In this case we have (x, y) = ±
√

11
12 R or −R for any

x, y ∈ X2. Fix u1 ∈ X2. As we mentioned above we may assume

X∗
2 = {u1} ∪

{
x ∈ X2 | (x, u1) =

√
11

12
R

}

Since N2 = 19, X∗
2 is a 2-distance set. Let u2, . . . , u5 ∈ X∗

2 satisfying (u1, ui ) =√
11

12 R. Then {u1, u2, . . . , u5} is a five point 1 or 2-distance set whose distances
are among {

√
(2−

√
11
6 )R,

√
(2+

√
11
6 )R}. There are eleven possible configurations between

{u1, u2, . . . , u5}. For each of the configurations we did computer computation
to find out there is no 2-distance set having more than 9 points and containing
{u1, u2, . . . , u5}.

Case n = 7. We have |X∗| = 29, 7 ≤ N1 ≤ 14 < 15 ≤ N2.

(i) If N1 ≤ 11, then N2 ≥ 18 > 2 · 7 + 3. On the other hand G B(x) = 7 + 42
22−x .

Hence G B(x) cannot be an integer for any N1 with 7 ≤ N1 ≤ 11. Hence, this
case does not occur.
The following are the remaining cases for n = 7.

(ii) N1 = 12, then N2 = 17
(iii) N1 = 13, then N2 = 16.
(iv) N1 = 14, then N2 = 15.

In each case Xi is a 3-distance set. Let u1 ∈ X1 and X∗
1 = {u1} ∪ {u ∈ X1 | ‖u − u1‖ =

A1}. Then X∗
1 is a 2-distance set with A(X∗

1) = {√A1,
√

A2}. We apply the same
method explained in the case n = 8 and found out there is no 2-distance satisfying the
required conditions.

Case n = 6. We have |X∗| = 22, 6 ≤ N1 ≤ 11 ≤ N2.

(i) If N1 = 6, then N2 = 16 > 2 · 6 + 3, kB = 3, A1 = A2 = 2, B1 = 4R
3 , B2 = 8R

3 ,
C1 = R + 1 − √

2
3

√
R, and C2 = R + 1 + √

2
3

√
R. Hence X∗

1 is a six point 1-
distance set on S5 and every distinct x, y ∈ X∗

1 satisfy (x, y) = 0. Therefore
we may assume X∗

1 = {ei | 1 ≤ i ≤ 6}, where ei is the unit vector whose i-th
entry is 1. Let

Y = {v ∈ S2 | ‖v − ei‖2 = C1 or C2, 1 ≤ i ≤ 6}

and v = (v1, v2, . . . , v6) ∈ Y . Then we obtain vi = εi

√
R√
6

for i = 1, . . . , 6, where
εi = 1 or −1. Therefore

Y =
{√

R√
6

(ε1, . . . , ε6)

∣∣∣∣ εi = 1 or −1, 1 ≤ i ≤ 6

}
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holds. Since X∗
2 is a subset of Y and Y is an antipodal set, X2 ⊂ Y . Moreover we

may assume that X∗
2 contains the vector in Y whose entries are all positive. If it

is not so then apply an isometry defined by changing the sign of the canonical
vectors. Since Y and X1 = X∗

1 ∪ (−X∗
1) are invariant under such an isometry, the

image of X∗
2 satisfies the condition. For u = (u1, . . . , u6), v = (v1, . . . , v6) ∈ Y ,

‖u − v‖2 = 4R
3 holds if and only if |{i | ui �= vi }| = 2 holds. Also ‖u − v‖2 = 8R

3
holds if and only if |{i | ui �= vi }| = 4 holds.
Therefore we obtain

X∗
2 = {u ∈ Y | |{i |ui > 0}| ∈ {0, 2, 4, 6} }.

Then |X∗
2 | = 16 and ‖u − v‖2 ∈ {0, 4R

3 , 8R
3 } holds. Then X = X∗

1 ∪ (−X∗
1) ∪

X∗
2 ∪ (−X∗

2) is an antipodal Euclidean tight 5-design in R6.
(ii) If N1 = 7, then A1 = √

5
3 , A2 = √

7
3 , B1 = (2 − √

3
7 )R, B2 = (2 + √

3
7 )R, and

C1 = R + 1 − √
2
3

√
R, and C2 = R + 1 + √

2
3

√
R. Note that the length of the edges

of a regular simplex on S5 is
√

7
3 . Moreover if x, y ∈ X1, then ‖x − y‖2 = 7

3 holds
if and only if ‖x + y‖ = 5

3 . Hence we can find out easily that the only possibility
is when X1 contains the regular simplex on S5. Then we may assume that X∗

1 is a
regular simplex on S5. We consider X∗

1 in the intersection of S6 and the subspace
V = {(x1, . . . , x7) | ∑7

i=1 xi = 0}(∼= R6). Then we may assume that X∗
1 consists

of the following 7 points ui = (ui,1, . . . , ui,7), 1 ≤ i ≤ 7, defined by

ui, j =

⎧⎪⎪⎨⎪⎪⎩
− 6√

42
if j = i,

1√
42

otherwise.

Then X∗
2 is a subset of the set Y defined by

Y = {u ∈ V | ‖u‖2 = R, ‖u − ui‖2 = C1, or C2, 1 ≤ i ≤ 7}.

Then

Y =
{√

R

7
(ε1, . . . , ε7)

∣∣∣∣εi = 1, or − 1, 1 ≤ i ≤ 7

}
holds. This contradicts the fact Y ⊂ V . Hence this case does not occur.

(iii) If 11 ≥ N1 ≥ 8, then X1 is a 3-distance set. We apply the same method explained
in the case n = 8 and find out that these cases do not occur.

Case n = 5. We have |X∗| = 16, 5 ≤ N1 ≤ 8 ≤ N2.

(i) If N1 = 6, then N2 = 10, A1 = 8
5 , A2 = 12

5 , B1 = 4R
3 , B2 = 8R

3 ,
C1 = R + 1 − 2

√
R
5 , and C2 = R + 1 + 2

√
R
5 .

Note that the length of the edges of a regular simplex on S4 is
√

12
5 . By a

similar argument given in case n = 6 (ii), we may assume that X∗
1 is a regu-

lar simplex on S4. We consider X∗
1 in the intersection of S5 and the subspace
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V = {(x1, . . . , x6) | ∑6
i=1 xi = 0}(∼= R5). Then we may assume that X∗

1 consists
of the following 6 points ui = (ui,1, . . . , ui,6), 1 ≤ i ≤ 6, defined by

ui, j =

⎧⎪⎪⎨⎪⎪⎩
− 5√

30
if j = i,

1√
30

otherwise.

Then our X∗
2 is a subset of V and the intersection of the sphere S2. Let v =

(v1, . . . , v6) ∈ V ∩ S2. Then ‖v − ui‖2 = R + 1 + 2ε
√

R
5 implies vi = ε

√
R
6 . Let

Y = {v ∈ V | ‖v‖2 = R, ‖v − ui‖2 ∈ {C1, C2}, 1 ≤ i ≤ 6}.

Then we have

Y =
{√

R

6
(ε1, ε2, . . . , ε6)

∣∣∣∣ εi = 1 or − 1, |{i | εi = 1}| = 3

}
.

Since Y is antipodal, |Y | = 20 = |X2| and X2 = X∗
2 ∪ (−X∗

2) ⊂ Y we have X2 =
Y . Clearly X2 is a 3-distance set with distance

√
8
5 r,

√
12
5 r, 2r and X = X1 ∪ X2

is an antipodal Euclidean tight 5-design in R5.
(ii) If N1 = 5, then N2 = 11, A1 = A2 = 2, B1 = 2

5 (5 − √
3)R, B2 = 2

5 (5 + √
3)R,

C1 = R + 1 − 2
√

R
5 and C1 = R + 1 + 2

√
R
5 . Then we may assume X∗

1 =
{ei | i = 1, . . . , 5}. Let Y be the set defined by

Y = {u ∈ S2 | ‖u − ei‖ = C1, or C2, 1 ≤ i ≤ 5}.

Then we have

Y =
{√

R

5
(ε1, . . . , ε5)

∣∣∣∣ εi = 1 or −1, 1 ≤ i ≤ 5

}
.

Then X∗
2 must be contained in Y . However the distance between every distinct

two points in Y is not equal to B1 or B2. This is a contradiction.
The following are the remaining cases for n = 5:

(iii) N1 = 7, N2 = 9.
(iv) N1 = N2 = 8.

For each case we apply the same method as before and eliminate the possibilities
of X∗

1 .

Case n = 4. We have |X | = 22, |X∗| = 11, 4 ≤ N1 ≤ 5 ≤ N2.

(i) If N1 = 4, then A1 = A2 = 2, B1 = (2 −
√

2
2 )R, B2 = (2 +

√
2

2 )R, C1 = R + 1 −√
R and C2 = R + 1 + √

R. Hence we may assume

X∗
1 = {e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1)}.
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Let

Y = {u ∈ S2 | ‖u − ei‖2 ∈ {C1, C2}, 1 ≤ i ≤ 4}.

Then X∗
2 must be contained in Y . On the other hand we have

Y =
{

r

2
(ε1, ε2, ε3, ε4)

∣∣∣∣ εi = 1 or −1, 1 ≤ i ≤ 4

}
.

However if u, v ∈ Y , then ‖u − v‖2 ∈ {0, 2R, 3R, 4R}. This is a contradiction.
(ii) Let N1 = 5 and N2 = 6. Then A1 = 3

2 , A2 = 5
2 , B1 = (2 − √

2
5 )R, B2 = (2 +√

2
5 )R, C1 = R + 1 − √

R and C2 = R + 1 + √
R.

Note that the length of the edges of a regular simplex on S3 is
√

5
2 . By a similar

argument given as before we may assume that X∗
1 is a regular simplex on S3 .

We consider X∗
1 in the intersection of S4 and the subspace V in R5 defined by V =

{(x1, . . . , x5)| ∑5
i=1 xi = 0}. Then we may assume that X∗

1 consists of the following
5 points ui = (ui,1, . . . , ui,5), 1 ≤ i ≤ 5, defined by

⎧⎪⎪⎨⎪⎪⎩
− 2√

5
if j = i,

1

2
√

5
otherwise.

Then X∗
2 must be contained in the set Y defined by

Y = {u ∈ V | ‖u‖2 = R, ‖u − ui‖2 = C1, or C2, for i = 1, . . . , 5}.

Then

Y =
{√

R

5
(ε1, . . . , ε5)

∣∣∣∣ εi = 1, or −1 for i = 1, . . . , 5

}
holds. This contradicts the fact Y ⊂ V . Hence this case does not occur.

Case n = 3. We have |X | = 14, |X∗| = 7, N1 = 3 and N2 = 4.
In this case A1 = A2 = 2, B1 = 4R

3 , B2 = 8R
3 , C1 = R + 1 − 2

√
R
3 and C2 = R +

1 + 2
√

R
3 hold. We may assume

X∗
1 = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}.

and X1 = X∗
1 ∪ (−X∗

1). Let

Y = {u ∈ S2 | ‖u − ei‖2 = C1, or C2, for 1 ≤ i ≤ 3}.
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Then we have

Y =
{

r√
3

(ε1, ε2, ε3)

∣∣∣∣ εi = 1 or − 1, for 1 ≤ i ≤ 3

}
,

Then X∗
2 ⊂ Y . Since Y is antipodal and |Y | = 8, we obtain X2 = X∗

2 ∪ (−X∗
2) = Y .

Clearly for any u, v ∈ Y , ‖u − v‖2 = 4R
3 , 8R

3 or 4R and X = X1 ∪ Y is an antipodal
Euclidean tight 5-design.

Case n = 2. We have |X∗| = 4, N1 = N2 = 2.
In this case let X∗

1 = {u1, u2} and X∗
2 = {u3, u4}. Since ‖u1 − u2‖ = √

2, ‖u3 −
u4‖ = √

2R and {C1, C2} = {R + 1 + √
2R, R + 1 − √

2R}, X is isometric to the
following set consisting of 8 points.

X = X1 ∪ X2, X1 = {(±1, 0), (0, ±1)}, X2 =
{(

± r√
2
, ± r√

2

)}
.

This is an antipodal Euclidean tight 5-design.

6. Concluding remark

One of the reason why the author chooses the order of the words in the name “antipodal
Euclidean tight (2e + 1)-design” is because the known examples of Euclidean tight
2e-designs are not Euclidean (2e + 1)-designs and she believes that the following
conjecture holds.

Conjecture . Let X be a Euclidean (2e + 1)-design supported by p concentric spheres.
Then the following holds:

|X∗| ≥ dim(P∗
e (S)).

Moreover if equality holds above, then the weight function is constant on each Xi , 1 ≤
i ≤ p, and X is antipodal.

If this conjecture is true then we can drop the word “antipodal” and define “tight
(2e + 1)-design on p concentric spheres” and “Euclidean tight (2e + 1)-design.”

To have a Euclidean tight 2e-design or an antipodal Euclidean tight (2e + 1)-design
we need to have p ≥ [ e+εS

2 ] + 1 or p ≥ [ e
2 ] + 1 respectively. Theorem 1.8 implies that

if p ≤ [ e+2εS+3
2 ], then every layer Xi of a Euclidean tight 2e-design or an antipodal

Euclidean tight (2e + 1)-design is also a Euclidean (2e − 2p + 2εS + 2)-design or
an antipodal Euclidean (2e − 2p + 2εS + 3)-design respectively which is distance
invariant. These facts indicate that it is very important to study Euclidean tight 2e-
designs or antipodal Euclidean tight (2e + 1)-designs with p = [ e+εS

2 ] + 1 or p =
[ e

2 ] + 1 respectively. (For example, if we assume εS = 0 for simplification, then p =
[ e+εS

2 ] + 1 = [ e
2 ] + 1 implies 2e − 2p + 2εS + 2 = e or e + 1 according to e being
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even or odd. Therefore, in this case, each Xi of a Euclidean tight 2e-design becomes
a Euclidean e- or (e + 1)-design and also at most an e-distance set. Consequently
Xi is a distance invariant. If such a design exists it will be very interesting from a
combinatorial view point.)
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