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Abstract Billey, Jockusch, and Stanley characterized 321-avoiding permutations by
a property of their reduced decompositions. This paper generalizes that result with
a detailed study of permutations via their reduced decompositions and the notion of
pattern containment. These techniques are used to prove a new characterization of
vexillary permutations in terms of their principal dual order ideals in a particular
poset. Additionally, the combined frameworks yield several new results about the
commutation classes of a permutation. In particular, these describe structural aspects
of the corresponding graph of the classes and the zonotopal tilings of a polygon defined
by Elnitsky that is associated with the permutation.
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1. Introduction

Reduced decompositions of permutations are classical objects in combinatorics that
appear throughout the literature. Following the work of Rodica Simion and Frank
Schmidt in [15], the study of permutation patterns, particularly pattern avoidance, has
become a frequently studied field as well.

In [1], Sara Billey, William Jockusch, and Richard Stanley relate these two con-
cepts, possibly for the first time. There they show that 321-avoiding permutations are
exactly those permutations where the subsequence i(i ± 1)i never occurs in a reduced
decomposition. Relatedly, Victor Reiner shows in [13] that the number of i(i ± 1)i
occurrences in reduced decompositions of the longest element in the symmetric group,
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which has the maximal number of occurrences of 321, is equal to the number of such
reduced decompositions. Stanley had previously shown that this is the number of
standard Young tableaux of a staircase shape in [17].

Inspired by these results, and more generally by the relationship they suggest be-
tween the two aspects of permutations, this paper studies elements of the symmetric
group from the combined perspectives of their reduced decompositions and their
patterns. While these aspects of a permutation appear extensively in combinatorial
literature, they are not often treated together. This paper strives to remedy that fact,
addressing several questions where reduced decompositions and permutation patterns
together lead to interesting results.

After introducing basic terminology and notation in Section 2, Section 3 general-
izes the result of Billey, Jockusch, and Stanley, via a new characterization of vexillary
permutations in Theorem 3.8. This characterization is based on the reduced decom-
positions of the permutations containing the permutation in question, and is strikingly
different from all previous equivalent characterizations. In addition to requiring that
each of the permutations containing the vexillary permutation has a certain kind of
reduced decomposition, the proof of Theorem 3.8 explicitly constructs such a reduced
decomposition.

There are three algorithms which appear in this paper, the first of which occurs
in the proof of Theorem 3.8. It should be noted that these are not deterministic, and
include a certain amount of choice. For instance, Example 3.9 describes only one
possible route that the algorithm VEX may take on a particular input.

There is an equivalence relation, sometimes known as the commutation relation,
on the set of reduced decompositions of a particular permutation. This and an asso-
ciated graph are discussed in Section 4. Theorem 4.6 and Corollary 4.8 characterize
permutations with graphs and commutation classes having certain properties. These
results are strengthened in Theorem 6.12.

The results in Sections 5 and 6 discuss permutation patterns with respect to a
polygon defined by Serge Elnitsky in [4]. The rhombic tilings of this polygon are in
bijection with the commutation classes of a permutation. New results include that the
number of commutation classes of a permutation is monotonically increasing with
respect to pattern containment (Theorem 5.10), and several results pertaining to a
poset associated with tilings of the polygon. Finally, Section 7 completely describes
this poset in the case of a freely braided permutation, as defined by Richard Green and
Jozsef Losonczy in [5] and [6].

2. Basic definitions

The main definitions and notation that appear throughout the paper are discussed below.
For more information about these objects, including proofs of elementary facts, see
[3] and [9].

Let Sn denote the symmetric group on n elements. An element w ∈ Sn permutes
{1, . . . , n} by mapping i �→ w(i). This permutation will be written in one-line notation
w = w(1)w(2) · · · w(n).
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Example 2.1. 4213 ∈ S4 maps 1 to 4, 2 to itself, 3 to 1, and 4 to 3.

For i ∈ {1, . . . , n − 1}, the map si transposes i and i + 1, and fixes all other elements
in a permutation. The symmetric group Sn is the Coxeter group of type An−1, and
it is generated by the adjacent transpositions {si : i = 1, . . . , n − 1}. The adjacent
transpositions satisfy the Coxeter relations:

s2
i = 1 for all i ;

si s j = s j si if |i − j | > 1; (1)

si si+1si = si+1si si+1 for 1 ≤ i ≤ n − 2. (2)

Equation (1) is called the short braid relation, and equation (2) is the long braid
relation. A map is written to the left of its input, so siw interchanges the positions of
values i and i + 1 in the permutation w, while wsi interchanges the values in positions
i and i + 1 in w. If w = w(1) · · · w(n), then wsi = w(1) · · · w(i + 1)w(i) · · · w(n).

Because the symmetric group is generated by adjacent transpositions, any permu-
tation w ∈ Sn can be written as w = si1

· · · si� for some {i1, . . . , i�}. The least such
� is the length of w, denoted �(w). An inversion in w is a pair (i, j) where i < j
and w(i) > w( j). The inversion set is I (w) = {(i, j) : (i, j) is an inversion}. Since
I (w) ⊆ [1, n] × [1, n], the inversion set can also be viewed as an array. The number
of inversions in w is equal to �(w) (see [9]). For obvious reasons, the permutation
w0 := n · · · 21 ∈ Sn is called the longest element in Sn .

Definition 2.2. For a permutation w with �(w) = �, a string i1 · · · i� such that w =
si1

· · · si� is a reduced decomposition of w. (Some sources call this a reduced word.)
The set R(w) consists of all reduced decompositions of w.

Definition 2.3. A factor is a consecutive substring of a reduced decomposition.

Similar to the Coxeter relations, a factor j1 j2 in a reduced decomposition will be
called a short braid move if | j1 − j2| > 1, and a factor j( j ± 1) j will be called a long
braid move. The set R(w) has been studied in various contexts, notably by Stanley in
[17]. There, Stanley computes |R(w)| for several classes of permutations in terms of
the number of standard Young tableaux of certain shapes. In the case of a vexillary
permutation, this is equal to the number of standard Young tableaux of a single shape
λ(w) (see also Exercise 7.22 of [16]). The definition of vexillary permutations is
postponed until Section 3, where they will be discussed in depth.

Definition 2.4. Let w = w(1) · · · w(n) and p = p(1) · · · p(k) for k ≤ n. The permu-
tation w contains the pattern p if there exist i1 < · · · < ik such that w(i1) · · · w(ik)
is in the same relative order as p(1) · · · p(k). That is, w(ih) < w(i j ) if and only if
p(h) < p( j). If w does not contain p, then w avoids p, or is p-avoiding.
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Suppose that w contains the pattern p, with {i1, . . . , ik} as defined above. Then
w(i1) · · ·w(ik) is an occurrence of p in w. The notation 〈p( j)〉 will denote the value
w(i j ). If p̄ = p( j)p( j + 1) · · · p( j + m), then 〈 p̄〉 = w(i j )w(i j+1) · · · w(i j+m).

Example 2.5. Let w = 7413625, p = 1243, and q = 1234. Then 1365 is an occur-
rence of p, with 〈1〉 = 1, 〈2〉 = 3, 〈4〉 = 6, and 〈3〉 = 5. Also, 〈24〉 = 36. The permu-
tation w is q-avoiding.

Definition 2.6. Let w contain the pattern p, and let 〈p〉 be a particular occurrence of
p. If w( j) ∈ 〈p〉, then w( j) is a pattern entry in w. Otherwise w( j) is a non-pattern
entry. If a non-pattern entry lies between two pattern entries in the one-line notation
for w, then it is inside the pattern. Otherwise it is outside the pattern. “Inside” and
“outside” are only defined for non-pattern entries.

Definition 2.7. Let 〈p〉 be an occurrence of p ∈ Sk in w. Suppose that x is inside
the pattern, that 〈m〉 < x < 〈m + 1〉 for some m ∈ [1, k − 1], and that the values
{〈m〉, x, 〈m + 1〉} appear in increasing order in the one-line notation for w. Let a, b ∈
N be maximal so that the values

{〈m − a〉, 〈m − a + 1〉, . . . , 〈m〉, x, 〈m + 1〉, . . . , 〈m + b − 1〉, 〈m + b〉}

appear in increasing order in the one-line notation for w. The entry x is obstructed to
the left if a pattern entry smaller than 〈m − a〉 appears between 〈m − a〉 and x in w.
Likewise, x is obstructed to the right if a pattern entry larger than 〈m + b〉 appears
between x and 〈m + b〉 in w.

Example 2.8. Let w = 32451 and p = 3241. Then 3241 and 3251 are both occur-
rences of p in w. Obstruction is only defined for the latter, with x = 4 and m = 3.
Then a = b = 0, and 4 is obstructed to the left and not to the right.

Example 2.9. Let w = 21354 and p = 2143. Then 2154 is an occurrence of p in w.
Using x = 3, m = 2 in Definition 2.7 shows that a = b = 0, and 3 is obstructed both
to the left and to the right.

3. Vexillary characterization

Vexillary permutations first appeared in [8] and subsequent publications by Alain
Lascoux and Marcel-Paul Schützenberger. They were also independently found by
Stanley in [17]. There have since emerged several equivalent definitions of these
permutations, and a thorough discussion of these occurs in [9]. The original definition
of Lascoux and Schützenberger, and the one of most relevance to this discussion, is
the following.

Definition 3.1. A permutation is vexillary if it is 2143-avoiding.

Springer



J Algebr Comb (2006) 24:263–284 267

Example 3.2. The permutation 3641572 is vexillary, but 3641752 is not vexillary
because 3175 is an occurrence of 2143 in the latter.

The following proposition is key to proving one direction of Theorem 3.8.

Proposition 3.3. Let w contain the pattern p. Let x be inside the pattern, with 〈m〉 <

x < 〈m + 1〉 and the values {〈m〉, x, 〈m + 1〉} appearing in increasing order in w. If
p is vexillary then x cannot be obstructed both to the left and to the right.

Proof: Such obstructions would create a 2143-pattern in p. �

Example 2.9 illustrates a non-vexillary permutation which has an element x that is
obstructed on both sides.

Equivalent characterizations of vexillarity concern the inversion set I (w) or the
following objects.

Definition 3.4. The diagram of a permutation w is D(w) ⊆ [1, n] × [1, n] where

(i, j) ∈ D(w) if and only if i < w−1( j) and j < w(i).

Definition 3.5. The code of w is the vector c(w) = (c1(w), . . . , cn(w)) where ci (w) is
the number of elements in row i of I (w). The shape λ(w) is the partition formed by
writing the entries of the code in non-increasing order.

Proposition 3.6. The following are equivalent definitions of vexillarity for a permu-
tation w:

(V1) w is 2143-avoiding;
(V2) The set of rows of I (w) is totally ordered by inclusion;
(V3) The set of columns of I (w) is totally ordered by inclusion;
(V4) The set of rows of D(w) is totally ordered by inclusion;
(V5) The set of columns of D(w) is totally ordered by inclusion;
(V6) λ(w)′ = λ(w−1), where λ(w)′ is the transpose of λ(w).

Proof: See [9]. �

This section proves a new characterization of vexillary permutations, quite different
from those in Proposition 3.6. A partial ordering can be placed on the set of all permu-
tations S1 ∪ S2 ∪ S3 ∪ · · ·, where u < v if v contains the pattern u. Definition 3.1
determines vexillarity by a condition on the principal order ideal of a permutation.
The new characterization, Theorem 3.8, depends on a particular condition holding for
the principal dual order ideal.
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Definition 3.7. Let i = i1 · · · i� be a reduced decomposition of w = w(1) · · · w(n). For
M ∈ N, the shift of i by M is

i M := (i1 + M) · · · (i� + M) ∈ R
(
12 · · · M(w(1) + M)(w(2) + M) · · · (w(n) + M)

)
.

Theorem 3.8. The permutation p is vexillary if and only if, for every permutation w

containing a p-pattern, there exists a reduced decomposition j ∈ R(w) containing
some shift of an element i ∈ R(p) as a factor.

Proof: First suppose that p ∈ Sk is vexillary. Let w ∈ Sn contain a p-pattern. As-
sume for the moment that there is a

w̃ = (sI1
. . . sIq )w(sJ1

. . . sJr ) ∈ Sn (3)

such that

(R1) �(w̃) = �(w) − (q + r );
(R2) w̃ has a p-pattern in positions {1 + M, . . . , k + M} for some M ∈ [0, n − k].

Choose a reduced decomposition i ∈ R(p). Let w̃′ ∈ Sn be the permutation obtained
from w̃ by placing the values {w̃(1 + M), . . . , w̃(k + M)} in increasing order and
leaving all other entries unchanged. Choose any h ∈ R(w̃′). Then

(Iq . . . I1)hi M (Jr . . . J1) ∈ R(w). (4)

It remains only to find a w̃ ∈ Sn satisfying (R1) and (R2). This will be done by an
algorithm VEX that takes as input a permutation w ∈ Sn containing a p-pattern and
outputs the desired permutation w̃ ∈ Sn . Because the details of this algorithm can be
cumbersome, a brief description precedes each of the major steps.

Algorithm VEX
INPUT: w ∈ Sn with an occurrence 〈p〉 of the pattern p ∈ Sk .
OUTPUT: w̃ ∈ Sn as in Eq. (3) satisfying (R1) and (R2).

Step 0: Initialize variables.
Set w[0] := w and i := 0.

Step 1: Check if ready to output.
If w[i] has no entries inside the pattern, then OUTPUT w[i]. Otherwise, choose
x[i] inside the pattern.

Step 2: Move all inside entries larger than 〈k〉 to the right of 〈p〉.
If x[i] > 〈k〉, then BEGIN

a. Let B(x[i]) = {y ≥ x[i] : y is inside the pattern}.
b. Consider the elements of B(x[i]) in decreasing order. Multiply w[i] on

the right by adjacent transpositions (changing positions in the one-line
notation) to move each element immediately to the right of 〈p〉.

c. Let w[i+1] be the resulting permutation. Set i := i + 1 and GOTO Step 1.
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Step 3: Move all inside entries smaller than 〈1〉 to the left of 〈p〉.
If x[i] < 〈1〉, then BEGIN

a. Let S(x[i]) = {y ≤ x[i] : y is inside the pattern}.
b. Consider the elements of S(x[i]) in increasing order. Multiply w[i] on the

right by adjacent transpositions to move each element immediately to the
left of 〈p〉.

c. Let w[i+1] be the resulting permutation. Set i := i + 1 and GOTO Step 1.

Step 4: Determine bounds in the pattern for the inside entry.
Let m ∈ [1, k − 1] be the unique value such that 〈m〉 < x[i] < 〈m + 1〉.

Step 5: Change the occurrence of 〈p〉 and the inside entry so that it does not lie
between its bounds in the pattern.
If the values {〈m〉, x[i], 〈m + 1〉} appear in increasing order in w[i], then
define a and b as in Definition 2.7 and BEGIN

a. If x[i] is unobstructed to the right, then BEGIN
i. Let R(x[i]) be the set of non-pattern entries at least as large as x[i] and

lying between x[i] and 〈m + b〉 in the one-line notation of w[i].
ii. Consider the elements of R(x[i]) in decreasing order. For each y ∈

R(x[i]), multiply on the right by adjacent transpositions until y is
immediately to the right of 〈m + b〉, or the right neighbor of y is z > y.
In the latter case, z = 〈m + b′〉 for some b′ ∈ [1, b] because all larger
non-pattern entries are already to the right of 〈m + b〉. Interchange
the roles of y and 〈m + b′〉, and move this new y to the right in the
same manner, until it is to the right of (the redefined) 〈m + b〉.

iii. Let w[i+1] be the resulting permutation, with 〈p〉 redefined as indi-
cated. Let x[i+1] be the non-pattern entry in the final move after any
interchange of roles. This is greater than x[i] and the newly redefined
〈m + b〉, and occurs to the right of the new 〈m + b〉. If x[i+1] is outside
of the pattern, GOTO Step 1 with i := i + 1. Otherwise GOTO Step 2
with i := i + 1.

b. The entry x[i] is unobstructed to the left (Proposition 3.3). BEGIN
i. Let L(x[i]) be the set of non-pattern entries at most as large as x[i] and

lying between 〈m − a〉 and x[i] in the one-line notation of w[i].
ii. Consider the elements of L(x[i]) in increasing order. For each y ∈

L(x[i]), multiply on the right by adjacent transpositions until y is
immediately to the left of 〈m − a〉, or the left neighbor of y is z < y.
In the latter case, z = 〈m − a′〉 for some a′ ∈ [0, a] because all smaller
non-pattern entries are already to the left of 〈m − a〉. Interchange the
roles of y and 〈m − a′〉, and move this new y to the left in the same
manner, until it is to the left of (the redefined) 〈m − a〉.

iii. Let w[i+1] be the resulting permutation, with 〈p〉 redefined as indi-
cated. Let x[i+1] be the non-pattern entry in the final move after any
interchange of roles. This is less than x[i] and the newly redefined
〈m − a〉, and occurs to the left of the new 〈m − a〉. If x[i+1] is outside
of the pattern, GOTO Step 1. Otherwise GOTO Step 3 with i := i + 1.
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Step 6: Change the occurrence of 〈p〉, but not its position, so that the value of the
inside entry increases but the values of 〈p〉 either stay the same or decrease.
If w[i](s) = 〈m + 1〉 and w[i](t) = x[i] with s < t , multiply w[i] on the left by
adjacent transpositions (changing values in the one-line notation) to obtain
w[i+1] with the values [x[i], 〈m + 1〉] in increasing order. Then w[i+1](s) is in
the half-open interval [x[i], 〈m + 1〉), and w[i+1](t) is in the half-open interval
(x[i], 〈m + 1〉]. GOTO Step 2 with x[i+1] := w[i+1](t), the pattern redefined
so that 〈m + 1〉 := w[i+1](s), and i := i + 1.

Step 7: Change the occurrence of 〈p〉, but not its position, so that the value of the
inside entry decreases but the values of 〈p〉 either stay the same or increase.
If w[i](s) = 〈m〉 and w[i](t) = x[i] with s > t , multiply w[i] on the left by ad-
jacent transpositions to obtain w[i+1] with the values [〈m〉, x[i]] in increasing
order. Then w[i+1](s) is in the half-open interval (〈m〉, x[i]], and w[i+1](t) is
in the half-open interval [〈m〉, x[i]). GOTO Step 3 with x[i+1] := w[i+1](t),
the pattern redefined so that 〈m〉 := w[i+1](s), and i := i + 1.

Each subsequent visit to Step 1 involves a permutation with strictly fewer entries
inside the pattern than on the previous visit. Each multiplication by an adjacent trans-
position indicated in the algorithm removes an inversion, and so decreases the length
of the permutation. This is crucial because of requirement (R1).

Consider the progression of VEX:� Step 1 =⇒ HALT or begin a pass through VEX;� Step 2 =⇒ Step 1;� Step 3 =⇒ Step 1;� Step 5a =⇒ Steps 2 or 6;� Step 5b =⇒ Steps 3 or 7;� Step 6 =⇒ Steps 2, 5, or 6;� Step 7 =⇒ Steps 3, 5, or 7.

Step 5a concludes with x[i+1] to the left of its lower pattern bound, and smaller
pattern elements lying between x[i+1] and this bound. Therefore, no matter how often
Step 6 is next called, the algorithm will never subsequently go to Step 5b before going
to Step 1. Likewise, a visit to Step 5b means that Step 5a can never be visited until
Step 1 is visited and a new entry inside the pattern is chosen.

Steps 2 and 3 do not change the relative positions of 〈p〉.
Steps 5a and 6 imply x[i+1] > x[i], while x[i+1] < x[i] after Steps 5b and 7. Let

m be as in Step 4. Until revisiting Step 1, the values 〈m ′〉, for m ′ ≥ m + 1, do not
increase if x[i+1] > x[i]. Nor do the values 〈m ′〉, for m ′ ≤ m, decrease if x[i+1] < x[i].
The other pattern values are unchanged. The definition of m means that the reordering
of values in Steps 6 and 7 does not change the positions in which the pattern p occurs.
Additionally, these steps change the value of the entry inside the pattern (that is,
x[i+1] �= x[i]), but not its position.

These observations indicate not only that VEX terminates, but that it outputs w̃ ∈ Sn

as in Eq. (3) satisfying (R1) and(R2). This completes one direction of the proof.
Now suppose p ∈ Sk is not vexillary. There is an occurrence 〈2143〉 such that

p = · · · 〈2〉 · · · 〈1〉(〈2〉 + 1)(〈2〉 + 2) · · · (〈3〉 − 2)(〈3〉 − 1)〈4〉 · · · 〈3〉 · · · .
Springer
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Define z to be the index such that p(z) = 〈1〉. Define w ∈ Sk+1 by

w(m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(m) : m ≤ z and p(m) ≤ 〈2〉;

p(m) + 1 : m ≤ z and p(m) > 〈2〉;
〈2〉 + 1 : m = z + 1;

p(m − 1) : m > z + 1 and p(m) ≤ 〈2〉;
p(m − 1) + 1 : m > z + 1 and p(m) > 〈2〉.

For example, if p = 2143, then w = 21354.
If there is a reduced decomposition j ∈ R(w) such that j = j1i M j2 for i ∈ R(p)

and M ∈ N, then there is a w̃ ∈ Sk+1 as in Eq. (3) satisfying (R1) and (R2). Keeping
the values 〈1〉, 〈2〉, 〈3〉, and 〈4〉 as defined above, the permutation w was constructed
so that

w = · · · 〈2〉 · · · 〈1〉(〈2〉+1)(〈2〉 + 2) · · · (〈3〉 − 2)(〈3〉−1)〈3〉(〈4〉 + 1) · · · (〈3〉+1) · · · .

One of the values in the consecutive subsequence (〈2〉 + 1)(〈2〉 + 2) · · · 〈3〉 must
move to get a consecutive p-pattern in w̃. However, the values {〈2〉, . . . , 〈3〉 + 1}
appear in increasing order in w, and the consecutive subsequence

〈1〉(〈2〉 + 1)(〈2〉 + 2) · · · (〈3〉 − 2)(〈3〉 − 1)〈3〉(〈4〉 + 1)

in w is increasing. Therefore, there is no way to multiply w by adjacent transpositions,
always eliminating an inversion, to obtain a consecutive p-pattern.

Hence, if p is not vexillary then there exists a permutation w containing a p-pattern
such that no reduced decomposition of w contains a shift of a reduced decomposition
of p as a factor. �

Example 3.9. If w = 314652 and p = 231, with the chosen occurrence 〈p〉 in bold,
the algorithm VEX may proceed as follows.� w[0] := 314652.� Step 1: x[0] := 1.� Step 3: w[0] �→ w[0]s1 = 134652 =: w[1].� Step 1: x[1] := 5.� Step 6: w[1] �→ s5w[1] = 134562 =: w[2]; x[2] := 6.� Step 2: w[2] �→ w[2]s5 = 134526 =: w[3].� Step 1: x[3] := 4.� Step 5a: w[3] �→ w[3] = 134526 =: w[4]; x[4] := 5.� Step 2: w[4] �→ w[4]s4 = 134256 =: w[5].� Step 1: output 134256.

Therefore w̃ = 134256 = s5ws1s5s4, and w̃′ = 123456. Keeping the notation of
Eq. (4) , h = ∅ and M = 1. The unique reduced decomposition of 231 is 12, and
indeed

(5)∅(12)1(451) = 523451 ∈ R(w).
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Example 3.10. Let w = 21354 and p = 2143. No element of R(w) = {14, 41} con-
tains a shift of any element of R(p) = {13, 31} as a factor.

Remark 3.11. Suppose that j ∈ R(w) contains a shift of i ∈ R(p) as a factor,

j = j1i M j2. (5)

Then i ∈ R(p) can be replaced by any i ′ ∈ R(p) in Eq. (5)

Some care must be taken regarding factors in reduced decompositions. This is
clarified in the following definition and lemma, the proof of which is straightforward.

Definition 3.12. Let w ∈ Sn and i ∈ R(w). Write i = abc, where a ∈ R(u) and c ∈
R(v). Suppose that b contains only letters in S = {1 + M, . . . , k − 1 + M}. If no
element of R(u) has an element of S as its rightmost character and no element of R(v)
has an element of S as its leftmost character, then b is isolated in i . Equivalently, the
values {1 + M, . . . , k + M} must appear in increasing order in v, and the positions
{1 + M, . . . , k + M} must comprise an increasing sequence in u.

If b ∈ R(k · · · 21) and a shift of b appears as a factor in a reduced decomposition
of some permutation, then b is necessarily isolated. This is because b has maximal
reduced length in the letters {1, . . . , k − 1}, so any factor of length greater than ( k

2
) in

the letters {1 + M, . . . , k − 1 + M} is not reduced.

Lemma 3.13. If a reduced decomposition of w contains an isolated shift of a reduced
decomposition of p, then w contains the pattern p.

The converse to Lemma 3.13 holds if p is vexillary.
The characterization of vexillary in Theorem 3.8 differs substantially from those

in Proposition 3.6. There is not an obvious way to prove equivalence with any of
the definitions (V2)–(V6), except via (V1). This raises the question of whether more
may be understood about vexillary permutations (or perhaps other types, such as
Grassmannian or dominant permutations) by studying their reduced decompositions
or the permutations that contain those in question as patterns.

Theorem 3.8 has a number of consequences, and will be used often in the subse-
quent sections of this paper. Most immediately, notice that it generalizes the result of
Billey, Jockusch, and Stanley mentioned earlier: 321-avoiding permutations are ex-
actly those whose reduced decompositions contain no long braid moves, and observe
that R(321) = {121, 212}.

4. The commutation relation

Recall the definition of short and long braid moves in a reduced decomposition, as well
as the short and long braid relations described in Eqs. (1) and (2). It is well known that
any element of R(w) can be transformed into any other element of R(w) by successive
applications of the braid relations.
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Because the short braid relation represents the commutativity of particular pairs of
adjacent transpositions, the following equivalence relation is known as the commuta-
tion relation.

Definition 4.1. For a permutation w and i, j ∈ R(w), write i ∼ j if i can be obtained
from j by a sequence of short braid moves. Let C(w) be the set of commutation classes
of reduced decompositions of w, as defined by ∼.

Example 4.2. The commutation classes of 4231 ∈ S4 are {12321}, {32123}, and
{13231, 31231, 13213, 31213}.

Definition 4.3. For a permutation w, the graph G(w) has vertex set equal to C(w), and
two vertices share an edge if there exist representatives of the two classes that differ
by a long braid move.

Elnitsky gives a very elegant representation of this graph in [4], which will be
discussed in depth in Section 5. A consequence of his description, although not difficult
to prove independent of his work, is the following.

Proposition 4.4. The graph G(w) is connected and bipartite.

Proof: See [4]. �

Despite Proposition 4.4, much remains to be understood about the graph G(w). For
example, even the size of the graph for w0 (that is, the number of commutation classes
for the longest element) is unknown.

Billey, Jockusch, and Stanley characterize all permutations with a single commuta-
tion class, and hence whose graphs are a single vertex, as 321-avoiding permutations.
A logical question to ask next is: for what permutations does each reduced decompo-
sition contain at most one long braid move? More restrictively: what if this long braid
move is required to be a specific shift of 121 or 212? Moreover, what are the graphs
in these cases?

Definition 4.5. Let Un = {w ∈ Sn : no j ∈ R(w) has two long braid moves}.

Theorem 4.6. Un is the set of permutations such that every 321-pattern in w has the
same maximal element and the same minimal element.

Proof: Assume w has a 321-pattern. Suppose that every occurrence of 321 in w

has 〈3〉 = x and 〈1〉 = y. Suppose that j ∈ R(w) has at least one long braid move.
Choose k so that jk jk+1 jk+2 is the first such. Each adjacent transposition in a reduced
decomposition increases the length of the product. Then by the supposition,

s jk+2
s jk+1

s jk . . . s j1w

is 321-avoiding, so jk+3 · · · j� has no long braid moves. It remains only to consider
when jk+2 jk+3 jk+4 is also a long braid move. The only possible reduced configurations
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for such a factor jk jk+1 jk+2 jk+3 jk+4 are shifts of 21232 and 23212. If either of these
is not isolated, then it is part of a shift of 212321, 321232, 123212, or 232123. Notice
that� 212321, 321232, 123212, 232123 ∈ R(4321);� 23212 ∈ R(4312);� 21232 ∈ R(3421).

If jk jk+1 jk+2 jk+3 jk+4 is isolated in j then w contains a 4312- or 3421-pattern by
Lemma 3.13. Otherwise, w contains a 4321-pattern. However, every 321-pattern in w

has 〈3〉 = x and 〈1〉 = y. Therefore jk jk+1 jk+2 is the only long braid move in j , so
w ∈ Un .

Now let w be an element of Un . If w has two 321-patterns that do not have the same
maximal element and the same minimal element, then they intersect at most once or
they create a 4321-, 4312-, or 3421-pattern. These three patterns are vexillary. Thus by
Theorem 3.8 and the examples above, containing one of these patterns would imply
that some element of R(w) has more than one long braid move. If the two 321-patterns
intersect at most once, their union may be a non-vexillary pattern, so Theorem 3.8
does not necessarily apply. However, a case analysis shows that it is possible to shorten
w by adjacent transpositions and make one 321-pattern increasing (via a long braid
move) without destroying the other 321-pattern. Thus an element of R(w) would have
more than one long braid move, contradicting w ∈ Un . �

Definition 4.7. Let Un( j) consist of permutations with some 321-pattern, where every
long braid move that occurs must be j( j + 1) j or ( j + 1) j( j + 1).

Corollary 4.8. Un( j) = {w ∈ Sn : w has a unique 321-pattern and 〈2〉 = j + 1}. If
w has a unique 321-pattern, then w(〈2〉) = 〈2〉.

Proof: A unique 321-pattern implies that {1, . . . , 〈2〉 − 1}\〈1〉 all appear to the left
of 〈2〉 in w(1) · · · w(n), and {〈2〉 + 1, . . . , n}\〈3〉 all appear to the right of 〈2〉, so the
second statement follows.

Consider the long braid moves that may appear for elements of Un ⊃ Un( j). Let
w ∈ Un have k distinct 321-patterns. By Theorem 4.6, these form a pattern p = (k +
2)23 · · · k(k + 1)1 ∈ Sk+2 in w. The permutation p is vexillary, so there exists M ∈ N
and a reduced decomposition j1i M j2 ∈ R(w) for each i ∈ R(p). There are elements
in R(p) with long braid moves i(i + 1)i for each i ∈ [1, k]. For example, 12 · · · k(k +
1)k · · · 21 ∈ R(p). Therefore, if w ∈ Un( j), then k = 1, so w has a unique 321-pattern.

Suppose that w has a unique 321-pattern. Because w(〈2〉) = 〈2〉, the only possi-
ble long braid moves in reduced decompositions of w are (〈2〉 − 1)〈2〉(〈2〉 − 1) or
〈2〉(〈2〉 − 1)〈2〉. �

Corollary 4.9. If w ∈ Un and w has k distinct 321-patterns, then |C(w)| = k + 1 and
the graph G(w) is a path of k + 1 vertices connected by k edges.

Proof: Because w contains the pattern p = (k + 2)23 . . . k(k + 1)1 ∈ Sk+2, there is
a subgraph of G(w) that is a path of k + 1 vertices connected by k edges. Since p
accounts for all of the 321-patterns in w, this is all of G(w). �
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Corollary 4.10. If w ∈ Un( j), then |C(w)| = 2 and the graph G(w) is a pair of
vertices connected by an edge.

5. Elnitsky’s polygon

In his doctoral thesis and in [4], Elnitsky developed a bijection between commutation
classes of reduced decompositions of w ∈ Sn and rhombic tilings of a particular 2n-
gon X (w). This bijection leads to a number of interesting questions about tilings of
X (w) and their relations to the permutation w itself. A number of these ideas are
studied in this and the following section.

Definition 5.1. For w ∈ Sn , let X (w) be the 2n-gon with all sides of unit length such
that

(1) Sides of X (w) are labeled 1, . . . , n, w(n), . . . , w(1) in order;
(2) The portion labeled 1, . . . , n is convex; and
(3) Sides with the same label are parallel.

Orient the polygon so that the edge labeled 1 lies to the left of the top vertex and the
edge labeled w(1) lies to its right. This is Elnitsky’s polygon.

Example 5.2. For w0 ∈ Sn , the polygon X (w0) is a centrally symmetric 2n-gon.

Definition 5.3. The hexagon X (321) can be tiled by rhombi with sides of unit length
in exactly two ways. Each of these tilings is the flip of the other.

Definition 5.4. Let T (w) be the set of tilings of X (w) by rhombi with sides of unit
length. Define a graph G ′(w) with vertex set T (w), and connect two tilings by an edge
if they differ by a flip of the tiling of a single sub-hexagon.

Unless otherwise indicated, the term tiling refers to an element of T (w).

Theorem 5.5 (Elnitsky). The graphs G(w) and G ′(w) are isomorphic.

Henceforth, both graphs will be denoted G(w).
Before discussing new results related to this polygon, it is important to understand

Elnitsky’s bijection, outlined in the following algorithm. A more thorough treatment
appears in [4].

Algorithm ELN
INPUT: T ∈ T (w).
OUTPUT: An element of CT ∈ C(w).

Step 0. Set the polygon P[0] := X (w), the string j[0] := ∅, and i := 0.
Step 1. If P[i] has no area, then OUTPUT j[i].
Step 2. There is at least one tile ti that shares two edges with the right side of P[i].
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Fig. 1 The polygon X (4132)

Fig. 2 A tiling in T (53241)

Step 3. If ti includes the j th and ( j + 1)st edges from the top along the right side of
P[i], set j[i+1] := j j[i].

Step 4. Let P[i+1] be P[i] with the tile ti removed. Set i := i + 1 and GOTO Step 1.

ELN yields the entire commutation class because of the choice of tile in Step 2.

Example 5.6. The tiling in Fig. 2 corresponds to the equivalence class consisting solely
of the reduced decomposition 12343212 ∈ R(53241).

Corollary 5.7. If p is vexillary and w contains a p-pattern, then G(p) is a subgraph
of G(w).

Proof: This follows from Theorems 3.8 and 5.5. �

Elnitsky’s correspondence, described in ELN, combined with Theorem 4.6 and
Corollary 4.8, indicates that any tiling of X (w) for w ∈ Un has at most one sub-hexagon
(every tiling has exactly one sub-hexagon if w is not 321-avoiding). Moreover, the
sub-hexagon has the same vertical position for all elements of Un( j).

Under certain circumstances, the polygon X (w) for w ∈ Sn can be rotated or
reflected to give a polygon X (w′) for another w′ ∈ Sn .

Corollary 5.8. Let w = w(1) · · · w(n) and wR = w(n) · · · w(1). Then |C(w)| =
|C(wR)| and G(w) � G(wR).

Corollary 5.9. Let w = w(1) · · · w(n). If w(1) = n, w(2) = n − 1, . . . , w(i) = n +
1 − i , then |C(w)| = |C(w(i))| and G(w) � G(w(i)) where

w(i) = (w(i + 1) + i)(w(i + 2) + i) · · · (w(n) + i)i(i − 1) · · · 21
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and all entries are modulo n. Likewise, if w(n) = 1, w(n − 1) = 2, . . . , w(n − j +
1) = j , then |C(w)| = |C(w( j))| and G(w) � G(w( j)) where

w( j) = n(n − 1) · · · (n − j + 1)(w(1) − j)(w(2) − j) · · · (w(n − j) − j)

and all entries are modulo n.

Elnitsky’s result interprets the commutation classes of R(w) as rhombic tilings of
X (w), with long braid moves represented by flipping sub-hexagons. The following
theorem utilizes this interpretation, and demonstrates that the number of commutation
classes of a permutation is monotonically increasing with respect to pattern contain-
ment, thus generalizing one aspect of Corollary 5.7. Note that p is not required to be
vexillary in Theorem 5.10, unlike in Theorem 3.8.

Theorem 5.10. If w contains the pattern p, then |C(w)| ≥ |C(p)|.

Proof: Consider a tiling T ∈ T (p). This represents a commutation class of R(p). For
an ordering of the tiles in T as defined by ELN, label the tile t0 by �(p), the tile t1 by
�(p) − 1, and so on. If the tile with label r corresponds to the adjacent transposition
sir , then i1 · · · i�(p) ∈ R(p).

Algorithm MONO
INPUT: w containing the pattern p and T ∈ T (p) with tiles labeled as described.
OUTPUT: T ′ ∈ T (w).

Step 0. Set w[0] := w, p[0] := p, T[0] := T , T ′
[0] := ∅, and i := 0.

Step 1. If p[i] is the identity permutation, then define T ′
[i+1] to be the tiles of T ′

[i]
together with any tiling of X (w[i]). OUTPUT T ′

[i+1].
Step 2. Let j[i] be such that the tile labeled �(p) − i includes edges p[i]( j[i]) and

p[i]( j[i] + 1). Note that p[i]( j[i]) > p[i]( j[i] + 1).
Step 3. Define r < s so that w[i](r ) = 〈p[i]( j[i])〉 and w[i](s) = 〈p[i]( j[i] + 1)〉. Note

that w[i](t) is a non-pattern entry for t ∈ (r, s).
Step 4. Let w[i+1] be the permutation defined by

w[i+1](t) =
{

w[i](t) : t < r or t > s
w̃[i](t) : r ≤ t ≤ s

where (w̃[i](r ), . . . , w̃[i](s)) is {w[i](r ), . . . , w[i](s)} in increasing order.
Step 5. The right boundaries of X (w[i+1]) and X (w[i]) differ only in the r th, . . . , s th

edges, and the left side of this difference (part of the boundary of X (w[i+1]))
is convex. Therefore, this difference has a rhombic tiling t[i]. Define T ′

[i+1] to
be the tiles in T ′

[i] together with the tiles in t[i].
Step 6. Set i := i + 1 and GOTO Step 1.

The algorithm MONO takes a tiling T ∈ T (p) and outputs one of possibly several
tilings T ′ ∈ T (w) due to the choice in Steps 1 and 5. A tiling T ′ ∈ T (w) so obtained
can only come from this T , although possibly with more than one labeling of the tiles.
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Fig. 3 The output of MONO, given each of the two elements of T (31542). The dotted lines indicate the
choice of tiling in Steps 1 and 5 of the algorithm

However, this labeling of the tiles merely reflects the choice of a representative from
the commutation class, so indeed |T (w)| ≥ |T (p)|, and |C(w)| ≥ |C(p)|. �

Example 5.11. Let p = 31542 and w = 4617352. The pattern p occurs in w as 〈p〉 =
41752. Figure 3 depicts the output of MONO, given the two tilings of X (p).

6. The poset of tilings

Elnitsky’s bijection considers the rhombic tilings of the polygon X (w). Rhombi are a
special case of a more general class of objects known as zonotopes.

Definition 6.1. A polytope is a d-zonotope if it is the projection of a regular n-cube
onto a d-dimensional subspace.

Centrally symmetric convex polygons are exactly the 2-zonotopes. These neces-
sarily have an even number of sides.

Definition 6.2. A zonotopal tiling of a polygon is a tiling by centrally symmetric
convex polygons.

Definition 6.3. Let Z (w) be the set of zonotopal tilings of Elnitsky’s polygon. Rhombi
are centrally symmetric, so T (w) ⊆ Z (w).
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Theorem 6.4. There is a tiling in Z (w) containing a 2k-gon with sides parallel to the
sides labeled i1 < · · · < ik if and only if ik · · · i1 is an occurrence of k · · · 1 in w.

Proof: Since the tiles are convex, a 2k-gon in the tiling with sides as described
has right side labeled ik, . . . , i1 from top to bottom and left side labeled i1, . . . , ik

from top to bottom. Therefore Elnitsky’s bijection shows that this tile (or rather, any
decomposition of it into rhombi) transforms the sequence (i1, . . . , ik) into (ik, . . . , i1).
Reduced decompositions have minimal length, so no inversions can be “undone” by
subsequent adjacent transpositions. Therefore ik · · · i1 must be an occurrence of k · · · 1
in w.

Conversely, suppose that ik · · · i1 is an occurrence of the vexillary pattern k · · · 1 in
w. For a decreasing pattern, the algorithm VEX can be modified slightly to produce w̃ as
in Eq. (3), where the consecutive occurrence 〈k · · · 1〉 is ik · · · i1. Let i ∈ R(k · · · 1) and
(Iq · · · I1)hi M (Jr · · · J1) ∈ R(w) for h ∈ R(w̃′). Removing the rhombi that correspond
to sJr · · · sJ1

yields the polygon X (w̃), and the rhombi that correspond to i M form a
sub-2k-gon with sides parallel to the sides labeled {i1, . . . , ik} in X (w). �

Less specifically, Theorem 6.4 states that a tiling in Z (w) can contain a 2k-gon if
and only if w has a decreasing subsequence of length k.

Using a group theoretic argument, Pasechnik and Shapiro showed in [12] that no
element of Z (n · · · 21) consists entirely of hexagons for n > 3. Their result states that at
least one rhombus must be present in a hexagonal/rhombic tiling. Kelly and Rottenberg
had previously obtained a better bound in terms of arrangements of pseudolines in [7].

Working with reduced decompositions and Elnitsky’s polygons yields a different
proof that no element of Z (n · · · 21) can consist of entirely hexagonal tiles for n > 3,
and generalizes the result to other types of tiles. Theorem 6.5 is, in a sense, a counterpart
to Theorem 6.4.

Theorem 6.5. Let w0 be the longest element in Sn. There is a tiling Z ∈ Z (w0)
consisting entirely of 2k-gons if and only if one of the following is true:

(1) k = 2; or
(2) k = n.

Proof: If k = 2, the result holds for all n: every X (w0) can be tiled by rhombi with
unit side length. For the remainder of the proof, assume that k ≥ 3.

Suppose that there exists Z ∈ Z (w0) consisting entirely of 2k-gons. Then there
exists j M1 · · · j Mr ∈ R(w0), for some j ∈ R(k · · · 21). Because k · · · 21 is the longest
element in Sk , the factor j Mi can have any of {1 + Mi , . . . , k − 1 + Mi } at either end.
Thus, if Mi = M j = M for i < j , then M ± (k − 1) ∈ {Mi+1, . . . , M j−1}. Because
Mi ∈ [0, n − k], there is at most one shift by 0 and at most one shift by n − k. In fact,
there is exactly one of each of these shifts, since all of X (w0) must be tiled and the
shifts correspond to the vertical placement of the 2k-gons.

Consider the tile corresponding to j0. This 2k-gon is as high vertically as possible
and it is the only tile placed so high. Thus it shares the top vertex and its incident sides
with X (w0). That is, two of the tile’s sides are labeled 1 and n. Similarly, the tile for
jn−k also has two sides labeled 1 and n.
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Fig. 4 A tiling in Z (53241)

By Theorem 6.4, each of these tiles corresponds to a k · · · 21-pattern with 〈k〉 = n
and 〈1〉 = 1. However, once the value 1 is to the right of the value n, it remains to the
right as adjacent positions are transposed to lengthen the permutation. Therefore the
two patterns, the tiles, and their shifts must be equal: 0 = n − k.

Indeed, there is always a tiling Z ∈ Z (w0) consisting of a single 2n-gon. �

There is a poset P(w) that arises naturally when studying Z (w).

Definition 6.6. For a permutation w, let the poset P(w) have elements equal to the
zonotopal tilings Z (w), partially ordered by reverse edge inclusion.

Example 6.7. In the poset P(53241), the tiling in Fig. 2 is less than the tiling in Fig. 4.

Remark 6.8. For the longest element w0 ∈ Sn , the poset P(w0) has a maximal element
equal to the tiling in Z (w0) that consists of a single 2n-gon.

Remark 6.9. The minimal elements of P(w) are the rhombic tilings, which are the
vertices of the graph G(w). Moreover, edges in the graph G(w) correspond to flipping
a single sub-hexagon in the tiling. Therefore these edges correspond to the elements
of P(w) that cover the minimal elements.

The relationships in Remark 6.9 are immediately apparent. Another relationship
is not as obvious. This follows from a result of Boris Shapiro, Michael Shapiro, and
Alek Vainshtein in [14].

Lemma 6.10 (Shapiro-Shapiro-Vainshtein). The set of all 4- and 8-cycles in G(w)
form a system of generators for the first homology group H1(G(w), Z/2Z).

Additionally, Anders Björner noted that gluing 2-cells into those 4- and 8-cycles
yields a simply connected complex ([2]).

In [14], Lemma 6.10 is stated only for w = w0. However, the proof easily general-
izes to all w ∈ Sn . A straightforward argument demonstrates that a 4-cycle in G(w)
corresponds to Z ∈ Z (w) with rhombi and two hexagons, and an 8-cycle corresponds
to Z ∈ Z (w) with rhombi and an octagon. These are exactly the elements of P(w)
which cover those that correspond to edges of G(w).
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Corollary 6.11. The elements of P(w) that cover the elements (corresponding to
edges of G(w)) covering the minimal elements (corresponding to vertices of G(w))
correspond to a system of generators for the first homology group H1(G(w), Z/2Z).

Little is known about the structure of the graph G(w) for arbitrary w. However, in
some cases a description can be given via Theorem 6.4 and Lemma 6.10.

Theorem 6.12. The following statements are equivalent for a permutation w:

(1) G(w) is a tree;
(2) G(w) is a path (that is, no vertex has more than two incident edges);
(3) The maximal elements of P(w) cover the minimal elements;
(4) w is 4321-avoiding and any two 321-patterns intersect at least twice.

Proof: (1) ⇔ (3) by Corollary 6.11. From Theorem 6.4 and the discussion preceding
Corollary 6.11, an 8-cycle in the graph is equivalent to having a 4321-pattern. Similarly,
a 4-cycle is equivalent to two sub-hexagons whose intersection has zero area, so some
reduced decomposition has two disjoint long braid moves. This implies that two 321-
patterns intersect in at most one position. Therefore (1) ⇔ (4).

Finally, suppose that G(w) is a tree and a vertex has three incident edges. The
corresponding tiling has at least three sub-hexagons. However, it is impossible for
every pair of these to overlap. This contradicts (1) ⇔ (3) ⇔ (4), so (1) ⇔ (2). �

If Cn is the set of all w ∈ Sn for which G(w) is a path, then Un( j) ⊆ Un ⊆ Cn by
Corollaries 4.9 and 4.10.

Following convention, the unique maximal element in a poset, if it exists, is denoted
1̂. Remark 6.8 noted that the poset P(w0) has a 1̂. In fact, there are other w for which
P(w) has a 1̂, as described below.

Theorem 6.13. The poset P(w) has a 1̂ if and only if w is 4231-, 4312-, and 3421-
avoiding.

Proof: The definition of the poset P(w) and Theorem 6.4 indicate that P(w) has a
1̂ if and only if the union of any two decreasing subsequences that intersect at least
twice is itself a decreasing subsequence.

Suppose there are decreasing subsequences in w of lengths k1, k2 ≥ 3 that intersect
i ≥ 2 times, for i < k1, k2. Let k = i + 1, and choose a k + 1 element subsequence of
〈k1 · · · 1〉 ∪ 〈k2 · · · 1〉 that includes 〈k1 · · · 1〉 ∩ 〈k2 · · · 1〉 and one more element from
each descending subsequence. Let p ∈ Sk+1 be the resulting pattern. No 1̂ in P(w) is
equivalent to there being subsequences so that

p = (k + 1)k · · · ( j + 2) j( j + 1)( j − 1) · · · 21

for some j ∈ [1, k].
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There are two ways to place a 2k-gon in a zonotopal tiling of X (p), but these
overlapping 2k-gons do not both lie in any larger centrally symmetric polygon. The
permutation p is always vexillary, so Theorem 3.8 implies that P(w) will not have a
1̂ if w contains such a p.

Therefore, considering the permutation p for each possible j , the poset P(w) has
a 1̂ if and only if w is 4231-, 4312-, and 3421-avoiding. �

The permutations for which P(w) has a 1̂ have recently been enumerated by Toufik
Mansour in [10].

7. The freely braided case

Although the graph G(w) and poset P(w) are not known in general, there is a class
of permutations for which these objects can be completely described. This paper
concludes with a study of this special case.

In [5] and [6], Green and Losonczy introduce and study “freely braided” elements
in simply laced Coxeter groups. In the case of type A, these are as follows.

Definition 7.1. A permutation w is freely braided if every pair of distinct 321-patterns
in w intersects at most once.

Equivalently, w is freely braided if and only if w is 4321-, 4231-, 4312-, and 3421-
avoiding. The poset of a freely braided permutation has a unique maximal element by
Theorem 6.13.

Example 7.2. The permutation 35214 is not freely braided because 321 and 521 are
both occurrences of the pattern 321, and they intersect twice. The permutation 52143
is freely braided.

Mansour enumerates freely braided permutations in [11].
In [5], Green and Losonczy show that a freely braided w with k distinct 321-patterns

has

|C(w)| = 2k . (6)

Moreover, in [6] they show the following fact for any simply laced Coxeter group,
here stated only for type A.

Proposition 7.3 (Green-Losonczy). If a permutation w is freely braided with k dis-
tinct 321-patterns, then there exists i ∈ R(w) with k disjoint long braid moves.

Remark 7.4. This means that there is a tiling of X (w) with k sub-hexagons, none
of which overlap. Furthermore, Eq. (6) implies that flipping any sequence of these
sub-hexagons does not yield any new sub-hexagons. Hence every tiling of X (w) has
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Fig. 5 G(243196587)

Fig. 6 P(243196587)

exactly k sub-hexagons, none of which overlap, and 1̂ in P(w) corresponds to the
zonotopal tiling with rhombi and k hexagons.

From Remark 7.4, the structures of the graph G(w) and the poset P(w) are clear
for a freely braided permutation w ∈ Sn .

Theorem 7.5. Let w be freely braided with k distinct 321-patterns. The graph G(w)
is the graph of the k-cube, and the poset P(w) is isomorphic to the face lattice of the
k-cube without its minimal element.

Example 7.6. The permutation 243196587 is freely braided. Its three 321-patterns are
431, 965, and 987. Figures 5 and 6 depict its graph and poset.
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