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Abstract For G a finite abelian group, we study the properties of general equivalence
relations on Gn = Gn � Sn , the wreath product of G with the symmetric group Sn ,
also known as the G-coloured symmetric group. We show that under certain condi-
tions, some equivalence relations give rise to subalgebras of kGn as well as graded
connected Hopf subalgebras of

⊕
n≥o kGn . In particular we construct a G-coloured

peak subalgebra of the Mantaci-Reutenauer algebra (or G-coloured descent algebra).
We show that the direct sum of the G-coloured peak algebras is a Hopf algebra.
We also have similar results for a G-colouring of the Loday-Ronco Hopf algebras
of planar binary trees. For many of the equivalence relations under study, we obtain
a functor from the category of finite abelian groups to the category of graded con-
nected Hopf algebras. We end our investigation by describing a Hopf endomorphism
of the G-coloured descent Hopf algebra whose image is the G-coloured peak Hopf
algebra. We outline a theory of combinatorial G-coloured Hopf algebra for which
the G-coloured quasi-symmetric Hopf algebra and the graded dual to the G-coloured
peak Hopf algebra are central objects.
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Introduction

In recent work we have seen a vivid interest in uncovering algebraic structures behind
discrete objects and understanding the relationship among them. These objects are
particularly interesting as their structure constants may encode various invariants in
geometry, in physics or in computer science. This is particularly true in [1, 9, 12,
13, 17, 21, 24, 29], just to cite a few, and in [2] we find the beginning of a general
theory of combinatorial Hopf algebras. Most of the algebraic structures under study
are subalgebras, subcoalgebras, Hopf subalgebras or quotients of k[S] = ⊕

n≥0 kSn ,
where k is a field (of characteristic 0) and kSn is the group algebra of the symmetric
group Sn . There are at least two products on k[S]. One obtained from each kSn , this
is usually refer to as the (internal) homogeneous product. Malvenuto-Reutenauer [18]
defines a graded Hopf structure on kS. In particular they give an (external) graded
product on kS.

We are interested in a natural generalization of k[S] with similar algebraic struc-
tures. Let G be a finite abelian group and let Gn = Gn � Sn be the wreath product
of G with Sn; this is viewed as a G-colouring of Sn . Consider k[G] = ⊕

n≥0 kGn .
In particular, when G = {1} we have that k[G] = k[S]. In [6], the authors extend
to k[G] the Hopf algebra structure on k[S], this construction is functorial from the
category of finite abelian groups to the category of graded connected Hopf algebras.
It is then natural to ask if the multitude of substructures and quotients of k[S] stud-
ied previously can be G-coloured. A few answers have been given, see for instance
[1, 6, 15, 22]. In general this requires some work, and is not possible in all cases.
Here, our approach is to study properties of equivalence relations on G = ⊕

n≥0 Gn

and to determine when they give rise to algebraic structures. Many of the algebraic
objects obtained in this way are G-colouring of the structures in the literature, such
as the peak algebras [1, 9, 21] or the Loday-Ronco Hopf algebra of trees [17]. Our
work is the unifying generalization of a series of results starting in [5] and continuing
in [6, 14, 26].

In Section 1, we recall some known results about Solomon’s descent algebras and
Nyman’s peak algebras in symmetric groups. We adopt the perspective of Atkinson
[5] and Schocker [26] which is useful in subsequent sections. In Section 2 we recall
the definition of the Mantaci-Reutenauer algebra [20]. These can be viewed as G-
coloured descent algebras [6, Section 5.1]. For G, a finite abelian group, we develop
a general study of various equivalence relations on the G-coloured symmetric groups.
This allows us to determine which equivalence relations give rise to subalgebras and
when we have a Hopf algebra structure (see Section 3). With this in hand, we show our
first main theorem in Section 2.7: that the span of coloured peak elements P̊n(G) form a
subalgebra of the Mantaci-Reutenauer algebra �n(G). We then have a few important
theorems in Section 3 relating equivalence relations on the G-coloured symmetric
groups and certain graded connected Hopf algebras. We also determine that under
certain conditions, this map is functorial from the category of finite abelian groups to
the category of graded connected Hopf algebras. This generalizes related results in
[6]. We give some applications of this theory in Section 4. In particular, we describe a
G-coloured peak Hopf algebra (a G-colouring of the peak Hopf algebra from [9]), and
a G-coloured Loday-Ronco Hopf algebra (a G-colouring of the Loday-Ronco Hopf
algebra [17]). To our knowledge, these two G-coloured algebras are new. We end this
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section by giving examples of application of this theory in the hyperoctahedral group
(Z/2Z-permutations) with equivalence relations not induced from symmetric groups.
Finally, in Section 5, we introduce the �G map. This is a Hopf endomorphism of the
G-coloured descent Hopf algebra whose image is the G-coloured peak Hopf algebra.
We then outline a theory of combinatorial G-coloured Hopf algebras (generalizing
[2]). We show that the Hopf algebra of G-coloured quasisymmetric functions (the
graded dual Hopf algebra of the Mantaci-Reutenauer algebra, see [6]) is the terminal
object in the category of combinatorial G-coloured Hopf algebras. We also state that
the graded dual to the G-coloured peak Hopf algebra is the terminal object in the
category of odd combinatorial G-coloured Hopf algebras.

We wish to thank Hugh Thomas for fruitful discussions and Karin Prochazka
for her careful reading. The redaction of this article was completed in May 2005,
when the second author was visiting the Institut Mittag-Leffler in Djursholm,
Sweden.

1. The descent algebra and the peak algebra in the symmetric group

For k, l ∈ Z, we denote by [k, l] the set of integers {k, k + 1, . . . , l − 1, l} if k ≤ l or
{l, l + 1, . . . , k − 1, k} if l < k.

1.1. Words, permutations and symmetric groups

Let us first recall some general notions about words and permutations. An alphabet A
is a totally ordered set. Here we give the explicit description of the underlying order of
A only when the context requires it. The elements ofA are called letters. We denote by
A∗ the set of all words w = a1a2 . . . an with letter ai ∈ A and n ≥ 0. For n = 0 there is
a unique empty word denoted by ( ). The length of a word w = a1a2 . . . an is the integer
n. An injective word is a word without repetition of letters. The concatenation w · w′

of two words w = a1 . . . an and w′ = b1 . . . bm in A∗ is the word a1 . . . anb1 . . . bm of
length n + m.

There are two important ways to envision the symmetric group Sn . First as words
encoding the group of bijections of the set [1, n] (composing from right to left), and
second as a Coxeter group. We use both points of view as needed. More specifically,
let N = {1, 2, 3, . . .} be the alphabet with the usual order on integers. A permutation
σ ∈ Sn is given as a word σ = σ (1)σ (2) . . . σ (n) in N∗ which is injective and whose
letters are in [1, n]. Viewed as a Coxeter group, a permutation σ ∈ Sn is now a word
in S∗

n where Sn = {s1, . . . , sn−1} the set of simple transpositions si = (i, i + 1). It is
well-known that (Sn, Sn) is a Coxeter system of type An−1 (e.g. [16]). We always
denote by 1n the identity of Sn .

The length of a permutation σ ∈ Sn is

�(σ ) = |{(i, j) | i < j ∈ [1, n] and σ (i) > σ ( j)}|,

namely, its number of inversions (e.g. [16]). We denote by ωn the longest element in
Sn . This element is an involution and ωn(i) = n − i + 1, for all i ∈ [1, n].
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The standardization of a word w = a1a2 . . . an of length n inA∗, denoted by std(w),
is the unique permutation σ ∈ Sn such that for all i < j we have σ (i) > σ ( j) if and
only if ai > a j . For instance, for w = 844912 in N∗ we have std(w) = 534612.

A composition of n is a word c in N∗ whose letters sum to n. A composition c
of n is denoted by c � n and we also write n = ‖c‖. To emphasize the fact that we
have a composition, we write c as a sequence (c1, . . . , ck) of letter in N instead of a
concatenation of letters. There is a well-known bijection between compositions of n
and subsets of [1, n − 1] defined by

c = (c1, . . . , ck) � n 	→ Ic = {c1, c1 + c2, . . . , c1 + c2 + · · · + ck−1}. (1)

The inverse of this map is

I = {i1, i2, . . . , ik} 	→ cI = (i1, i2 − i1, . . . , ik − ik−1, n − ik) � n. (2)

Let c = (c1, c2, . . . , ck) � n, we denote bySc the subgroup ofSn generated by Sc =
{si | i ∈ [1, n] \ Ic}. Such a subgroup is called a Young subgroup (or standard parabolic
subgroup). Set ti = c1 + c2 + · · · + ci for all i . Given a k-tuple (σ1, σ2, . . . , σk) ∈
Sc1

× Sc2
× · · · × Sck of permutations, we define σ1 × σ2 × · · · × σk ∈ Sn as the

permutation that maps an element a belonging to the interval [ti−1 + 1, ti ] onto ti−1 +
σi (a − ti−1). This assignment defines an isomorphism Sc1

× Sc2
× · · · × Sck � Sc.

Finally, ωc = ωc1
× · · · × ωck is the longest element in Sc. For instance ω(2,1,3) =

213654.
For c = (c1, . . . , ck) and ti as above, the subset

Xc = {σ ∈ Sn | ∀i, σ is increasing on the interval [ti−1 + 1, ti ]} (3)

is a system of representatives of the left cosets of Sc in Sn . For example:

X (2,2) = {1234, 1324, 1423, 2314, 2413, 3412}, and X (1, 1, . . . , 1︸ ︷︷ ︸
n times

) = Sn.

For σ ∈ Sn , there is a unique pair (u, v) ∈ Xc × Sc, called the c-components of σ ,
such that σ = uv. Moreover �(σ ) = �(u) + �(v) (see [16, Section 1.10]). Specifically,
write σ as the concatenation σ1 · . . . · σk of the words in N∗ such that the length of the
word σi is ci . It is then easy to check that

v = std(σ1) × std(σ2) × · · · × std(σk) ∈ Sc and u = σv−1 ∈ Xc. (4)

Finally, let us recall Deodhar’s Lemma for Sn [11].

Lemma 1.1. For c � n, x ∈ Xc and si ∈ Sn, either

(i) si x ∈ Xc, or
(ii) si x = xs j , with s j ∈ Sc. In this case, x( j) = i and x( j + 1) = i + 1.
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1.2. Descent sets and Solomon’s descent algebra

For σ ∈ Sn , the descent set of σ is

Des(σ ) = {i ∈ [1, n − 1] | σ (i) > σ (i + 1)}.

The descent composition D(σ ) of σ ∈ Sn is defined via Eq. (2): D(σ ) = cDes(σ ). For
any I ⊆ [1, n − 1] we have Des(ωc[1,n−1]\I ) = I , in particular all compositions of n are
descent compositions.

Denote by ZSn the group algebra of Sn . For each c � n, we set dc = ∑
D(σ )=c σ.

Then

�n =
⊕
c�n

Zdc

is a subalgebra of ZSn , called the Solomon descent algebra [27]. Let us recall the
ingredients of Atkinson’s [5] alternate proof of this result (see also [26, Section 4]).
Let si ∈ Sn and σ ∈ Sn . We define an equivalence relation as follows:

σ «∼D siσ ⇐⇒ σ−1siσ /∈ Sn ⇐⇒ |σ−1(i) − σ−1(i + 1)| > 1. (5)

It is easily seen that «∼D is a symmetric relation. The reflexive and transitive closure
of «∼D is called the descent equivalence relation and is denoted by ∼D .

Proposition 1.2.

(i) For si ∈ Sn and σ ∈ Sn, if siσ «∼Dσ , then D(siσ ) = D(σ ).
(ii) For σ, τ ∈ Sn, D(σ ) = D(τ ) if and only if σ ∼D τ .

Remark 1.3. This proposition was first stated by Tits [30, Theorem 2.19]tits in a more
general context (see also [5, 10]).

Recall that a subset X of Sn is left-connected if for each σ, τ ∈ X , then there
is a sequence σ1 = σ, σ2, . . . , σk = τ of elements in X such that σ j+1σ

−1
j ∈ Sn , for

all j ∈ [1, k − 1]. That is, these classes can be seen as a set of adjacent nodes in
the permutohedron. In particular, Proposition 1.2 shows that the sets of permutations
whose descent composition is fixed are left-connected.

Corollary 1.4. Let I ⊆ [1, n − 1]. If there is j ∈ [1, n − 1] such that j − 1, j ∈ I and
j + 1 /∈ I , then there is σ ∈ Sn such that Des(σ ) = I , σ ( j) = 2 and σ ( j + 1) = 1.

Proof: Fix I and j as above and consider the set

T = {τ ∈ Sn | Des(τ ) = I, τ ( j) = τ ( j + 1) + 1, and ∀i < τ ( j + 1), τ−1(i) < j}.

Let c be such that Des(ωc) = I . Clearly ωc ∈ T , so the set T is nonempty. Start with
any τ ∈ T and set k = τ ( j + 1). If k = 1, then we have found the desired σ = τ . If
k > 1, then let τ1 = sk−1τ . Since τ ∈ T , τ−1(k − 1) < j < τ−1(k). Therefore Eq. (5)
implies that τ1 ∼D τ . From Proposition 1.2 we have that Des(τ1) = I . The fact that
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j − 1 ∈ I gives that τ−1
1 (k) = τ−1(k − 1) < j − 1, so τ−1

1 (k + 1) = τ−1(k + 1) =
j > j − 1 > τ−1

1 (k) and again we can apply the equivalence relation to get τ2 =
skτ1 ∼D τ1 ∼D τ . We have that τ2 ∈ T with τ2( j + 1) = k − 1. We can repeat this
process k − 1 times to get the desired σ with k = 1. �

For σ ∈ Sn and c, d compositions of n, we define

AD
c,d,σ = {(u, v) ∈ Sn × Sn | D(u) = c, D(v) = d, uv = σ }.

Let us fix si ∈ Sn and let (u, v) ∈ Sn × Sn . If u «∼ D si u, we set ψ D
i (u, v) = (si u, v).

If u �∼D si u, then we set ψ D
i (u, v) = (u, u−1si uv). Note that in the second case we

have u−1si u ∈ Sn . Since (ψ D
i )2 = IdSn×Sn , we have that ψ D

i is a bijection.

Lemma 1.5 (Atkinson [5]). If σ ∈ Sn and si ∈ Sn are such that σ «∼Dsiσ , then
ψ D

i (AD
c,d,σ ) = AD

c,d,si σ
, for all c, d compositions of n.

Lemma 1.5 and Proposition 1.2 show that �n is a subalgebra of ZSn . Indeed,
|AD

c,d,σ | depends only on e = D(σ ). Setting aD
c,d,e = |AD

c,d,σ |, we have

dcdd =
∑
e�n

aD
c,d,ede.

Solomon’s proof [27] use the basis xc = ∑
σ∈Xc

σ and a study of the permutation
action of Sn on right cosets of Young subgoups (see also [7]).

1.3. Nyman’s peak algebra

Let σ ∈ Sn , the peak set of σ is

˚peak(σ ) = {i ∈ [1, n − 1] | σ (i − 1) < σ (i) > σ (i + 1), i > 1}.

This set is sometimes called the interior peak set [1, 3]. Contrary to descent sets, not
all the subsets of [1, n − 1] are peak sets. In fact I ⊆ [1, n − 1] is a peak set if and only
if I satisfies the condition: if i ∈ I , then i ≥ 2 and i − 1 /∈ I . The peak composition
P̊(σ ) of σ ∈ Sn is defined by Eq. (2): P̊(σ ) = c ◦

peak (σ ). Denote by 	̊n the set of all

compositions of n which are peak compositions. From the above discussion on peak
sets, it is obvious that

	̊n = {(c1, . . . , ck) � n | ci > 1 for 1 ≤ i ≤ k − 1}. (6)

Moreover, it is clear that for all σ, τ ∈ Sn

˚peak(σ ) ⊆ Des(σ ) and D(σ ) = D(τ ) ⇒ P̊(σ ) = P̊(τ ). (7)
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For each c ∈ 	̊n , we set p̊c = ∑
P̊(σ )=c

σ. Nyman P̊ [21] has shown that

P̊n =
⊕
c∈	̊n

Z p̊c

is a subalgebra of �n . We call P̊n the peak algebra. We remark that P̊ = ⊕
n≥0 P̊n is

also a subalgebra of the Mavenuto-Reutenauer structure on k[S] and that there is a
(dual) relationship between P̊ and Stembridge’s peak algebras [28] (see [1]). We will
come back to this in Section 5. Here we recall Schocker’s new proof [26] of Nyman’s
result adapting an argument of Atkinson. Let si ∈ Sn and σ ∈ Sn . Then

σ «∼P̊ siσ ⇐⇒ siσ «∼Dσ or i = 1 (8)

⇐⇒ |σ−1(i) − σ−1(i + 1)| > 1 or i = 1 . (9)

The reflexive and transitive closure of «∼P̊ is called the peak equivalence, and is
denoted by ∼P̊ .

Proposition 1.6 (Schocker [26]).

(i) For σ ∈ Sn and si ∈ Sn, if siσ «∼P̊σ , then P̊(siσ ) = P̊(σ ).
(ii) For σ, τ ∈ Sn, P̊(σ ) = P̊(τ ) if and only if σ ∼P̊ τ .

Remark 1.7. As a consequence, the sets of permutations having the same peak com-
positions are left-connected.

The proof of the above proposition uses Corollary 1.4. We follow a similar recipe
for the proof of Proposition 4.6 in Section 4.2.

For σ ∈ Sn and c, d ∈ 	̊n , we set

AP̊
c,d,σ = {(u, v) ∈ Sn × Sn | P̊(u) = c, P̊(v) = d, uv = σ }.

Fix si ∈ Sn and let (u, v) ∈ Sn × Sn . Then

ψ P̊
i (u, v) =

{
(s1u, v) if i = 1

ψ D
i (u, v) otherwise

is an involution on Sn × Sn . The following Lemma, Eq. (7), and Proposition 1.6 show
that P̊n is a (non-unitary) subalgebra of �n .

Lemma 1.8 ( Schocker [26]). If σ ∈ Sn and si ∈ Sn are such that σ «∼P̊ siσ , then

ψ P̊
i

(
AP̊

c,d,σ

) = AP̊
c,d,si σ

, for all c, d ∈ 	̊n.
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2. Coloured peak algebras

2.1. Coloured words

Let G be a finite abelian group. We denote by 1G the identity of G. We also refer to
G as a set of colours.

LetA be an alphabet. We denote byAG the alphabetA × G, and ag a letter (a, g) in
AG . We say that A is coloured by G. The colour of the letter ag , denoted by col(ag), is
g. Let g = (g1, . . . , gn) be a sequence of elements in G and w = a1a2 . . . an be a word
in A∗. We denote by wg the word ag1

1 · ag2

2 · . . . · agn
n in (AG)∗. If g1 = g2 = · · · =

gn = g, we simply write wg = wg . Therefore we can identify ((A∗)G)∗ and (AG)∗.
The absolute value map | · |: (AG)∗ → A∗ maps a word wg to the word w in A∗. This
map satisfies |wg · uh| = |wg| · |uh|.

A G-composition cg is a word in (NG)∗, and |cg| = c is a composition. A G-
composition of n, denoted by cg �G n, is a G-composition such that ‖cg‖ = ‖c‖ = n.

The rainbow decomposition of a word wg in (A∗)G is the unique sequence of
non-empty words w

g1

1 , w
g2

2 , . . . , w
gk

k such that for all i ∈ [1, k − 1], gi �= gi+1, and

wg = w
g1

1 · w
g2

2 · . . . · w
gk

k (10)

Let ci be the length of the word wi . The rainbow composition of wg is r(w) =
(cg1

1 , cg2

2 , . . . , cgk

k ). For instance, if g �= h ∈ G and wg = 1g4g2g6h7g3h5h , then the
rainbow decomposition and the rainbow composition are

wg = 142g · 6h · 7g · 35h and r(wg) = (3g, 1h, 1g, 2h).

This procedure is the first part of the construction of the G-descent composition
DG(wg) given by Mantaci and Reutenauer [20]. The descent composition D(w) of
a word in A∗ is

D(w) = D(std(w)).

If the length of w is n, then D(w) � n. The G-descent composition DG(wg) of a word
wg in (AG)∗ is obtained as follows. Let wg = w

g1

1 · w
g2

2 · . . . · w
gk

k be the rainbow
decomposition of wg. We have

DG(wg) = D(w1)g1 · D(w2)g2 · . . . · D(wk)gk . (11)

Again, if the length of wg is n, then DG(wg) �G n. For instance, with g �= h ∈ G and
wg = 1g4g2g6h7g3h5h , we have DG(wg) = (2g, 1g, 1h, 1g, 2h).

2.2. Coloured permutations and the Mantaci-Reutenauer algebra

We denote by Gn = G � Sn = Gn � Sn the wreath product of G with Sn . An element
w ∈ Gn is the product α = σ.(g1, g2, . . . , gn) where σ ∈ Sn and gi ∈ G. We call
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coloured permutations the elements of Gn . The multiplication in Gn comes from the
following commutation rule between elements of Sn and elements of Gn:

σ.(g1, g2, . . . , gn) = (
gσ−1(1), gσ−1(2), . . . , gσ−1(n)

)
.σ. (12)

The subgroup of Gn consisting of the element σ.(1G, . . . , 1G) is isomorphic to Sn . In
this case, we write σ instead of σ.(1G, . . . , 1G). Therefore 1n is the identity of Gn . For
g = (g1, g2, . . . , gn), instead of the multiplicative notation σ.g, it is more convenient
to use the word notation σ g in (N∗)G .

A subset X of Gn is left-connected if for each α, β ∈ X , there is a sequence α =
x1, x2, . . . , xk = β of elements in X such that x j+1x−1

j ∈ Sn , for all j ∈ [1, k − 1]. In
particular, all the elements in a left-connected set have the same sequence of colours.

For a composition c = (c1, c2, . . . , ck) of n, we denote by Gc the subgroup of Gn

isomorphic to Gc1
× Gc2

× · · · Gck , obtained by the map

Gc1
× Gc2

× · · · Gck → Gn(
σ

g1

1 , σ
g2

2 , . . . , σ
gk

k

) 	→ (σ1 × σ2 × · · · × σk)g1·g2·...·gk .

For any α ∈ Gn we obtain a unique decomposition α = σ g = uvg, where (u, vg) ∈
Xc × Gc and (u, v) are the c-components of σ (see Section 1.1).

Denote by ZGn the group algebra of Gn . For each G-composition cg of n, we set
dG

cg = ∑
DG (α)=cg α. Then

�n(G) =
⊕

cg�G n

ZdG
cg

is a subalgebra of ZGn , called the Mantaci-Reutenauer algebra [20]. It is clear,
�n({1}) = �n . The Atkinson proof using an equivalence relation on Sn has recently
been extended to Gn for �n(G) [6]. In the Sections 2.3 to 2.6, we develop a general
theory of equivalence relations for the coloured symmetric groups. This will allow us
to introduce coloured peak algebras in ZGn and will be useful in Section 3 to study
Hopf structures.

2.3. Graded connected equivalence relations

Recall that a graded set is a pair (E, deg) where E is a set and deg: E → N is a map.
For simplicity, we write E instead of (E, deg) whenever possible. For n ∈ N, we set
En = deg−1 {n}. Then

E =
⊕
n∈N

En.

For instance, G = ⊕
n∈N Gn , S = ⊕

n∈N Sn and (NG)∗ with the length of words are
graded sets. On (NG)∗ we can also consider ((NG)∗, ‖ · ‖) which gives a different graded
set structure.
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A graded map ρ is a map ρ: E′ → E between two graded sets such that ρ(E ′
n) is

contained in En . A graded equivalence relation on a graded set E is an equivalence
relation on each En . Given ρ: E′ → E a graded map, we define a graded equivalence
relation ∼ρ on E′ where e′

1 ∼ρ e′
2 if and only if ρ(e′

1) = ρ(e′
2). In this case, we can

view ρ(E ′
n) as a parametrization of the set of equivalence classes of E ′

n . Conversely,
to any graded equivalence relation ∼ we can associate a surjective graded map ρ such
that ∼ is ∼ρ .

Let ρ: G → E be a graded map and c = (c1, . . . , ck) � n. We use ρ to define a map
on Gc as follows:

ρc: Gc → E × E × · · · × E︸ ︷︷ ︸
k times

(13)

v1 × v2 × · · · × vk 	→ ρ(v1) × ρ(v2) × · · · × ρ(vk) . (14)

It is clear that ρc = ρc1
× ρc2

× · · · × ρck and ρci = ρ for all i ∈ [1, k]. This mul-
tiplicative notation is useful for looking at induction from Young subgroups (see
Section 2.5).

A graded connected map on G is a graded map ρ: G → E where each equivalence
class under ∼ρ is left-connected. In particular ∼ρ is the transitive and reflexive closure
of the symmetric relation «∼ρ defined as follows: for n ∈ N, w ∈ Gn and si ∈ Sn we
have

w «∼ρsiw ⇐⇒ ρ(w) = ρ(siw).

In this case, we say that ∼ρ is a graded connected equivalence relation on G. For
instance D, P̊: S → (N∗, ‖ . ‖) are graded connected maps on G = S (when G = {1}).

2.4. The induced graded connected maps ρG and ρG

Let ρ: S → E be a fixed graded connected map on S. For G a finite abelian group we
define a graded connected map on G as follow. Let n ∈ N, σ g ∈ Gn and si ∈ Sn . First,
identify in the rainbow decomposition σ g = σ

g1

1 . . . σ
gk

k the subword σν containing i
as a letter and the subword σμ containing i + 1 as a letter. We then define

σ g «∼G
ρ siσ

g ⇐⇒
{

ν �= μ or
ν = μ and ρ(siσ ) = ρ(σ ) .

(15)

Denote by ∼G
ρ the transitive and reflexive closure of this relation. We let En(G) =

Gn/ ∼G
ρ be the set of equivalence classes on Gn and define ρG the projection

ρG : G → E(G) =
⊕
n≥0

En(G) . (16)

This is a graded connected map on G.
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Remark 2.1. The relations «∼{1}
D and «∼{1}

P̊
are not the relations «∼D and «∼P̊ as defined in

Section 1, but both induce the same equivalence relations. For instance 1423 «∼{1}
P̊

1432

and 1423 ∼P̊ 1432, but 1423 and 1432 are not related by «∼P̊ . More generally if «∼ρ

is a graded symmetric relation on S whose transitive and reflexive closure is ∼ρ , we
can define a symmetric graded relation «∼ρG on G as in Section 1, namely:

σ g «∼ρG siσ
g ⇐⇒

{
ν �= μ or
ν = μ and siσ «∼ρσ .

(17)

The transitive and reflexive closure of «∼ρG is precisely ∼G
ρ . In fact

σ g «∼ρG siσ
g ⇒ σ g «∼G

ρ siσ
g,

but the converse is not true. We will use Eq. (15) for studying general properties of
graded connected maps on G and Eq. (17) for studying particular cases of graded
connected maps like the G-descent composition map or the G-peak composition map.

We have another way to define a graded map on G from ρ: S → E. Again, let
ρ: S → E be a fixed graded connected map on S. We first extend ρ to a graded
map N∗ → E by setting ρ(w) = ρ

(
std(w)

)
. Then, for σ g = σ

g1

1 . . . σ
gk

k the rainbow
decomposition of σ g ∈ Gn we set

ρG(σ g) = ρ(σ1)g1 · ρ(σ2)g2 · . . . · ρ(σk)gk . (18)

This defines a graded connected map ρG : G → (EG)∗. Observe that if E is the set of
words A∗ on an alphabet A, then (EG)∗ = ((A∗)G)∗ = (AG)∗.

The graded equivalence relation ∼ρG can be obtained as the transitive and reflective
closure of the following graded connected symmetric relation «∼ρG on G. For this, let
σ g ∈ Gn and si ∈ Sn , and select μ and ν as in Eq. (15).

σ g «∼ρG siσ
g ⇐⇒

{
ν �= μ or
ν = μ and ρ(σν) = ρ(siσν).

(19)

In general, the graded maps ρG and ρG have nothing in common. For instance,
let ∼ρ be defined on Sn by siσ «∼ρσ if σ−1([i, i + 1]) = [1, 2]. If g �= h are two ele-
ments in G, then 1g2g3h4h «∼ρG 1g2g4h3h . Indeed, here σ = 1234, i = 3 and the rain-
bow decomposition of σ g,g,h,h = (12)g · (34)h . So σν = 34 and ρ(σν) = ρ(std(34)) =
ρ(12) = ρ(21) = ρ(std(s334)) = ρ(s334). But these two elements are in distinct
equivalence classes under ρG (since σ−1[1, 2] = [1, 2] �= [3, 4]):

ρG(1g2g3h4h) = {1g2g3h4h, 1g3g2h4h, 2g3g1h4h, 1g4g2h3h, 2g4g1h3h, 3g4g1h2h}
∪{2g1g3h4h, 3g1g2h4h, 3g2g1h4h, 4g1g2h3h, 4g2g1h3h, 4g3g1h2h}
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while

ρG(1g2g4h3h) = {1g2g4h3h, 1g3g4h2h, 2g3g4h1h, 1g4g3h2h, 2g4g3h1h, 3g4g2h1h}
∪{2g1g4h3h, 3g1g4h2h, 3g2g4h1h, 4g1g3h2h, 4g2g3h1h, 4g3g2h1h}

The map ρG is easier to study but does not in general induce the properties we wish
to extend (subalgebra, Hopf subalgebra, etc.). However, if ρ possesses the induction
property (Section 2.5) and the freeness property (Section 2.6), the two relations ∼ρG

and ∼ρG will coincide (see Proposition 2.10).

Remark 2.2. If ρ is surjective, then ρG is surjective. In particular, from Eq. (18) we
get a bijection

(EG)∗n →
⊕

(c1,...,ck )�n
gi �=gi+1∈G

Eg1
c1

× · · · × Egk
ck

. (20)

Thus

|(EG)∗n| = |G|
∑

(c1,...,ck )�n

(|G| − 1)k−1 |Ec1
| . . . |Eck |. (21)

2.5. Induction property

We say that a graded map ρ: S → E or its graded equivalence relation ∼ρ have the
induction property if the following condition is satisfied:

(IP) For any n, m ∈ N and (en, em) ∈ En × Em , there is X ⊆ En+m such that

X (n,m)

(
ρ−1

(n,m)(en × em)
) =

⊕
e∈X

ρ−1(e), (22)

where X (n,m) is defined in Eq. (3).

Remark 2.3. If ρ has the induction property, then ρ (= ρn+m) and ρ(n,m) coincide.
More precisely, if (u, v), (u′, v′) ∈ Sn × Sm such that ρ(u × v) = ρ(u′ × v′), then
ρ(n,m)(u × v) = ρ(n,m)(u′ × v′). The converse is not true in general.

Proposition 2.4. The graded maps D and P̊ have the induction property.

Proof: For n, m ∈ N, let c |= n and d |= m. Let X be the subset of compositions of
n + m such that

X (n,m)

(
D−1

(n,m)(c × d)
) ⊆

⊕
e∈X

D−1(e) (23)
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and such that X (n,m) (D−1
(n,m)(c × d)) ∩ D−1(e) is non empty for all e ∈ X . Since D is

left connected and since the (n, m)-components are unique, to show the equality in
Eq. (23) it is sufficient to prove that if si ∈ Sn+m and x(u × v) ∈ X (n,m) (D−1

(n,m)(c × d))

are such that si x(u × v) ∼D x(u × v), then si x(u × v) ∈ X (n,m) (D−1
(n,m)(c × d)). Using

Lemma 1.1, we reduce the problem to the case where si x = xs j , with j ∈ [1, n − 1] ∪
[n + 1, n + m − 1]. By Lemma 1.1(ii) we have

1 < |(x(u × v))−1(i) − (x(u × v))−1(i + 1)| = |(u × v)−1( j) − (u × v)−1( j + 1)|.

Therefore, if j ∈ [1, n − 1], we obtain s j u ∼D u, and if j ∈ [n + 1, n + m − 1], we
obtain s j−nv ∼D v.

To prove that ∼P̊ has the induction property we proceed as above. It is sufficient
to consider the case i = 1 in the above proof. By definition, X (n,m) is the set of
permutations x increasing on [1, n] and on [n + 1, n + m]. If s1x = xs j we have
j = 1 or j = n + 1 since x( j) = 1 and x( j + 1) = 2 by Lemma 1.1(ii). In other
words s1u ∼P̊ u or s1v ∼P̊ v. �

The following lemma will be useful for Lemma 2.6.

Lemma 2.5. If ρ satisfies the Condition (IP) (see Eq. (22)), then for any c =
(c1, . . . , ck) � n and (e1, . . . , ek) ∈ Ec1

× · · · × Eck , there is X ⊆ En such that

Xc

(
ρ−1

c (e1 × · · · × ek)
) =

⊕
e∈X

ρ−1(e).

Proof: We proceed by induction on k ≥ 2. The case k = 2 is Condition (IP). Assume
that k > 2. It is well known that

Xc = X (n−ck ,ck )

(
X (c1,...,ck−1) × 1ck

)
, (24)

(see for instance [7, Lemma 2.1]). By the induction hypothesis, there is X ′ ⊆ En−ck

such that

X (c1,...,ck−1)

(
ρ−1

(c1,...,ck−1)(e1 × · · · × ek−1)
) =

⊕
e′∈X ′

ρ−1(e′).

Then by Eq. (24) we have

Xc (ρ−1 (e1 × · · · × ek)) = X (n−ck ,ck )

(
X (c1,...,ck−1) × 1ck

)(
ρ−1

c (e1 × · · · × ek)
)

= X (n−ck ,ck )

(
X (c1,...,ck−1)ρ

−1
(c1,...,ck−1)(e1 × · · · × ek−1) × ρ−1(ek)

)
= X (n−ck ,ck )

( ⊕
e′∈X ′ ρ

−1
(n−ck ,ck )(e

′ × ek)
)

= ⊕
e′∈X ′ X (n−ck ,ck )

(
ρ−1

(n−ck ,ck )(e
′ × ek)

)
.
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Now by (IP) for each e′ ∈ X ′ there is Xe′ ⊆ En such that ρ−1
(n−ck ,ck )(e

′ × ek) =⊕
e∈Xe′

ρ−1(e). Observe that Condition (IP) forces Xe′
1
∩ Xe′

2
= ∅ if e′

1 �= e′
2. We set

X = ⊕
e′∈X ′ Xe′ ⊆ En and the proposition follows. �

Lemma 2.6. If ρ is a graded connected map with the induction property, then for all
σ g ∈ Gn and si ∈ Sn we have

σ g «∼G
ρ siσ

g ⇒ σ g «∼ρG siσ
g.

Proof: Let σ g ∈ Gn and si ∈ Sn . Let σ g = σ
g1

1 . . . σ
gk

k be the rainbow decomposition
of σ g and let c = (c1, . . . , ck) � n be such that r(σ g) = cg. For (u, v) ∈ Xc × Sc, the
c-components of σ , Eq. (4) implies that

σ g = uvg = u (std(σ1)g1 × · · · × std(σk)gk ). (25)

Identify in the rainbow decomposition the subword σν containing i as a letter and the
subword σμ containing i + 1 as a letter. Lemma 1.1 gives us that si u ∈ Xc if and only
if ν �= μ. Hence, when ν = μ, we obtain

siσ
g = u (std(σ1)g1 × · · · × std(siσν)gν × · · · × std(σk)gk ). (26)

Comparing Eqs. (19) and (15), it is clear that the lemma follows when ν �= μ. For
the case ν = μ and ρ(siσ ) = ρ(σ ), since ρ has the induction property, Lemma 2.5
implies

σ, siσ ∈ Xc

(
ρ−1

c (ρc(std(σ1) × · · · × std(σν) × · · · × std(σk))
)
.

Therefore comparing Eqs. (25) and (26) we have ρ(σν) = ρ(siσν) and the lemma
follows in all cases. �

2.6. Freeness property

Now let us introduce the freeness property (the choice of this name will be explained in
Corollary 3.8). We say that a graded connected mapρ: S → E or its graded equivalence
relation ∼ρ has the freeness property if the following condition is satisfied:

(FP) For any n, m ∈ N, u ∈ X (n,m) and s j ∈ S(n,m) such that us j u−1 ∈ Sn+m .

If v ∈ S(n,m) and ρ(n,m)(s jv) = ρ(n,m)(v), then ρ(us jv) = ρ(uv). (27)

We leave it to the reader to derive the following from the definitions.

Proposition 2.7. The graded connected maps D and P̊ have the freeness property.

The following lemma will be useful to show the converse to Lemma 2.6.
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Lemma 2.8. If ρ satisfies the freeness property, then for any c = (c1, . . . , ck) � n,
u ∈ X (n,m) and s j ∈ Sc such that us j u−1 ∈ Sn, we have that v ∈ Sc and ρc(s jv) =
ρc(v) implies ρ(us jv) = ρ(uv).

Proof: Let v ∈ Sc be such that ρ(s jv) = ρ(v) and write si = us j u−1 ∈ Sn . We prove
that ρ(us jv) = ρ(uv) by induction on k. The case k = 2 is (FP). Assume that k > 2 and
write v = v1 × · · · × vk . Using Eq. (24) we write u = u′(u′′ × 1ck ) with u′ ∈ X (n−ck ,ck )

and u′′ ∈ X (c1,...,ck−1). Since u′ ∈ X (n−ck ,ck ), Lemma 1.1 gives us that si u′ ∈ X (n−ck ,ck )

or there is sp ∈ S(n−ck ,ck ) such that si u′ = u′sp. The second case forces sp(u′′ × 1ck ) =
(u′′ × 1ck )s j . Since we have �(si u) = �(us j ) = �(u) + 1 and �(u′(u′′ × 1ck )) = �(u′) +
�(u′′ × 1ck ), the first case would imply that �(si u′) = �(u′) + 1. This would imply

�(u) = �(si us j ) = �(si u
′(u′′ × 1ck )s j ) = �(si u

′) + �(u′′ × 1ck ) + 1 > �(u),

which is a contradiction. Hence sp = (u′′ × 1ck )s j (u′′ × 1ck )−1 ∈ S(n−ck ,ck ). For s j ∈
Sn−ck the induction hypothesis gives us ρ(u′′s j (v1 × · · · × vk−1)) = ρ(u′′(v1 × · · · ×
vk−1)). The case when s j ∈ S(1,...,1,ck ) is trivial. Then ρc((u′′ × 1ck )s jv) = ρc((u′′ ×
1ck )v). The result follows using (FP) and the fact that (u′′ × 1ck )s j = sp(u′′ × 1ck ) and
si u′ = u′sp. �

Lemma 2.9. If ρ is a graded connected map satisfying Condition (FP) (see Eq. (27)),
then for all σ g ∈ Gn and si ∈ Sn we have

σ g «∼ρG siσ
g ⇒ σ g «∼G

ρ siσ
g.

Proof: We use the same notation as in the proof of Lemma 2.6. Again, comparing
Eqs. (19) and (15), it is clear that we only have to consider the case ν = μ.
Lemma 1.1 implies that si = us j u−1 with s j ∈ Sc. Comparing Eqs. (25) and (26), we
obtain that std(siσν) = s j0 std(σν) with j0 = j − (c1 + . . . + cν). Then the condition
ρ(siσν) = ρ(σν) is equivalent to ρ(s j0 std(σν)) = ρ(σν). That is ρc(s jv) = ρc(v) and
the result follows from Lemma 2.8. �

Proposition 2.10. If ρ is a graded connected map satisfying Conditions (IP) (see
Eq. (22)) and (FP) (see Eq. (27)), then ∼ρG and «∼G

ρ are equal. In particular, the
graded connected maps ρG and ρG induce the same equivalence relations.

For instance, consider the graded connected descent map DG induced from the
descent (surjective) map D: S → N∗. Applying Propositions 1.2 and 2.10, we get

Corollary 2.11. For any α, β ∈ Gn, DG(α) = DG(β) if and only if α ∼G
D β.

The description of DG given by the elementary relation «∼G
D is the principal ingre-

dient of the proof given in [6] that �n(G) is a subalgebra of ZGn .
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2.7. Coloured peak algebras

Let σ g = σ
g1

1 . . . σ
gk

k be the rainbow decomposition of σ g ∈ Gn . The G-peak compo-
sition of σ g is

P̊G(σ g) = (P̊(σ1)g1 , . . . , P̊(σk)gk ).

For instance P̊{g,h}(6g1g4g2g5h3h7h) = (3g, 1g, 3h). Denote by 	̊n(G) the set of

G-peak compositions of Gn . Then (	̊G)∗ = ⊕
n∈N 	̊n(G).

In the group algebra ZGn , we form the elements p̊G
cg = ∑

P̊G (α)=cg α, where cg ∈
	̊n(G). We then consider the subspace

P̊n(G) =
⊕

cg∈	̊n (G)

Z p̊G
cg .

Theorem 2.12. If G is a finite abelian group and n ∈ N, then P̊n(G) is a (non-unitary)
subalgebra of �n(G) called the G-peak algebra.

We proceed as in Section 1.2 and the theorem will follow from the next two lemmas.
First, Propositions 2.10 and Corollary 2.11, combined with Eq. (7), show that

Lemma 2.13. Let α, β ∈ Gn.

(i) α ∼G
D β ⇒ α ∼G

P̊
β;

(ii) P̊G(α) = P̊G(β) ⇐⇒ α ∼G
P̊

β.

For α ∈ Gn and cg, dh ∈ 	̊n(G), we set

AP̊G

cg,dh,α
= {(σ g, τ h) ∈ Gn × Gn | P̊G(σ g) = cg, P̊G(τ h) = dh, σ gτ h = α}.

Fix si ∈ Sn and let (σ g, τ h) ∈ Gn × Gn . Then

ψ
P̊G
i (σ g, τ h) =

{
(siσ

g, τ h) if siσ
g «∼P̊G

σ g

(σ g, σ−1siστ h) otherwise

is an involution on Gn × Gn .

Lemma 2.14. If α ∈ Gn and si ∈ Sn are such that α «∼G
P̊

siα, then

ψ
P̊G
i

(
AP̊G

cg,dh,α

) = AP̊G

cg,dh,si α
, for all cg, dh ∈ 	̊n(G).

Proof: We can assume that i and i + 1 are in the same subfactor of the rainbow
decomposition of σ g and that siσ �∼P̊ σ . That is, there is s j ∈ Sn such that siσ = σ s j
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and s j stabilize g. Therefore siσ
g = σ gs j . If j and j + 1 are not in the same subfactor

of the rainbow decomposition of τ h then s jτ
h «∼P̊G

τ h by definition. Otherwise, observe
that |α| «∼P̊ si |α| and

ψ
P̊G
i (σ g, τ h) = ψ P̊

i (σ, τ )(g,h)

where (u, v)(g,h) = (ug, vh). We conclude that s jτ
h «∼P̊G

τ h since � P̊
i (σ, τ )∈

AP̊
P̊(σ ),P̊(τ ),si |α| (Lemma 1.8). �

3. Graded maps and bialgebra structures

Henceforth we consider a field k of characteristic 0.

3.1. Hopf algebra of coloured permutations

Let G be an abelian group and recall that G = ⊕
n∈N Gn . Let ρ: G → E be a graded

map and n ∈ N. We denote by E(ρ)n the subspace of the group algebra kGn spanned
by b

ρ
e = ∑

ρ(α)=e α for each e ∈ En (if ρ−1(e) = ∅, we set b
ρ
e = 0 as usual). Then

E(ρ) =
⊕
n≥0

E(ρ)n

is a graded vector subspace of the graded vector space k[G] = E(IdG) = ⊕
n≥0 kGn.

We recall the Hopf algebra structure on k[G] given in [6]. The product ∗: kGn ⊗
kGm → kGn+m is given by

α ∗ β = xn,m(α × β) ∈ kGn+m,

where xn,m = ∑
σ∈X (n,m)

σ (see Eq. (3)).
Let α ∈ Gn . For each i ∈ [0, n], we denote by α(i) × α(n−i) the unique element

of Gi,n−i such that (u, (α(i) × α(n−i))
−1) are the (i, n − i)-components of α−1. The

coproduct �: k[G] → k[G] ⊗ k[G] is the morphism of algebra (for the product ∗)
given by

�(α) =
n∑

i=0

α(i) ⊗ α(n−i) ∈ k[G] ⊗ k[G].

For instance, for g �= h in G,

1g2h ∗ 2h1g = 1g2h4h3g + 1g3h4h2g + 1g4h3h2g + 2g3h4h1g + 2g4h3h1g + 3g4h2h1g;

�(2g3h1h4g)= () ⊗ 2g3h1h4g +1h ⊗ 1g2h3g +2g1h ⊗ 1h2g +2g3h1h ⊗ 1g +2g3h1h4g ⊗ ().

In [6], the authors prove that (k[G], ∗, �) is a graded connected Hopf algebra. More-
over, the assignment G � k[G] is a covariant functor from the category of finite abelian
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groups to the category of graded Hopf algebras. In fact the theory build in [6] is only
valid for an abelian group G. We do not know how to do if G is not abelian. The
case G = {1} is due to Malvenuto and Reutenauer [18]. Considering a finite abelian
group G and the morphism G → {1}, at the level of graded Hopf algebras, we get
the forgetful (surjective) map f : k[G] → k[S] (obtained by extending linearly to k[G]
the absolute value map | . |). We also have an injective morphism induced from the
injective map {1} ↪→ G.

We construct more Hopf (sub)algebras using our general theory of graded maps on
G. For example:

1. The Solomon descent algebra � = E(D: S → (N∗, ‖ . ‖)) is a Hopf subalgebra of
k[S] [18].

2. The Mantaci-Reutenauer algebra �(G) = E(DG) is a Hopf subalgebra of k[G].
Moreover, the assignment G � �(G) is also a contravariant functor from the cat-
egory of finite abelian groups to the category of graded Hopf algebras [6].

3. The Peak algebra P̊ = E(P̊: S → (N∗, ‖ . ‖)) is a Hopf subalgebra of k[S] [1, 8].
4. The planar binary tree T (σ ) of σ ∈ Sn is defined as follows. A given σ ∈

Sn can be viewed as the concatenation of two injective words separated by
the smallest letter 1: σ = w′ · 1 · w′′. We construct T on permutation by in-
duction: T (σ ) = T (std(w′)) ∨ T (std(w′′)). Here T ′ ∨ T ′′ means the grafting
of T ′ and T ′′, see [17]. Denoting Yn the set of planar binary trees with
n vertices, we get a surjective graded map T : S → Y, where Y = ⊕

n∈N Yn .
Then E(T ) is the Hopf subalgebra of k[S], called the Loday-Ronco algebra
[17].

We see that the example (2) is a G-coloured version of (1). In Section 4 we will present
a coloured version of (3) and (4). For this, we study which properties of ρ are required
so that E(ρ) is a Hopf subalgebra.

3.2. Induction on equivalence classes

Let ρ: G → E be a graded map. The definition of the induction property (IP) (Eq. (22)
in Section 2.5) can be applied to ρ viewing the product in G instead of in S. Since
the map X (n,m) × Gn,m → Gn+m , sending (u, vg) to uvg, is a bijection, we get the
following:

Proposition 3.1. A graded map ρ: G → E satisfies Condition (IP) if and only if for all
n, m ∈ N and for all (e1, e2) ∈ En × Em, there is X ⊆ En+m such that

bρ
e1

∗ bρ
e2

=
∑
e∈X

bρ
e .

Corollary 3.2. Let ρ be a graded map on G. If ρ has the induction property (IP), then
E(ρ) is a subalgebra of (k[G], ∗).
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3.3. Restriction on equivalence classes

The graded map ρ: G → E has the restriction property if it satisfies the following
condition:

(RP) For any n, m ∈ N and u ∈ X (n,m), if α1, α2 ∈ Gn and β1, β2 ∈ Gm are such
that ρ(α1) = ρ(α2) and ρ(β1) = ρ(β2), then

ρ((α1 × β1)u−1) = ρ((α2 × β2)u−1). (28)

Remark 3.3. If ρ satisfies (RP), we obviously have:

(i) ρ(α1 × β1) = ρ(α2 × β2), since 1n+m ∈ X (n,m). But we do not have that
ρ(n,m)(α1 × β1) = ρ(n,m)(α2 × β2); this comes from the induction property
(see Remark 2.3).

(ii) For n ∈ N, α, β ∈ Gn and i ∈ [0, n], if ρ(α(i)) = ρ(β(i)) and ρ(α(n−i)) = ρ(β(n−i)),
then ρ(α(i) × α(n−i)) = ρ(β(i) × β(n−i)).

Lemma 3.4. The graded connected maps D and P̊ satisfy Condition (RP).

Proof: Let si ∈ S(n,m) and σ × τ ∈ S(n,m) be such that siσ «∼Dσ when si ∈ Sn

and si−nτ «∼Dτ when si−n ∈ Sm . In both cases we have |(σ × τ )−1(i + 1) − (σ ×
τ )−1(i)| > 1. For u ∈ X (n,m) we have

|((σ × τ )u−1)−1(i + 1) − ((σ × τ )u−1)−1(i)| = |u(σ × τ )−1(i + 1) − u(σ × τ )−1(i)|

Observing that (σ × τ )−1(i + 1) and (σ × τ )−1(i) are elements of either [1, n] or
[n + 1, n + m], we have that Eq. (5) holds. The lemma follows from the fact that D
is left connected.

For P̊ the proof is similar. �

We now show that if ρ has the restriction property, then E(ρ) is a subcoalgebra of
(k[G], �). For n ∈ N, e ∈ En , i ∈ [0, n] and (β1, β2) ∈ Ei × En−i we set

Ae
β1,β2

= {
α ∈ ρ−1(e) | α(i) × α(n−i) = β1 × β2

}
. (29)

Lemma 3.5. Let ρ be a graded map on G satisfying (RP). For n ∈ N, e ∈ En and
i ∈ [0, n], if β ′

1, β
′′
1 ∈ Ei and β ′

2, β
′′
2 ∈ En−i are such that ρ(β ′

1) = ρ(β ′′
1 ) and ρ(β ′

2) =
ρ(β ′′

2 ), then Ae
β ′

1,β
′
2

and Ae
β ′′

1 ,β ′′
2

are in bijection.

Proof: If α′ ∈ Ae
β ′

1,β
′
2
, then α′ = (β ′

1 × β ′
2)u−1 with u ∈ X (i,n−i). Since the (i, n − i)-

components are unique, we define a map from Ae
β ′

1,β
′
2

to Gn by sending α′ to

α′′ = (β ′′
1 × β ′′

2 )u−1. By the restriction property, Eq. (29) and Remark 3.3, we have

ρ(α′′) = ρ((β ′′
1 × β ′′

2 )u−1) = ρ((β ′
1 × β ′

2)u−1) = ρ(α′) = e.
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In other words, α′′ ∈ Ae
β ′′

1 ,β ′′
2
. By uniqueness of the (i, n − i)-components again, and

by symmetry of the construction, we get a bijection. If Ae
β ′

1,β
′
2

is empty, the above

discussion shows that Ae
β ′′

1 ,β ′′
2

is also empty. �

Let e ∈ En . Lemma 3.5 allows us to define for all i ∈ [0, n] and for all (e1, e2) ∈
Ei × En−i the integer

ae
e1,e2

= ∣∣Ae
β1,β2

∣∣, for (β1, β2) ∈ ρ−1(e1) × ρ−1(e2).

Theorem 3.6. Let ρ be a graded map on G satisfying (RP) (see Eq. (28)) and n ∈ N.
For all e ∈ En we have

�
(
bρ

e

) =
n∑

i=0

∑
(e1,e2)∈Ei ×En−i

ae
e1,e2

bρ
e1

⊗ bρ
e2
.

In particular, E(ρ) is a subcoalgebra of (k[G], �).

Proof: For each i ∈ [0, n], we have

ρ−1(e) =
⊕

(β1,β2)∈Gi ×Gn−i

Ae
β1,β2

.

Then

�
(
bρ

e

) =
n∑

i=0

∑
α∈ρ−1(e)

α(i) ⊗ α(n−i)

=
n∑

i=0

∑
(β1,β2)∈Gi ×Gn−i

∑
α∈Ae

β1 ,β2

β1 ⊗ β2

=
n∑

i=0

∑
(e1,e2)∈Ei ×En−i

∑
(β1,β2)∈ρ−1(e1)×ρ−1(e2)

ae
e1,e2

β1 ⊗ β2

=
n∑

i=0

∑
(e1,e2)∈Ei ×En−i

ae
e1,e2

bρ
e1

⊗ bρ
e2
.

�

3.4. Generated connected graded maps and bialgebra structures

Recall the definition of ρG in Section 2.4. The following theorem gives an automatic
way to build coloured Hopf algebras.

Theorem 3.7. Let G be a finite abelian group and let ρ: S → E be a connected graded
map.

(i) If ρ has the induction property (Eq. (22)), then ρG has the induction property.
(ii) If ρ has the restriction property (Eq. (28)), then ρG has the restriction property.
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Proof:

(i) Let n, m ∈ N and let (en(G), em(G)) ∈ En(G) × Em(G). Let X ⊆ En+m(G) be
the subset such that

X (n,m)

(
(ρG)−1

(n,m)(en(G) × em(G)
) ⊆

⊕
e(G)∈X

ρ−1
G (e(G)) (30)

and such that X (n,m) ((ρG)−1
(n,m)(en(G) × em(G)) ∩ ρ−1

G (e(G)) is non empty for all
e(G) ∈ X . Using Eq. (15), since ρG is connected, to show the equality in Eq. (30)
it is sufficient to prove that if si ∈ Sn+m and σ g ∈ X (n,m) ((ρG)−1

(n,m)(en(G) ×
em(G)) are such that siσ

g «∼G
ρ σ g, then siσ

g ∈ X (n,m)((ρG)−1
(n,m)(en(G) × em(G)). Let

(u, τ1 × τ2) ∈ X (n,m) × S(n,m) be the (n, m)-components of σ . Then σ g = u(τ1 ×
τ2)g1·g2 . Using Lemma 1.1 we obtain either si u ∈ X (n,m) and the proof is done, or
there is s j ∈ S(n,m) such that si u = us j (and u( j) = i and u( j + 1) = i + 1). As-
sume first that s j ∈ Sn . If j and j + 1 are not in the same subfactor of the rainbow
decomposition of τ

g1

1 the proof is done. If j and j + 1 are in the same subfactor
then i and i + 1 are in the same subfactor of the rainbow decomposition of σ g

since u( j) = i and u( j + 1) = i + 1. Then by definition ρ(siσ ) = ρ(σ ). The fact
that ρ has the induction property forces ρ(s jτ1) = ρ(τ1). Hence s jτ

g1

1 «∼G
ρ τ

g1

1 and
the proof follows. Proceed similarly if s j−n ∈ Sm .

(ii) Let si ∈ S(n,m), σ g × τ h ∈ Gn × Gm and u ∈ X (n,m). Observing that i and i + 1
are in the same subfactor of the rainbow decomposition of σ g × τ h if and only if i
and i + 1 are in the same subfactor of the rainbow decomposition of (σ g × τ h)u−1,
this case follows from definitions. �

Let ρ: S → E be an induced graded map satisfying (FP) (Eq. (27)) and (IP)
(Eq. (22)). We have a nice description of the equivalence classes of ρG by Propo-
sition 2.10. For g ∈ G, using the map in Eq. (20), we define a monomorphism of
graded vector spaces

μg: E(ρ) → E(ρG)

bρ
e 	→ b

ρG
eg .

Corollary 3.8. Let ρ: S → E be a graded connected map satisfying (FP) (Eq. (27))
and (IP) (Eq. (22)). If E(ρ) is freely generated by M, then E(ρG) is a subalgebra of
k[G] freely generated by

M(G) =
⊕
g∈G

μg (M) .

Proof: Observe that for g1, g2 ∈ G and e1, e2 ∈ E we have

b
ρG

e
g1
1

∗ b
ρG

e
g2
2

=
{

b
ρG

e
g1
1 ·eg2

2

if g1 �= g2 ,

μg1

(
b

ρ
e1 ∗ b

ρ
e2

)
if g1 = g2 .

Conclude by induction. �
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Corollary 3.9. Let ρ be a graded connected map satisfying (FP) and (IP). If E(ρ) is
free, then the assignment G � E(ρG) is a covariant functor from the category of finite
abelian groups to the category of free graded algebras.

Proof: Recall that the assignment G � k[G] is a covariant functor from the category
of finite abelian groups to the category of graded Hopf algebras [6]. More precisely if
f : G → G ′ is a group homomorphism, we define a Hopf algebra homomorphism f∗
by sending σ g ∈ k[G] to σ f (g) ∈ k[G′] (where f ((g1, . . . , gn)) = ( f (g1), . . . , f (gn))).
Then we have f∗ ◦ μg = μ f (g) for all g ∈ G. In other words, f∗(M(G)) ⊆ M(G ′).
The corollary follows. �

4. Applications

4.1. Coloured bialgebras of peaks and trees

A first application of the above theory is the following theorem:

Theorem 4.1. Let G be an abelian group.

(i) The graded space

P̊(G) =
⊕
n∈N

P̊n(G)

is a subalgebra of (�(G), ∗) freely generated by

{
p̊G

(n)g | g ∈ G, n odd
}
.

(ii) The graded algebra P̊(G) is a Hopf subalgebra of (�(G), ∗, �). Moreover, the
assignment G � P̊(G) is a covariant functor from the category of finite abelian
groups to the category of graded connected Hopf algebras.

Proof: The fact that P̊(G) is a Hopf subalgebra of (�(G), ∗, �) comes from
Propositions 2.4 and 3.4, Theorems 3.6 and 3.7, and Corollary 3.2. The peak al-
gebra P̊ is freely generated by p̊(n) for n odd [9, Theorem 5.4]. Then the freeness
follows from Corollary 3.8, and the functorial property follows from Corollary 3.9.�

We next consider a G-colouring of the Loday-Ronco Hopf algebra of trees [17].
Let σ g = σ

g1

1 . . . σ
gk

k be the rainbow decomposition of σ g ∈ Gn . The G-sequence of
trees of σ g is

TG(σ g) = (T (std(σ1))g1 , . . . , T (std(σk))gk )
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(see Section 3.1, Example 4). For example if g, h, k are three distinct elements of G
then TG(5g3g6g1h4h2k) = (T (213)g, T (12)h, (1)k) which gives(

��
g

, �
h

, •k )

Hivert, Novelli and Thibon [12–14] have shown that the graded mapT is connected.
The dual-sylvester equivalence is defined by

siσ «∼sylv∗σ ⇐⇒ ∃ k ∈ [w−1(i), w−1(i + 1)], σ (k) > i + 1

They also show that T (w) = T (g) ⇐⇒ w ∼sylv∗ g. The following lemma has been

indirectly proved in [14].

Lemma 4.2. The graded connected map T satisfies (FP) (Eq. (27)), (IP) (Eq. (22))
and (RP) (Eq. (28)).

Proof: Proceed as in Propositions 2.4, 2.7 and 3.4. �

Theorem 4.3. The graded space E(TG) is a graded connected Hopf subalgebra of
k[G] containing �(G). As an algebra, it is freely generated by{

bTG
(|∨T )g | g ∈ G, T ∈ Yn−1

}
,

where | ∈ Y1 is the unique tree of degree 1 and ∨ is the grafting operation (see [17]).
Moreover, the assignment G � E

(
TG

)
is a covariant functor from the category of

finite abelian groups to the category of graded connected Hopf algebras.

Proof: The fact that E
(
TG

)
is a Hopf subalgebra of (k[G], ∗, �) comes from Lem-

ma 4.2, Theorems 3.6 and 3.7, and Corollary 3.2. The Loday-Ronco algebra of trees
E(T ) is freely generated by bT|∨T for T ∈ Yn−1 [17, Theorem 3.8]. The freeness follows
from Corollary 3.8, and the functorial property follows from Corollary 3.9. �

Remark 4.4. We could also apply this theory to the Knuth relations and the Hopf
algebra of tableaux [23]. This would lead to a different G-coloured version than the
one defined in [6, Section 5.5].

4.2. Exterior peaks in the symmetric group

Let σ ∈ Sn , the set of exterior peaks of σ is

peak(σ ) = {i ∈ [1, n − 1] | σ (i − 1) < σ (i) > σ (i + 1)}

where we set σ (0) = 0 [1, Definition 3.1]. Notice that 1 ∈ peak(σ ) if and only if
1 ∈ Des(σ ). Similarly to peak sets, not all the subsets of [1, n − 1] are exterior peak
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sets. In fact I ⊆ [1, n − 1] is an exterior peak set if and only if I satisfies the condition:
if i ∈ I \ {1}, then i − 1 /∈ I . The peak composition P(σ ) of σ ∈ Sn is defined by
Eq. (2): P(σ ) = cpeak(σ ). Denote by 	n the set of all compositions of n which are peak
compositions. From the above discussion on sets of peaks, it is obvious that

	n = {c = (c1, . . . , ck) � n | ci > 1, 2 ≤ i ≤ k − 1}. (31)

Moreover, it is clear that for all σ, τ ∈ Sn we have ˚peak(σ ) ⊆ peak(σ ) ⊆ Des(σ ) and
D(σ ) = D(τ ) ⇒ P(σ ) = P(τ ) ⇒ P̊(σ ) = P̊(τ ).

For each c ∈ 	n , we set pc = ∑
P(σ )=c σ. Then Aguiar, Bergeron and Nyman [1]

have shown that

Pn =
⊕
c∈	n

Zpc

is a subalgebra of �n . We call Pn the exterior peak algebra. They have also shown
that the graded space P = E(P) is a subcoalgebra of (k[S], �).

In [26], Schocker has given an analog of Atkinson’s proof of Solomon’s result for
the peak algebra (see Section 1.3). Here we give a similar proof for the exterior peak
algebra. For si ∈ Sn and σ ∈ Sn , we define the exterior peak equivalence relation as
follows:

σ «∼P siσ ⇐⇒
{

siσ «∼Dσ or
i = 1 and s1σ �= σ s1,

(32)

⇐⇒
{ |σ−1(i) − σ−1(i + 1)| > 1 or

i = 1 and [σ (1), σ (2)] �= [1, 2].
(33)

It is easily seen that «∼P is a symmetric relation. The reflexive and transitive closure
of «∼P is called the exterior peak equivalence, and is denoted by ∼P .

Lemma 4.5. For σ ∈ Sn and si ∈ Sn, if siσ «∼Pσ , then P(siσ ) = P(σ ).

Proof: By Proposition 1.2 and Eq. (32) we can easily reduce the proof to the case
where i = 1, the letters 1, 2 are adjacent and [σ (1), σ (2)] �= [1, 2]. As the word 1 · 2
(or 2 · 1) is not a prefix of the word σ , it is obvious that exchanging 1 and 2 does not
change peak(σ ).

�

Proposition 4.6. For σ, τ ∈ Sn, P(σ ) = P(τ ) if and only if σ ∼P τ .

Proof: By Lemma 4.5 we have only to show that if P(σ ) = P(τ ) then σ ∼P τ .
Assume that I = Des(σ ) �= peak(σ ), then there is j ∈ I such that j, j − 1 ∈ I and

j + 1 /∈ I . Let σ ′ ∈ Sn be such that Des(σ ′) = I and such that σ ′( j) = 2 = σ ′( j +
1) + 1 (Corollary 1.4). We have s1σ

′ «∼Pσ ′, that is P(σ ) = P(s1σ
′) and |Des(s1σ

′)| =
|Des(σ ′)| − 1. By induction on Des(σ ) and by Proposition 1.2(ii) we obtain an element
σ1 ∈ Sn such that σ ∼D σ ′ ∼P σ1 and Des(σ1) = peak(σ1) = peak(σ ). In other words
σ ∼P σ1 since two permutations having the same descent sets have the same exterior
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peak set. Proceed similarly with τ to obtain a permutation τ1 such that Des(τ1) =
peak(τ1) = peak(τ ). Then τ ∼P τ1. As Des(τ1) = Des(σ1) and as τ1 ∼D σ1 implies
τ1 ∼P σ1 the proposition follows from Proposition 1.2. �

The following corollary is immediate.

Corollary 4.7. Each equivalence class under ∼P is left-connected.

If σ ∈ Sn and c, d ∈ 	n , we set

AP
c,d,σ = {(u, v) ∈ Sn × Sn | P(u) = c, P(v) = d, uv = σ }.

For si ∈ Sn and (u, v) ∈ Sn × Sn , we define

ψ P
i (u, v) =

⎧⎨⎩ψ D
i (u, v) if si u «∼Du

(s1u, v) if i = 1 and s1u �= us1

(u, s1v) if i = 1 and s1u = us1 .

We have (ψ P
i )2 = IdSn×Sn . In particular ψ P

i is a bijection.

Lemma 4.8. If σ ∈ Sn and si ∈ Sn are such that σ «∼P siσ , then

ψ P
i

(
AP

c,d,σ

) = AP
c,d,si σ

, for all c, d ∈ 	n.

Proof: Let (u, v) ∈ AP
c,d,σ . First assume that σ «∼P s1σ . Observe that if s1u = us1 and

s1v = vs1, then s1σ = σ s1 which is a contradiction. In this case ψ P
i (u, v) ∈ AP

c,d,si σ
.

Assume next that σ «∼Dsiσ . We observe from Lemma 1.5 and peak(σ ) ⊆ Des(σ ) that
if si u «∼Du, then

ψ P
i (u, v) = ψ D

i (u, v) ∈ ψ D
i

(
AD

D(u),D(v),σ

) = AD
D(u),D(v),si σ

⊆ AP
c,d,si σ

.

�

Lemma 4.9. The graded connected map P has the restriction property (Eq. (28)).

Proof: Proceed as in the proof of Lemma 3.4. �

Remark 4.10. The graded map P does not have the induction property. For example,
the set X (1,2)({1} × {12}) = {123, 213, 312} does not contain 321 «∼P 312.

Then Lemmas 4.8 and 4.9, Proposition 4.6 and Theorem 3.6 imply directly the
following theorem.

Theorem 4.11.

(i) Pn is a subalgebra of �n.
(ii) P is a subcoalgebra of (k[S], �).
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In general the graded connected map PG defined by Eq. (18) does not have the
induction property nor the restriction property.

4.3. Coalgebras in the hyperoctahedral group

We give here some examples of coalgebras associated to graded map which are not
induced from graded maps on the symmetric group.

For G = Z/2Z = {−1, +1}, the hyperoctahedral group Gn is a Coxeter group of
type Bn generated by S±

n = {s0, s1, . . . , sn−1} = {s0} ∪ Sn where s0 = 1(−1,+1,+1,...,+1)
n .

The Coxeter length of α ∈ Gn is in this case

�B(α) = min
{
k > 0 | α = r1 . . . rk, ri ∈ S±

n

}
.

Recall that a subset X of Gn is left-B-connected if for each α, β ∈ X , there is a
sequence α = α1, α2, . . . , αk = β of elements in X such that α j+1α

−1
j ∈ S±

n , for all
j ∈ [1, k − 1]. That is, these classes can be seen as a set of adjacent nodes in the type
B-permutahedron.

The B-descent set of α ∈ Gn , with the convention that α(0) = 0, is

DesB(α) = {i ∈ [0, n − 1] | �B(αsi ) < �B(α)} (34)

= {i ∈ [0, n − 1] | α(i) > α(i + 1)}.

We get a graded map DesB : G → ⊕
n∈N{subsets of [0, n − 1]} and E(DesB)n is pre-

cisely the Solomon descent algebra �(Gn) associated to Gn [27]. Atkinson [5] has
shown an analog of Proposition 1.2 for B-descent sets: B-descent sets are left-B-
connected. More precisely, the type B descent equivalence is defined as the transitive
and reflexive closure of the following relation: if r ∈ S±

n and α ∈ Gn , then

rα «∼DesB α ⇐⇒ α−1rα �∈ S±
n ,

or equivalently

rα «∼DesB α ⇐⇒
{

r ∈ Sn and rα «∼G
Dα

r = s0 and |α(1)| > 1

since s0 is not in the conjugacy class of si ∈ Sn . Obviously α ∼G
D β ⇒ α ∼DesB β.

Hence �(Gn) ⊆ �n(G).
In [1, 9], the authors have shown that �B = E(DesB) is a subcoalgebra of (�(G), �).

With our theory we obtain this result as a consequence of the following lemma.

Lemma 4.12. The graded map DesB has the restriction property.

Proof: Let n, m ∈ N and u ∈ X (n,m). For α ∈ Gn and β ∈ Gm , we have to show that
for r ∈ S±

n , either of the following holds:

(i) if rα «∼DesB α, then (rα × β)u−1 «∼DesB (α × β)u−1,
(ii) if rβ «∼DesB β, then DesB((α × rβ)u−1) = DesB((α × β)u−1).
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By Eq. (35) we have to consider only r = s0, since Theorem 3.7 gives us that DG has
the restriction property. It is well known that S(n.m) is a parabolic subgroup of Gn+m

and that �B((v1 × v2)u−1) = �B(v1 × v2) + �B(u−1). The lemma follows easily using
Eq. (34). �

Remark 4.13. In symmetric groups the graded map T gives us a construction of the
associahedron from the permutohedron (see for instance [17]). For the hyperoctahedral
groups, such a map has been described by Reiner [25]. Let us denote by Gonn the set
of centrally symmetric (2n + 2)-gons and let

G: G → Gon =
⊕
n∈N

Gonn

be the graded map given by Reiner. This map gives a construction of the cyclohe-
dron from the type B-permutohedron. It is a left-B-connected graded map. In a work
in progress [4], Aguiar and Thomas have observed that E(G) is a subcoalgebra of
(k[G], �). Recently, Reading [24] defined a family of G-equivalences relations, one
for each orientation of the Coxeter diagram, whose equivalence classes are parame-
terized by the centrally symmetric (2n + 2)-gons. We could prove using the relation
arising from the left-to-right orientation that G has the restriction property, and then,
we could obtain another proof of the above result of Aguiar and Thomas. We may
check that except for the relation arising from the righ-to-left orientation, none of
the others have the restriction property. It is interesting to notice that the number of
centrally symmetric (2n + 2)-gons is

(
2n
n

)
which is also the number of G-sequences

of trees whose sum of vertices is n (see Eq. (21)). That means that the dimension of
homogeneous parts of E(G) and E(TG) are equal.

5. The G-descents to G-peaks map

5.1. The �G-function

There is a well known Hopf endomorphism � on symmetric functions whose image
is the space spanned by Q-Schur functions [19]. Several authors [1, 2, 8, 28] have ex-
tended this morphism to the quasi-symmetric functions, Hopf algebras and (�, ∗, �).
It plays an important role in studying the peak algebra. We first recall the definition
of �: � → �.

We have that � = E(D) = ⊕
n≥0 k ⊗Z �n , where �n is the free Z-module spanned

by {dc | c |= n} (see Section 1.2). It is well known that � is freely generated as an
algebra by {d(n) = 1n | n ≥ 1} (see [17, 18, 29]). We set

�(d(n)) = 2 p̊(n). (35)

This defines a unique morphism of algebras, and it is straightforward to check that
�(�(d(n))) = �( p̊(n)). Hence �: � → � is a Hopf morphism whose image is P̊ . It is
exactly the morphism defined in [1, 2, 8, 28].
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For any c |= n, there is an explicit formula for �(dc) (see for example [1, The-
orem 5.8]). For this we need to introduce more notation on compositions. For
c = (c1, c2, . . . cs) |= n we denote the number of parts of c by τ (c) = s. There is a nat-
ural map from compositions of n to peak compositions. For c = (c1, c2, . . . cs) |= n,

let �(c) ∈ 	̊n be the peak composition obtained from c as follows. The composi-
tion c factorizes uniquely into compositions c1 · c2 · · · cr where for i < r we have
ci = (1, 1, . . . , 1, m) and m > 1, and cr = (1, 1, . . . , 1). In this factorization, any se-
quence of 1’s may be empty. We then define

�(c) = (‖c1‖, ‖c2‖, . . . , ‖cr‖) ∈ 	̊n,

removing the last part if it is zero. For example,

�((1, 2, 1, 1, 3, 3)) = (‖(1, 2)‖, ‖(1, 1, 3)‖, ‖(3)‖) = (3, 5, 3).

Similarly, �((2, 1, 3, 1)) = (2, 4, 1), and �((2, 1, 1)) = (2, 2). Finally, recall from
Eq. (1) that Ic is a subset of [1, n − 1]. For any c |= n,

�(dc) =
∑

e∈�(c)

2τ (�(e))de, (36)

where

�(c) = {e |= ‖c‖ | (i ∈ I�(e) ⇒ |{i − 1, i} ∩ Ic| = 1)}. (37)

Since D satisfies (FP) and (IP), Corollaries 3.8 and 3.9 give that the assignment
G � E(DG) is functorial and �(G) = E(DG) is freely generated as an algebra by{

dG
(n)g = (1n)g | n ≥ 1, g ∈ G

}
.

Proposition 5.1. The map �G : �(G) → �(G) defined by

�
(
dG

(n)g

) = 2 p̊G
(n)g (38)

is a Hopf morphism. Moreover, �G(�(G)) = P̊(G).

Proof: Equation (38) defines a unique morphism of algebras. It is straightforward to
check that �(�(dG

(n)g )) = �( p̊G
(n)g ). Hence �G is a Hopf morphism whose image, by

Theorem 4.1, is P̊(G). �

For any G-composition cg, we are interested in an explicit formula for �G(dG
cg ). For

this, let cg = c1
g1 · c1

g2 · · · ck
gk be the rainbow decomposition of cg. From Corollary 3.8

we clearly have that

dG
cg = dG

c1
g1 ∗ · · · ∗ dG

ck
gk = (

dG
c1

)g1 ∗ · · · ∗ (
dG

ck

)gk
.
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Now, from Eq. (38), it is also clear that for a single g ∈ G, we have

�
(
dG

cg

) = �
((

dG
c

)g) = (
�

(
dG

c

))g
.

Combining this with Eq. (36) we obtain the following theorem.

Theorem 5.2. Let G be a finite abelian group and let cg = c1
g1 · c2

g2 · · · ck
gk be the

rainbow decomposition of the G-composition cg. We have

�G
(
dG

cg

) =
∑

1≤i≤k, ei ∈�(ci )

2
∑k

i=1 τ (�(ei )) dG
e1

g1 ·e2
g2 ···ek

gk . (39)

5.2. The dual side

Let A be a countable alphabet viewed as a set of variables and G be a finite abelian
group. We let Z = AG be the alphabet where we put an arbitrary total order on G and
we order Z as follows. For ag, bh ∈ Z , we set ag < bh if and only if (a < b) or (a = b
and g < h). In this section we consider subspaces of the space k[[Z]] of formal series
in the variables ag ∈ Z .

Let cg = (cg1

1 , cg2

2 , . . . , cgk

k ) be a G-composition of n and set ti = c1 + c2 + · · · + ci

for each i . We denote by

(h1, h2, . . . , hn) = (g1, g1, . . . , g1︸ ︷︷ ︸
c1 times

, g2, g2, . . . , g2︸ ︷︷ ︸
c2 times

, . . . , gk, gk, . . . , gk︸ ︷︷ ︸
ck times

).

We let Zcg be the set of all n-tuples (z1, z2, . . . , zn) ∈ Zn where zi = ahi
i for some

a1 ≤ a2 ≤ · · · ≤ an such that

∀i ∈ {1, 2, . . . , k − 1}, gi ≥ gi+1 =⇒ ati < ati +1.

Finally, we define the formal series in k[[Z]]

Fcg =
∑

(z1,z2,...,zn )∈Zcg

z1z2 · · · zn.

In [6] the authors have shown that the vector subspace QSym(G) spanned by the
Fcg for all G-compositions is a subalgebra of k[AG]. It is a graded connected Hopf
algebra that is graded dual to �(G). In particular, the basis {Fcg} of QSym(G) is
dual to the basis {dG

cg } of �(G). To see this, we first recall that k[G] is self dual.
If α ∈ Gn , then α−1 = α∗ is its dual element in the dual basis [6, Section 5.1]. For
any G-composition c, α∗(dG

c ) = 1 iff DG(α−1) = c. But by [6, Proposition 22 and
Diag. (11)] we know that the dual of �(G) is obtained as the quotient of k[G] by
the relation α ∼RG β where RG(α) = DG(α−1). For α ∈ Gn such that RG(α) = c we
have from [6, Theorem 33 and Proposition. 34] that the image of α∗ in this quotient
corresponds to Fc of QSym(G). We then have that Fc(dG

e ) = 1 if and only if c = e.
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For a G-composition cg let cg = c(1)
g1 · c(2)

g2 · · · c(k)
gk be its rainbow decompo-

sition and let ni = ‖c(i)‖. Using Eq. (39), the morphism �G has a graded dual
�∗

G : QSym(G) → QSym(G) given by

�∗
G(Fcg ) = 2

∑k
i=1 τ (�(ci ))

∑
1≤i≤k, ei ∈�∗(ci )

Fe1
g1 ·e2

g2 ···ek
gk , (40)

where

�∗(c) = {e |= ‖c‖ | (i ∈ I�(c) ⇒ |{i − 1, i} ∩ Ie| = 1)}. (41)

We deduce the following theorem

Theorem 5.3. The image of �∗
G is the graded dual Hopf algebra P̊(G)∗ of P̊(G).

5.3. G-coloured combinatorial Hopf algebras

In [2] we introduced the theory of combinatorial Hopf algebras and associated objects.
The framework consists of pairs (H, ζ ) where H is a connected graded Hopf algebra
and ζ :H → k is an algebra morphism (called its character). We say that (H, ζ ) is odd
if for any homogeneous element x ∈ H of degree n we have ζ ◦ S(x) = (−1)nζ (x)
where S is the antipode of H. We have shown in that paper that for a certain character
ζQ the pair (QSym, ζQ) is the terminal object for the category of pairs (H, ζ ). Moreover
we have shown that P̊ is the so-called odd subalgebra of (QSym, ζQ). These algebras
play an important role among the connected graded Hopf algebras and we refer the
reader to [2] for more motivation. Here we are interested in a similar theory for the G-
coloured version. We will just outline the ideas, as this should be part of forthcoming
work.

For G = {1G}, The map ζQ: QSym → k is the morphism of algebras defined by
ζQ(F) = F(1, 0, 0, . . .). The functoriality of the construction of QSym(G) implies
that the following diagram commutes

QSym(G) QSym(G)

ϕϕ

QSym QSym (42)

k

�∗
G

�∗
{1}

ν ζQ

� �
�

�

�
�

��

�
�

��
,

where ν = ζQ ◦ �∗{1G} and ϕ is the Hopf morphism induced by the inclusion {1G} →
G. We have shown in [2, Proposition 6.4] that the pair (QSym({1}), ν) is odd, hence
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(QSym(G), ν ◦ ϕ) is odd. Using [2, Proposition 6.1] in such a situation gives us that
the image of �∗

G , that is P̊(G)∗, must be contained in the odd subalgebra of QSym(G).
But a simple dimension count gives us that the odd subalgebra of (QSym(G), ζQ ◦ ϕ)
is larger than P̊(G)∗. On the other hand, if we restrict ourselves on a smaller category,
then an interesting theory unfolds.

Let G be a fixed finite abelian group. Consider pairs (H, ζ G) where H is a con-
nected graded Hopf algebra and ζ :H → k[G] is an algebra morphism. In analogy
with [2] we will call such a morphism ζ :H → k[G] a G-character. The category
of combinatorial G-coloured Hopf algebras consists of pairs (H, ζ G) as above and
graded Hopf morphisms � such that

H H′

k[G]

�

ζ G ζ ′G

�

�
���

�
���

commutes.
There is a natural algebra morphism k[AG] → k[G] which maps the variable

ag
i ∈ AG to g if i = 1 and to zero otherwise. This gives us the algebra morphism

ζ G
Q : QSym(G) → QSym(G) where

ζ G
Q (Fcg ) =

⎧⎨⎩ g if c = (n) and g = g,

1 if c = (),
0 otherwise.

(43)

We have a theorem very similar to [2, Theorem 4.1] with essentially the same proof.

Theorem 5.4. The pair (QSym(G), ζ G
Q ) is the terminal object in the category of com-

binatorial G-coloured Hopf algebras.

We then define the convolution product of two G-characters as follows. For two
G-characters ζ G, νG :H → k[G] let

ζ G ∗ νG = mk[G] ◦ (ζ G ⊗ νG) ◦ �H.

G-characters form a group with inverse (for the convolution) given by (ζ G)−1 =
ζ G ◦ SH where SH is the antipode of H. For a G-character ζ G :H → k[G] we let

ζ G :H → k[G] be the character such that for a homogeneous element h ∈ H of de-

gree n, ζ G(h) = (−1)nζ G(h). The odd G-subalgebra S−(H, ζ G) of a pair (H, ζ G)
is defined as in [2, Definition 5.7], namely the largest graded subcoalgebra of H such

that for all h ∈ S−(H, ζ G) we have ζ G(h) = (ζ G)−1(h). It is in this context that

S−
(
QSym(G), ζ G

Q
) = P̊(G)∗. (44)
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Combining this with an analog of [2, Corollary 6.2], we have that (P̊(G)∗, ζ G
Q ) is the

terminal object of odd combinatorial G-coloured Hopf algebras.
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