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Abstract Let G be a group acting faithfully on a set X . The distinguishing number
of the action of G on X , denoted DG(X ), is the smallest number of colors such
that there exists a coloring of X where no nontrivial group element induces a color-
preserving permutation of X . In this paper, we consider the distinguishing number
of two important product actions, the wreath product and the direct product. Given
groups G and H acting on sets X and Y respectively, we characterize the distinguishing
number of the wreath product G �Y H in terms of the number of distinguishing
colorings of X with respect to G and the distinguishing number of the action of H on
Y . We also prove a recursive formula for the distinguishing number of the action of
the Cartesian product of two symmetric groups Sm × Sn on [m] × [n].

Keywords Symmetry group . Symmetry breaking . Distinguishing number . Wreath
product . Direct product

1. Introduction

Let G be a group acting faithfully on a set X . For r ∈ N, an r-coloring of X is a function
c: X → {1, . . . , r}. A permutation π of X preserves the coloring c if c(xπ ) = c(x) for
all x ∈ X . A coloring is said to be distinguishing if the only element in G that induces a
color-preserving permutation of X is the identity element. The distinguishing number
of the action of G on X , denoted DG(X ), is the smallest r admitting a distinguishing
r -coloring of X with respect to the action of G. If there does not exist a distinguishing
r -coloring of X for any finite r , we say that DG(X ) = ∞.

Note that we may equivalently view a distinguishing r -coloring of X as a parti-
tion {X1, . . . , Xr } of X into disjoint classes with the property that G intersects the
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permutation group X1! × · · · × Xr ! trivially. The distinguishing number is then the
smallest number r admitting such a partition, or ∞ if no such r exists.

In [2], Albertson and Collins first introduced the distinguishing number as a property
of graphs. More specifically, the distinguishing number of a graph M , denoted D(M),
is the smallest number of colors admitting a coloring of the vertices such that the only
color-preserving automorphism of M is the identity; thus D(M) = DAut(M)(V (M)).
The distinguishing number of several families of graphs, including trees, hypercubes,
and generalized Petersen graphs, has been computed in [3, 5, 7, 11]. In [13], Tymoczko
generalized the notion of the distinguishing number to group actions on sets and studied
the actions of Sn . In [6], we provided upper bounds for the distinguishing numbers
admitted by a large class of groups including nilpotent and supersolvable groups.

We would like to better understand the distinguishing number in the generalized
context of group actions introduced by Tymoczko. To this end, we consider the be-
havior of the distinguishing number with respect to two natural and important group
products: the wreath product and the direct product. Not only are these products and
their associated actions of intrinsic interest, they also allow us to relate the distinguish-
ing number of the action of a large group to the distinguishing numbers of the actions
of smaller groups.

In Section 2, we completely characterize the distinguishing number of the action
of the wreath product of two groups on the Cartesian product of their sets. Our result
relates the distinguishing number of the wreath product action to the distinguishing
number of one group action and the number of distinct distinguishing colorings of the
other group action. As immediate corollaries, we derive an upper bound for the distin-
guishing number of imprimitive group actions and a lower bound for the distinguishing
number of the lexicographic product of two graphs.

In Section 3, we give a recursive formula for the distinguishing number of the direct
product of two symmetric groups acting on the direct product of their sets. This gives
an upper bound for the general direct product action.

Our definition of the distinguishing number of a group action differs from the one
given in [13] in that we require the action to be faithful. This apparent restriction does
not actually limit the question being considered. Given a nonfaithful action of G on
X , we may consider instead the faithful action of the quotient group G/Stab(X ) on
X , where Stab(X ) denotes the elements of G that fix each x ∈ X . Also, in contrast to
both [2] and [13], we do not require our groups and sets to be finite, simply because
there seems to be no reason to do so. We only note that if G is an infinite group acting
faithfully on a set X , then X must be infinite as well.

Throughout the paper, we denote group actions by exponentiation on the right. Thus,
the image of an element x ∈ X under the action of g ∈ G is denoted xg , and we have
(xg1 )g2 = x (g1g2) for all g1, g2 ∈ G. The exponentiation notation has the advantage of
being relatively intelligble in more complex actions such as the wreath product action.
Also, if n is a positive integer, we use [n] to denote the set {1, . . . , n}.

2. The wreath product action

Our main goal in this section is to compute the distinguishing number of the action
of the wreath product of two permutation groups on the Cartesian product of the sets
upon which they act.
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Before defining the wreath product action, let us first recall the definition of the
semidirect product of two groups. Let A and B be our groups, and suppose we have a
homomorphism φ: B → Aut(A). This homomorphism determines an action of B on A
which we will denote by right exponentiation, thus φ(b): a �→ ab. Then the semidirect
product of A and B according to this action is denoted A �φ B and is the group whose
elements are A × B and whose law of composition is given by

(a1, b1)(a2, b2) = (
a1

(
a2

b−1
1

)
, b1b2

)
.

Note that the semidirect product of two groups is not in general uniquely defined, but
rather is dependent upon the choice of φ.

Now, let G and H be groups acting faithfully on sets X and Y respectively. Let
GY denote the set of functions from Y to G. We equip GY with group structure in
the following way: given two functions f1 and f2 in GY , let f1 f2 be the function
given by f1 f2: y �→ f1(y) f2(y). Note that the identity element of GY is the constant
1 function 1: y �→ 1. Now, define a homomorphism φ: H → Aut(GY ) as follows: for
each h ∈ H , we let ( f h)(y) = f (yh−1

), where f h denotes the image of f under h
according to the right action of H on GY determined by φ. Then the wreath product
of G and H is denoted G �Y H and is equal to the semidirect product GY �φ H .
We note that the identity element of this group is (1, 1). Finally, we define a right
action of G �Y H on the set X × Y , defined as follows: for any (x, y) ∈ X × Y and
( f, h) ∈ G �Y H we let (x, y)( f,h) = (x f (y), yh). This action is clearly faithful.

The wreath product action arises naturally in several important instances. In order
to motivate the ensuing discussion on the distinguishing number of this action, we
state a few of them below.

Recall first that an action of a group K on a set � is transitive if for every ω1, ω2 ∈ �,
there exists k ∈ K such that ω1

k = ω2. An equivalence relation ∼ on � is K -invariant
if ω1 ∼ω2 implies ω1

k ∼ ω2
k for all ω1, ω2 ∈ � and k ∈ K . Thus we always have

two K -invariant relations: the universal relation and the relation of equality. We will
call these trivial relations. A transitive action of K on � is imprimitive if it admits a
nontrivial K -invariant relation. A block of imprimitivity is an equivalence class under
such a relation.

The following proposition tells us that every faithful group action that is transitive
but imprimitive is embeddable in a wreath product action.

Proposition 2.1 (4, Theorem 2.7). Let K be a group acting faithfully, transitively,
and imprimitively on �. Let X be a block of imprimitivity of this action, and let
Y = {Xk | k ∈ K } be the set of images of X under the action of K . Let G be the
permutation group arising by restricting the setwise stabilizer of X to X, and let H
be the permutation group that K induces on Y . Then there exists an embedding of the
action of K on � into the action of G �Y H on X × Y .

The significance of Proposition 2.1 in the context of distinguishing numbers be-
comes apparent once we state the following lemma.
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Lemma 2.2. Suppose G acts faithfully on X. Let H be a subgroup of G and consider
the action of H on X obtained by restricting the action of G. Then DH (X ) ≤ DG(X ).

Proof: If DG(X ) = ∞, there is nothing to prove. Otherwise, there exists a DG(X )-
coloring of X such that no nonidentity element of G is color-preserving. In particular,
no nonidentity element of H ≤ G is color preserving. So DG(X ) colors suffice to
distinguish the action of H on X . �

Thus, Proposition 2.1 tells us that for a faithful, transitive, and imprimitive action
of K on � and G, H , X , and Y as defined above,

DK (�) ≤ DG �Y H (X × Y ).

In other words, the distinguishing number of a wreath product action gives an upper
bound for the distinguishing number of an imprimitive action embedded in it. We refer
the reader to [4] for a more detailed discussion of imprimitive actions and the wreath
product.

As a second example, consider the wreath product of two graphs, also called the
graph lexicographic product or graph composition. Given graphs �1 = (V1, E1) and
�2 = (V2, E2), the wreath product �1[�2] is defined to be the graph on vertex set
V1 × V2 in which two vertices (v1, v2) and (w1, w2) are connected by an edge if
and only if (v1, w1) ∈ E1 or (v1 = w1 and (v2, w2) ∈ E2). Note that Aut(�1) �V (�2)

Aut(�2) ≤ Aut(�1[�2]), so by Lemma 2.2, the distinguishing number of the wreath
product action gives a lower bound

D(�1[�2]) ≥ DAut(�1) �V (�2)Aut(�2)(V1 × V2).

In [12], Sabidussi gives necessary and sufficient conditions for Aut(�1) �V (�2)

Aut(�2) = Aut(�1[�2]), in which case this lower bound becomes equality. His work
is generalized in [10] and extended to color digraphs in [8].

With these examples in mind, we now present the main theorem of this section
characterizing the distinguishing number of the wreath product action.

Theorem 2.3. Let G and H act faithfully on sets X and Y respectively. For each
positive integer r , let nr be the number of distinct distinguishing r-colorings of X, and
let DH (Y ) = d < ∞. Let S be the set {r | nr ≥ d|G|}. Then

DG �Y H (X × Y ) =
{

min(S) if S �= ∅
∞ if S = ∅

Proof: We will consider the finite and infinite cases separately.
Case: S �= ∅. Let k = min(S). We begin by constructing a distinguishing k-coloring

of X × Y . Let A be the set of distinguishing k-colorings of X , thus |A| = nk . Now
consider the action of G on A defined as (ag)(x) = a(xg−1

) for each a ∈ A and g ∈ G.
Each a ∈ A is distinguishing, so it has trivial stabilizer and orbit length |G|. Therefore
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the number of orbits of the action of G on A is |A|/|G| = nk/|G|. Since nk/|G| ≥ d,
we may choose d distinguishing k-colorings of X in pairwise disjoint orbits. Call these
k-colorings a1, . . . , ad . Now, let b be a distinguishing d-coloring of Y with respect to
the action of H (the existence of which follows from the assumption that DH (Y ) = d).
Let C : X × Y → {1, . . . , k} be given by C : (x, y) �→ ab(y)(x). We claim that C is a
distinguishing k-coloring of X × Y .

Suppose that ( f, h) ∈ G �Y H preserves C . We wish to show that ( f, h) = (1, 1).
First, we show that h preserves the coloring b. We know that for each (x, y) ∈ X × Y ,
C(x, y) = C((x, y)( f,h)) = C(x f (y), yh). By definition of C , we have ab(yh )(x f (y)) =
ab(y)(x), and so ab(yh )

f (y)−1 = ab(y). Therefore ab(yh ) and ab(y) ∈ A are in the same
orbit under the action of G. But we chose ai and a j to be in different orbits if i �= j .
Therefore, b(yh) = b(y) for each y ∈ Y . Thus, h permutes the elements of Y in a way
that preserves the coloring b. Since b is a distinguishing coloring of Y , we must have
h = 1.

Now we show that f (y) = 1 for each y ∈ Y . Indeed, the fact that ( f, 1) preserves
C gives that ab(y)(x f (y)) = ab(y)(x) for each x ∈ X , y ∈ Y . Thus f (y), considered as a
permutation of X , preserves the coloring ab(y) of X . Since each ab(y) is a distinguishing
coloring of X , we have f (y) = 1 for each y. Thus, f = 1, and ( f, h) = (1, 1), and we
conclude that C is a distinguishing k-coloring of X × Y .

It remains to be shown that every distinguishing coloring of X × Y uses at least
k colors. Suppose that C ′ is a distinguishing l-coloring of X × Y ; we will show that
l ≥ k. For each y ∈ Y , let ay : X → {1, . . . , l} be given by ay : x �→ C ′(x, y) for each
x ∈ X . Now, we claim each ay must be a distinguishing l-coloring of X . For if g ∈ G
preserves ay , let f ∈ GY be given by f (y′) = g if y′ = y and f (y′) = 1 otherwise.
Then ( f, 1) ∈ G �Y H preserves C ′, and since C ′ is a distinguishing coloring of X × Y ,
we have f = 1 and g = 1. So ay is a distinguishing l-coloring of X for each y ∈ Y .

Now let A′ be the set of distinguishing l-colorings of X , thus |A′| = nl . Let
O = {O an orbit of the action of G on A′ | ay ∈ O for some y ∈ Y }. Let |O| = d ′,
and write O = {O1, . . . , Od ′ }. Now let b: Y → {1, . . . , d ′} be given by b: y �→ i
if ay is in orbit Oi . The function b is well-defined since the orbits are disjoint.
We claim that b is a distinguishing d ′-coloring of Y . To verify this claim, sup-
pose h ∈ H preserves b. This means that b(yh) = b(y) for each y, so ayh and ay

are in the same orbit of G on A′ for each y. Then for each y ∈ Y , let gy ∈ G
be the element taking ayh to ay , thus (ayh )gy = ay . Now let f : Y → G be given
by f : y �→ gy

−1. We claim that ( f, h) ∈ G �Y H preserves the coloring C ′. In-

deed, for each (x, y) ∈ X × Y , we have C ′((x, y)( f,h)) = C ′(xgy
−1

, yh) = ayh (xgy
−1

) =
(ayh )gy (x) = ay(x) = C ′(x, y). Since C ′ was assumed to be a distinguishing coloring
of X × Y , we have ( f, h) = (1, 1) so h = 1. Thus, b is a distinguishing d ′-coloring of
Y . Since DH (Y ) = d, we have d ′ ≥ d .

Finally, we note again that since each a′ ∈ A′ is a distinguishing coloring, it has
trivial stabilizer and orbit length |G| under the natural action of G. Then the number
of orbits of this action is |A′|/|G| = nl/|G|. But the number of orbits is at least
|O| = d ′ ≥ d , so nl ≥ d ′|G| ≥ d|G|. Since k was the minimum number such that
d|G| ≤ nk , we have l ≥ k. Thus every distinguishing coloring of X × Y must use at
least k colors, and we conclude that DG �Y H (X × Y ) = k.
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Case: S = ∅. We have seen above that if X × Y had a distinguishing l-coloring for
finite l, then nl ≥ d|G|. Since no such nl exists, we must have DG �Y H (X × Y ) = ∞.�

In [7], Cheng shows that nr , the number of distinct distinguishing r -colorings of
X with respect to the action of G, is always a monic polynomial in r of degree |X |.
She furthermore gives a recursive formula that computes nr in the case that G is the
automorphism group of a tree acting on vertex set X . It seems that nr is in general
difficult to compute. However, we give an explicit formula for the special cases G = Sn

and G = An in the following corollaries.

Corollary 2.4. Suppose H acts faithfully on Y with distinguishing number d. Then
DSn �Y H ([n] × Y ) = min{r | ( r

n ) ≥ d}.

Proof: The distinguishing number of Sn on [n] is clearly n. So for a fixed r , there are
( r

n )n! = ( r
n )|Sn| distinguishing r -colorings of [n]. �

Before presenting the next corollary, we first consider the action of the alternating
group An on [n].

Lemma 2.5. DAn ([n]) = n − 1.

Proof: Given n − 1 distinct colors, we may color the elements of [n] such that only
1 and 2 in [n] share a color. Since the transposition (1 2) is not in An , no nontrivial
permutation preserves this coloring. On the other hand, with n − 2 or fewer colors
available, either at least three elements a, b, and c ∈ [n] share a color, in which case
(a b c) is color-preserving, or we have at least two pairs of elements, a and b colored
identically and c and d colored identically, in which case (a b)(c d) is color-preserving.
Thus An has distinguishing number n − 1 in its natural action. �

Corollary 2.6. Suppose H acts faithfully on Y with distinguishing number d. Then
DAn �Y H ([n] × Y ) = min{r | (n − 1)( r

n−1
) + 2( r

n ) ≥ d}.

Proof: There are ( r
n−1

)( n
2
)(n − 1)! ways to choose a distinguishing coloring of [n]

using n − 1 distinct colors. There are ( r
n )n! ways to choose a distinguishing coloring

of [n] using n colors. Thus, we require ( r
n−1

)( n
2
)(n − 1)! + ( r

n )n! ≥ d|An| = d( n!
2

),
whence the result follows. �

3. The direct product action

Given groups G and H acting faithfully on sets X and Y respectively, what is the
distinguishing number of G × H acting on X × Y ? In this section, we answer the
above question when G and H are the full symmetric groups Sm and Sn in their natural
actions on [m] and [n]. Because the distinguishing number of the natural action of
the symmetric group is easily computable, and the direct product is such a simple
way to combine two group actions, it is quite surprising that the characterization of
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DSm×Sn ([m] × [n]) is so complex. Yet this action is of particular interest because it
gives an upper bound for all finite direct product actions. Specifically, if G and H are
groups acting faithfully on sets X and Y of cardinalities m and n respectively, then by
Lemma 2.2, we have

DG×H (X × Y ) ≤ DSm×Sn ([m] × [n]).

We will see that DSm×Sn ([m] × [n]) is often very small, so the upper bound given above
is often a useful one. In general, DSm×Sn ([m] × [n]) does not depend so much on the
absolute size of m and n as it depends on their relative size. The farther apart m and
n are, the greater the distinguishing number of the corresponding action is.

We first prove the well-definedness of a function that will be used in the main
theorem.

Lemma 3.1. Fix k ≥ 2. Then there is a unique function fk : {2, 3, . . .} → N satisfying:

(1) if m ≤ k then fk(m) = 1, and
(2) if m > k then fk(m) is the smallest integer t such that 1 < t < m and m ≤ kt −

fk(t).

Proof: We fix k ≥ 2 and proceed by induction on m to show that fk(m) is well-defined.
If m ≤ k, then fk(m) = 1. Now suppose m > k and assume inductively that fk(i) is
well-defined for 1 < i < m. It suffices to show that the set

Sk,m = {t | 1 < t < m and m ≤ kt − fk(t)}

is nonempty. Note that if t < m, then fk(t) ≤ t − 1 by the inductive hypothesis. Thus,
km−1 − fk(m − 1) ≥ km−1 − (m − 2). Furthermore, one may check that km−1 − (m −
2) ≥ m for each k ≥ 2 and m ≥ 2. So

m ≤ km−1 − fk(m − 1).

Thus, m − 1 ∈ Sk,m and therefore fk(m) = min(Sk,m) is well-defined for each m. �

Theorem 3.2. Fix m ≥ 2 and n ≥ 1 and let fk(m) be defined as in Lemma 3.1. Then
the set

Tm,n = {k ≥ 2 | fk(m) ≤ n ≤ km − fk(m)}

is nonempty, and

DSm×Sn ([m] × [n]) = min(Tm,n).

Note that we restrict m ≥ 2 only for convenience in the proof; if m = 1 then the
action of Sm × Sn is isomorphic to the action of Sn on [n] and has distinguishing
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number n. Also, it is interesting that the symmetry between m and n is not at all
obvious from the formulation of Theorem 3.2.

Throughout the proof, we will regard the set [m] × [n] as a grid of m rows and
n columns. An element of Sm × Sn acts on this grid as a permutation of the rows
followed by a permutation of the columns. We can think of a coloring of the m × n
grid as composed of n column colorings. In a distinguishing coloring, each of the
n column colorings must be distinct, for otherwise two identically colored columns
could be transposed to produce a nontrivial color-preserving permutation. We also
note that if every column in a grid has a distinct coloring, the only color-preserving
group element that leaves the rows unchanged is the identity element.

We will show that fk(m) gives the smallest number n such that the m × n grid
has a distinguishing k-coloring. Furthermore, we will prove that the m × x grid has
a distinguishing k-coloring precisely when x is between fk(m) and km − fk(m). The
proof of this fact will proceed by induction on k with base case k = 2. The theorem
then follows.

We first show that if n is too large with respect to m and k, then k colors do not
suffice for a distinguishing coloring.

Lemma 3.3. If n ≥ km then the m × n grid does not have a distinguishing k-coloring.

Proof: Let c be a k-coloring of the m × n grid. Then each column must have a distinct
coloring. There are km possible column colorings, so we must have n = km and each
column coloring is used exactly once. But then for any nontrivial row permutation
σ , there exists a nontrivial column permutation τ such that σ and τ induce identical
changes in the coloring c. Then (σ, τ−1) is a nontrivial color-preserving permutation
of the m × n grid, contradicting the assumption that c is distinguishing. �

Lemma 3.4. Suppose 1 ≤ n ≤ km − 1. Then the m × n grid has a distinguishing k-
coloring if and only if the m × (km − n) grid has a distinguishing k-coloring.

Proof: Proving one direction suffices by symmetry. Let c be a distinguishing k-
coloring of the m × n grid. Then c uses exactly n of the km possible column colorings.
Let c′ be a coloring of the m × (km − n) grid where each of the remaining km − n
column colorings is used exactly once. We claim that c′ is distinguishing.

Any nontrivial row permutation σ applied to the coloring c of the m × n grid must
introduce some column coloring not occurring in c (and therefore occurring in c′). For
otherwise, σ would only have permuted the column colorings of c and so some column
permutation τ could restore c, contradicting the assumption that c is distinguishing.
But then σ applied to the coloring c′ of the m × (km − n) grid must introduce some
column coloring not in c′. This shows that σ cannot be the row component of a
permutation that preserves c′. So only permutations that leave the rows unchanged
could possibly preserve c′. But we have already noted that only the identity element
falls into this category. This proves that c′ is distinguishing. �

The next two lemmas give some conditions under which k colors do not suffice for
a distinguishing coloring.
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Lemma 3.5. If 1 ≤ n < fk(m) then the m × n grid does not have a distinguishing
k-coloring.

Proof: Fix k and proceed by induction on m, with base cases m ≤ k that are vacuously
true since fk(m) = 1 in this case. Also note that if n = 1 then our assumption on n gives
that fk(m) > 1, so m > k and there does not exist a distinguishing k-coloring of the
m × 1 grid. So we may assume n ≥ 2. Now, n < fk(m) implies that m > kn − fk(n) by
definition of fk(m). So kn − m < fk(n). If m ≥ kn then the m × n grid does not have a
distinguishing k-coloring by Lemma 3.3. So suppose instead that 1 ≤ kn − m < fk(n).
Since n < fk(m) < m, we may apply the inductive hypothesis to conclude that there
does not exist a distinguishing k-coloring of the n × (kn − m) grid. Then by Lemma
3.4, there does not exist a distinguishing k-coloring of the n × m grid, and therefore
of the m × n grid. �

Lemma 3.6. If km − fk(m) < n ≤ km − 1 then the m × n grid does not have a dis-
tinguishing k-coloring.

Proof: This result follows from Lemma 3.4 and Lemma 3.5. �

The next lemma is the key result that allows us to construct distinguishing colorings
of large grids from distinguishing colorings of small ones.

Lemma 3.7. Suppose c is a distinguishing k-coloring of the m × n grid and N is the
number of column colorings that cannot be obtained via a row permutation from some
column coloring in c. Then for every l satisfying n ≤ l ≤ n + N, the m × l grid also
has a distinguishing k-coloring.

Proof: We construct a distinguishing k-coloring of the m × l grid, where n ≤ l ≤
n + N , as follows. Color the leftmost n columns as they are colored in c; at most N
columns remain. Color these remaining columns with distinct column colorings, none
of which can be obtained from some column coloring in c via a row permutation.
Call the resulting coloring c′. We claim that this is a distinguishing coloring of the
m × l grid. Any nontrivial row permutation σ must take some column coloring in c
to one not in c; otherwise some column permutation τ could restore c, contradicting
that c is distinguishing. This means that σ must also take some column coloring in
c′ to one not in c′, for none of the additional column colorings in c′ can be obtained
via a row permutation. This shows that no nontrivial row permutation can be part of a
color-preserving permutation of c′. Since c′ gives a distinct coloring for each column,
it must therefore be distinguishing. �

The next three lemmas give some conditions that guarantee the existence of a 2-
coloring. This case will provide the base case of a proof that proceeds by induction
on the number of colors.

First, we note that a coloring is distinguishing if each column coloring is distinct
and each row contains a different number of color 1 entries.
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Lemma 3.8. Let c be a 2-coloring of a grid such that each column has a different col-
oring and each row has a different number of color 1 entries. Then c is distinguishing.

Proof: A transformation that preserves c cannot permute the rows nontrivially, since
each row has a different number of color 1 entries. So it cannot permute the columns
nontrivially either, since each column has a distinct coloring. �

Lemma 3.9. The m × m grid has a distinguishing 2-coloring.

Proof: Let

c((i, j)) =
{

1 if i < j,

2 otherwise.

Then Lemma 3.8 gives that c is distinguishing. �

Lemma 3.10. For each m ≥ 2, if f2(m) ≤ n ≤ 2m − f2(m) then there exists a distin-
guishing 2-coloring of the m × n grid.

Proof: We proceed by induction on m. If m = 2 then we note that the 2 × 1, 2 × 2,
and 2 × 3 grids have distinguishing 2-colorings

(
1

2

)
,

(
1 1

1 2

)
, and

(
1 1 2

1 2 2

)

respectively. Now, suppose that for each 2 ≤ i < m, we know that the i × n grid has a
distinguishing 2-coloring if f2(i) ≤ n ≤ 2i − f2(i). We wish to show that this property
holds for m. Note that it suffices to prove that m × n grid has a distinguishing 2-coloring
if f2(m) ≤ n ≤ (2m)/2 = 2m−1, for the remaining case 2m−1 < n ≤ 2m − f2(m) must
then hold by the symmetry provided by Lemma 3.4. We will make repeated use of
this condition.

Case 1. f2(m) ≤ n < m. Now, m is at least 3 so n ≥ f2(m) ≥ 2. Applying the in-
ductive hypothesis for n, it suffices to prove that f2(n) ≤ m ≤ 2n − f2(n). The first
inequality is certainly true since f2(n) < n < m. As for the second, note that by its def-
inition, f2(m) satisfies m ≤ 2 f2(m) − f2( f2(m)). Now, one may show inductively that
f2(x) increases by at most 1 when x increases by 1. Then 2x − f2(x) is an increasing
function of x , so since n ≥ f2(m), we have m ≤ 2n − f2(n) as desired.

Case 2. m ≤ n ≤ 2m−1. We break the analysis into further cases.
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Case 2.1. m = 3. We need to check the cases n = 3 and n = 4. If n = 3 then the
m × n grid has a distinguishing 2-coloring by Lemma 3.9. If n = 4 then the coloring⎛⎜⎝1 1 1 2

1 1 2 2

1 2 2 2

⎞⎟⎠
is a distinguishing 2-coloring of the 3 × 4 grid by Lemma 3.8.

Case 2.2. m = 4. The coloring ⎛⎜⎜⎜⎝
1 1 1 2

1 2 2 1

2 1 2 2

2 2 2 2

⎞⎟⎟⎟⎠
gives a distinguishing 2-coloring of the 4 × 4 grid by Lemma 3.8. Each column con-
tains either 1 or 2 entries of color 1, so there are 24 − (( 4

1
) + ( 4

2
)) = 6 possible column

colorings that cannot be obtained from any of the above 4 column colorings via a
row permutation. Lemma 3.7 then tells us that the 4 × n grid has a distinguishing
2-coloring if 4 < n ≤ 10, which is more than sufficient since 24−1 = 8.

Case 2.3. m = 5. The coloring ⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

1 1 1 2

1 2 2 1

2 1 2 2

2 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎠
gives a distinguishing 2-coloring of the 5 × 4 grid by Lemma 3.8. Each column con-
tains either 2 or 3 entries of color 1, so Lemma 3.7 tells us that the 5 × n grid has a
distinguishing 2-coloring if 4 < n ≤ 4 + 25 − (( 5

2
) + ( 5

3
)) = 16.

Case 2.4. m ≥ 6 is even. First, we note that the m × m grid has a distinguishing 2-
coloring by Lemma 3.9. We construct a distinguishing 2-coloring c of the m × (m + 1)
grid as follows: let

c((i, j)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 if ( j = 1) and (i = 2 or i ≥ m/2 + 2),
2 if ( j = 2) and (3 ≤ i ≤ m/2 + 1 or i = m),
2 if (3 ≤ j ≤ m/2 + 1) and ( j ≤ i ≤ m/2 or i ≥ m − j + 2),
2 if (m/2 + 1 < j ≤ m + 1) and

(i = m + 2 − j or (i > m/2 and i �= 3m/2 + 2 − j)),
1 otherwise.
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As an example, c is shown below for m = 10.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 2

2 1 1 1 1 1 1 1 1 2 1

1 2 2 1 1 1 1 1 2 1 1

1 2 2 2 1 1 1 2 1 1 1

1 2 2 2 2 1 2 1 1 1 1

1 2 1 1 1 2 2 2 2 2 1

2 1 1 1 2 2 2 2 2 1 2

2 1 1 2 2 2 2 2 1 2 2

2 1 2 2 2 2 2 1 2 2 2

2 2 2 2 2 2 1 2 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The coloring c has the property that each column has a distinct coloring and each row
contains a different number of entries of color 1. (In fact, the i th row contains m + 1 − i
entries of color 1). So by Lemma 3.8, c is distinguishing. One may check that each
column has m/2 entries of color 1 and m/2 entries of color 2, so by applying Lemma 3.7
to c, we find that the m × n grid has a distinguishing 2-coloring if m < n ≤ (m + 1) +
2m − ( m

m/2
). One may check that ( m

m/2
) ≤ 2m−1, so that (m + 1) + 2m − ( m

m/2
) ≥ 2m−1

as desired.

Case 2.5. m > 6 is odd. Then m − 1 ≥ 6 is even, so let c be the distinguishing 2-
coloring of the (m − 1) × m grid as given above in Case 2.4. Let c′ be a 2-coloring of
the m × m grid obtained by adding a row of entries colored 1 to the top of c. Then in
c′, each column has a distinct coloring, and each row contains a different number of
entries of color 1. (In fact, the i th row contains m + 1 − i entries of color 1). So by
Lemma 3.8, c′ is distinguishing. Furthermore, each row column contains (m + 1)/2
entries of color 1 and (m − 1)/2 entries of color 2, so by Lemma 3.7, the m × n grid
has a distinguishing 2-coloring if m < n ≤ m + 2m − ( m

(m−1)/2
). One may check that

( m
(m−1)/2

) ≤ 2m−1, so that m + 2m − ( m
(m−1)/2

) ≥ 2m−1 as desired. This completes the
proof of Lemma 3.10.

�

Lemma 3.10 will serve as a base case in the following induction on the number of
colors.

Lemma 3.11. For each k ≥ 2 and m ≥ 2, if fk(m) ≤ n ≤ km − fk(m), then the m × n
grid has a distinguishing k-coloring.

Proof: We proceed by induction on k. The case k = 2 is precisely Lemma 3.10.
Now fix k > 2. Our inductive hypothesis will be that for each m ≥ 2, the m × n
grid has a distinguishing (k − 1)-coloring if fk−1(m) ≤ n ≤ (k − 1)m − fk−1(m). We
wish to prove that for each m ≥ 2, the m × n grid has a distinguishing k-coloring if
fk(m) ≤ n ≤ km − fk(m).
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We first claim that it is sufficient to prove that for each m ≥ 2, the m × n grid
has a distinguishing k-coloring if fk(m) ≤ n < fk−1(m). We check the other cases
below. If fk−1(m) ≤ n ≤ (k − 1)m − fk−1(m) then the m × n grid has a distinguishing
(k − 1)-coloring by the inductive hypothesis, which is certainly also a distinguishing
k-coloring. Now consider in particular a distinguishing (k − 1)-coloring c of the m ×
((k − 1)m − fk−1(m)) grid, which we may view as a k-coloring where the color k is
never used. There are km − (k − 1)m column colorings that use color k at least once
and hence cannot be obtained via a permutation from any column coloring in c. Then
by Lemma 3.7, the m × n grid has a distinguishing k-coloring if

(k − 1)m − fk−1(m) ≤ n

and

n ≤ (k − 1)m − fk−1(m) + km − (k − 1)m

= km − fk−1(m).

Next, we note that by Lemma 3.4, the m × l grid has a distinguishing k-coloring for
all l such that km − fk−1(m) < l ≤ km − fk(m) if and only if the m × n grid has a
distinguishing k-coloring for all n such that fk(m) ≤ n < fk−1(m). Thus we need only
consider the case fk(m) ≤ n < fk−1(m).

To prove our claim that for each m ≥ 2, the m × n grid has a distinguishing k-
coloring if fk(m) ≤ n < fk−1(m), we proceed again by induction, this time on m,
with base case 2 ≤ m ≤ k. If 2 ≤ m < k (and k > 2 is still fixed), then fk(m) =
fk−1(m) = 1 and the condition fk(m) ≤ n < fk−1(m) is vacuous. So the statement is
(vacuously) true for m < k. If m = k, then fk(m) = 1 ≤ n < fk−1(m) = 2 so n = 1
and there does indeed exist a distinguishing k-coloring of the m × 1 grid.

Now assume inductively that each i with 2 ≤ i < m has the property that the i × n
grid has a distinguishing k-coloring if fk(i) ≤ n < fk−1(i). We wish to show that the
m × n grid has a distinguishing k-coloring if fk(m) ≤ n < fk−1(m). Only the case
m > k remains to be considered.

If m > k, then fk(m) ≥ 2 so n ≥ fk(m) ≥ 2. So since n < fk−1(m) < m, it suffices
to prove that fk(n) ≤ m ≤ kn − fk(n), for the inductive hypothesis then gives that
the n × m grid has a distinguishing k-coloring. The first inequality is certainly true
since fk(n) < n < m. As for the second, note that by its definition, fk(m) satisfies
m ≤ k fk (m) − fk( fk(m)). Now, one may show that fk(x) increases by at most 1 when
x increases by 1. Then kx − fk(x) is an increasing function of x , so since n ≥ fk(m),
we have m ≤ kn − fk(n) as desired. We conclude that if fk(m) ≤ n ≤ km − fk(m),
then we have a distinguishing k-coloring of the m × n grid. �

We combine these results below to prove Theorem 3.2.

Proof: Fix k, m ≥ 2. If n satisfies fk(m) ≤ n ≤ km − fk(m) then the m × n grid
has a distinguishing k-coloring by Lemma 3.11. On the other hand, if n < fk(m) or
n > km − fk(m) then the m × n grid does not have a distinguishing k-coloring by
Lemmas 3.3, 3.5, and 3.6. So there exists a distinguishing k-coloring of the m × n
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Table 1 The distinguishing
number of the action of Sm × Sn

on [m] × [n]

m, n 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 2 2 3 3 3 3 3 4 4

3 3 2 2 2 2 2 3 3 3 3

4 4 3 2 2 2 2 2 2 2 2

5 5 3 2 2 2 2 2 2 2 2

6 6 3 2 2 2 2 2 2 2 2

7 7 3 3 2 2 2 2 2 2 2

8 8 3 3 2 2 2 2 2 2 2

9 9 4 3 2 2 2 2 2 2 2

10 10 4 3 2 2 2 2 2 2 2

grid if and only if fk(m) ≤ n ≤ km − fk(m). Then by definition of the distinguishing
number, DSm×Sn ([m] × [n]) = min{k ≥ 2 | fk(m) ≤ n ≤ km − fk(m)}.

Note that we only needed to consider colorings using at least 2 colors because
m ≥ 2 implies that Sm × Sn is nontrivial and so acts with distinguishing number at
least 2. �

For k fixed, the function fk(m) grows approximately logarithmically with m. Thus,
the expression km − fk(m) is dominated by km for large m. So for a fixed m sufficiently
large, the distinguishing number DSm×Sn ([m] × [n]) grows approximately like the
function m

√
n when n becomes large. Table 1 gives DSm×Sn ([m] × [n]) for m and n

between 1 and 10.

4. Discussion and open questions

Section 2 shows that we can characterize the distinguishing number of G �Y H on
X × Y if we have information about nr , the number of distinct distinguishing r -
colorings of the action of G on X , for each r . We saw that nr could be computed
when G was the automorphism group of a tree or when G = An or Sn . It would
be useful to find other examples of group actions for which the nr can be explicitly
computed. Regarding Section 3, we ask whether one can provide a closed formula for
the distinguishing number of Sm × Sn in its action on [m] × [n]. We also ask what the
distinguishing number of the general direct product action is.

There are many interesting questions to ask regarding the distinguishing number of
group actions. In [6], for example, we define D(G) to be the maximum distinguishing
number admitted by a given group G. Given two groups G and H such that H ≤ G, we
ask whether it must be the case that D(H ) ≤ D(G). We also ask for a characterization
of the set

{DG([n]) | G is a transitive subgroup of Sn}.

Note that we require our group G to be transitive, for otherwise each distinguishing
number k between 1 and n could be achieved by taking a subgroup of Sn that fixes

Springer



J Algebr Comb (2006) 24:331–345 345

each k + 1, k + 2, . . . , n and whose action on 1, . . . , k is isomorphic to the action of
Sk .

We refer the reader to [6] for other open questions.
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