ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Representation theory of q -rook monoid algebras

Rowena Paget
Mathematical Institute 24-29 St. Giles Oxford OX1 3LB England

DOI: 10.1007/s10801-006-0010-y

Abstract

We show that, over an arbitrary field, q-rook monoid algebras are iterated inflations of Iwahori-Hecke algebras, and, in particular, are cellular. Furthermore we give an algebra decomposition which shows a q-rook monoid algebra is Morita equivalent to a direct sum of Iwahori-Hecke algebras. We state some of the consequences for the representation theory of q-rook monoid algebras.

Pages: 239–252

Keywords: keywords rook monoid; cellular algebra; iwahori-Hecke algebra; representation

Full Text: PDF

References

1. M. Dieng, T. Halverson, and V. Poladian, “Character formulas for q-Rook monoid algebras,” J. Algebraic Combin. 17 (2003), 99-123.
2. R. Dipper, and G. James, “Representations of Hecke algebras of general linear groups,” Proc. London Math. Soc. 52(3) (1986), 20-52. Springer J Algebr Comb (2006) 24:239-252
3. R. Dipper, G. James, “Blocks and idempotents of Hecke algebras of general linear groups,” Proc. London Math. Soc. 54(3) (1987), 57-82.
4. J. East, “Cellular algebras and inverse semigroups,” preprint.
5. J. Graham and G. Lehrer, “Cellular algebras,” Inv. Math. 123 (1996), 1-34.
6. C. Grood, “A Specht module analog for the rook monoid,” Electron. J. Combin. 9 (2002), 10 pp.
7. T. Halverson, “Representations of the q-rook monoid,” J. Algebra 273 (2004), 227-251.
8. T. Halverson and A. Ram, “q-rook monoid algebras, Hecke algebras and Schur-Weyl duality,” Zap. Nauchn. Sem. St. Petersburg, Otdel. Mt. Inst. Steklov (POMI) 283 (2001), 224-250.
9. G. James and A. Kerber, “The representation theory of the symmetric group,” vol. 16 of Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass., 1981.
10. S. K\ddot onig and C. Xi, “On the structure of cellular algebras,” In Algebras and Modules II (Geiranger 1996) CMS Conf. Proc. 24, Amer. Math. Soc., Providence 1998, pp. 365-386.
11. S. K\ddot onig and C. Xi, “Cellular algebras: Inflations and Morita equivalences,” J. London Math. Soc. 60(2) (1999), 700-722.
12. S. K\ddot onig, and C.C. Xi, “A characteristic free approach to Brauer algebras,” Trans. Amer. Math. Soc. 353(4) (2001), 1489-1505.
13. W.D. Munn, “The characters of the symmetric inverse semigroup,” Proc. Cambridge Philos. Soc. 53 (1957), 13-18.
14. L. Solomon, “Representations of the rook monoid,” J. Algebra 256 (2002), 309-342.
15. L. Solomon, “The Iwahori algebra of Mn(Fq ). A presentation and a representation on tensor space,” J. Algebra 273 (2004), 206-226.
16. C.C. Xi, “Partition algebras are cellular,” Compos. Math. 119 (1999), 99-109.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition