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Abstract Let S be a proper partial geometry pg(s, t, 2), and let G be an abelian
group of automorphisms of S acting regularly on the points of S. Then either t ≡ 2
(mod s + 1) or S is a pg(5, 5, 2) isomorphic to the partial geometry of van Lint and
Schrijver (Combinatorica 1 (1981), 63–73). This result is a new step towards the
classification of partial geometries with an abelian Singer group and further provides
an interesting characterization of the geometry of van Lint and Schrijver.
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1. Introduction and motivation

One of the most important and longstanding conjectures in the theory of finite projec-
tive planes is certainly the following:

Any finite projective plane admitting an abelian group acting regularly
on its points must be Desarguesian.

Although with the techniques of today it seems impossible to prove this conjecture,
several weaker versions have been proved and an extensive literature on the subject
exists (we refer to [9] for a recent survey containing extensive bibliographic informa-
tion).

More generally it is now natural to wonder what happens in the case of
other geometries admitting a(n) (abelian) Singer group. This motivated Ghinelli
[8] to study generalized quadrangles (GQs) admitting a (not necessarily abelian)
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Singer group. At this point we want to mention that looking at GQs is natural
as both projective planes and GQs are members of the larger class of generalized
polygons.

Recently a question of J. C. Fisher at the 2004 conference “Incidence Geometry”
(May, 2004, La Roche, Belgium) inspired the author and K. Thas to study this subject
in the case of GQs. In [7] they obtained that every finite GQ which admits an abelian
Singer group necessarily arises as the generalized linear representation of a generalized
hyperoval. Further it was noted in that paper that no finite generalized n-gon with n > 4
can admit an abelian Singer group.

In the present paper we will study partial geometries pg(s, t, 2) admitting an abelian
Singer group. This is a natural generalization since partial geometries generalize
projective planes as well as GQs. Further this study is also motivated by the exis-
tence of an interesting example: the so-called van Lint-Schrijver partial geometry
[12].

Before proceeding we will now provide some definitions and notation.

A partial geometry pg(s, t, α) is a finite partial linear spaceS of order (s, t), s, t ≥ 2,
such that� for every antiflag (p, L) of S there are exactly α > 0 lines through p intersecting

L .

Partial geometries were introduced in 1963 by Bose [3]. It is easily seen that these ge-
ometries have a strongly regular point graph srg(v = (s + 1)(st + α)/α, s(t + 1), s −
1 + t(α − 1), α(t + 1)). Partial geometries for which α = 1 are known as generalized
quadrangles (GQs). A partial geometry will be called proper if 1 < α < min(s, t). If
two distinct points x and y of S are collinear this will be denoted by x ∼ y, while
the line determined by these points will be denoted by 〈x, y〉. The maximum size of a
clique in the point graph of S equals s + 1, and if C is a clique of this size, then every
point p not belonging to C is adjacent to exactly α elements of C (this is Lemma 2 of
[10]). Finally we mention two constructions of partial geometries.

Let R = {PG(0)(m, q), PG(1)(m, q), . . . , PG(t)(m, q)}, t ≥ 1, be a set of mutually
disjoint PG(m, q) in PG(n, q). We say that R is a PG-regulus if and only if the
following condition is satisfied.� If PG(m + 1, q) contains PG(i)(m, q), i = 0, 1, . . . , t , then it has a point in common

with α > 0 elements of R \ {PG(i)(m, q)}.
PG-reguli are a special case of the more general class of SPG-reguli which were intro-
duced in 1983 by J. A. Thas [16] (these SPG-reguli give rise to so-called semipartial
geometries). Now suppose that R is a PG-regulus in � := PG(n, q) and embed � as a
hyperplane in PG(n + 1, q). Define S to be the geometry with as point set the set of all
points of PG(n + 1, q) \ �, with as line set the set of all PG(m + 1, q) ⊂ PG(n + 1, q)
that are not contained in � and intersect � in an element of R, and for which the
incidence relation is the natural one. Then S is a partial geometry pg(qm+1 − 1, t, α)
(see Thas [16]).

To end this section we provide a construction of the above mentioned van Lint-
Schrijver partial geometry [12]. Let β be a primitive element of GF(81) and define
γ := β16. Define S to be the geometry with point set the set of elements of GF(81),
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with line set the set of 6-tuples (b, 1 + b, γ + b, γ 2 + b, γ 3 + b, γ 4 + b), b ∈ GF(81),
and with as incidence relation symmetrized containment. Then van Lint and Schrijver
have shown that S is a partial geometry pg(5, 5, 2). It is worthwhile to notice that the
point graph of this partial geometry is a cyclotomic graph.

Finally we note that throughout this paper N will denote the set of natural numbers
(including 0) and that N0 will denote the set of natural numbers without 0.

2. A Benson-type theorem for partial geometries

In this section we will provide an analogue for partial geometries of the theorem of
Benson [2] on automorphisms of generalized quadrangles. The proof of this theorem
is analogous to the proof of Benson’s theorem as given in [14] (Section 1.9, page 23),
so we will only give a sketch of the proof here.

Theorem 2.1. Let S be a partial geometry pg(s, t, α), and let θ be any automorphism
of S. Denote by f the number of fixed points of S under θ and by g the number of
points x of S for which x 
= xθ ∼ x. Then

(1 + t) f + g ≡ (1 + s)(1 + t) (mod s + t − α + 1).

Proof: LetP = {x1, x2, . . . , xv} be the point set ofS. If we denote by A the adjacency
matrix of S, then A2 + (t − s + α + 1)A + (t + 1)(α − s)I = α(t + 1)J , with I the
identity matrix and J the matrix with all entries equal to 1. Consequently A has
eigenvalues s(t + 1), −1 − t and s − α, with respective multiplicities m0 = 1, m1

and m2, where m1 and m2 can easily be computed. Next, if we denote by D the
incidence matrix of S, then M := DDT = A + (t + 1)I , and so M has eigenvalues
(1 + s)(1 + t), 0 and t + 1 + s − α, with respective multiplicities m0 = 1, m1 and m2.
Now let Q be the matrix with the i j-th entry 1 if xθ

i = x j and 0 otherwise. Then Q is
a permutation matrix and one can show that QM = M Q (see [14]). Consequently, if
θ has order n, then (QM)n = Qn Mn = Mn . One deduces that the eigenvalues of QM
are the eigenvalues of M multiplied with the appropriate roots of unity. From QM J =
M J = (s + 1)(t + 1)J it follows that (s + 1)(t + 1) will be an eigenvalue of QM . By
m0 = 1, this eigenvalue will have multiplicity 1. Further 0 will be an eigenvalue of QM
with multiplicity m1. Let d be a divisor of n. Then the multiplicity of the eigenvalue
ξd (s + t − α + 1) of QM , will only depend on d and not on the primitive dth rooth of
unity ξd . Denote this multiplicity by ad . Further, as the sum of all dth primitive roots
of unity is an integer Ud [11] we obtain that tr(QM) = ∑

d| n ad (s + t + α − 1)Ud +
(s + 1)(t + 1). On the other hand it is clear that tr(QM) = (t + 1) f + g. The theorem
follows. �

We will apply this theorem to the case of partial geometries admitting a regular
abelian group of automorphisms, but first we shall obtain an easy lemma which will
be used frequently in the rest of this paper without further notice.
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Lemma 2.2. Let S be a partial geometry admitting a regular abelian group of auto-
morphisms G. Suppose g ∈ G. If xg ∼ x for some point x of S, then yg ∼ y for every
y of S.

Proof: By the regularity of G there exists an h ∈ G such that xh = y. As h is an
automorphism of S and as G is abelian, we obtain xh ∼ xgh = xhg = yg , that is,
y ∼ yg . �

Corollary 2.3. If S is a partial geometry pg(s, t, α), α 
= s + 1, and S admits a
regular abelian group G of automorphisms, then

(s + 1)
st + α

α
≡ (1 + s)(1 + t) ≡ 0 (mod s + t − α + 1).

Proof: First notice that if an element of G has a fixed point, then it is necessarily
the identity. To obtain the first equivalence, choose any g ∈ G \ {id} for which there
exists a point x such that x ∼ xg , and apply Theorem 2.1. In order to obtain the
second equivalence, choose a g ∈ G for which there does not exist an x such that
x ∼ xg (notice that g exists as α 
= s + 1). �

3. Subdivision into three classes

The following basic observation will yield a natural subdivision into three classes of
the pairs (S, G), with S a partial geometry and G an abelian automorphism group of
S acting regularly on the points of S.

Lemma 3.1. Let S be a partial geometry pg(s, t, α) and G an abelian Singer group
of S. Let L be any line of S. Then either |StabG(L)| = 1, or |StabG(L)| = s + 1.

Proof: Let x be any point on L and suppose that g ∈ G \ {id} stabilizes L . Let xh ,
h ∈ G, be any point of L \ {x, xg}. Clearly xhg is a point of L , distinct from xh . It
follows that Lh−1 = 〈xh, xhg〉h−1 = 〈x, xg〉 = L . Consequently h stabilizes L and
|StabG(L)| = s + 1.

�

Based on the above observation we can introduce the following three classes of
partial geometries S with an abelian Singer group G:� the pair (S, G) is of spread type if |StabG(L)| = s + 1 for each line L of S;� the pair (S, G) is of rigid type if |StabG(L)| = 1 for each line L of S;� the pair (S, G) is of mixed type otherwise.

Remark 3.2. Notice that such a division into classes of spread, rigid and mixed type
can be introduced for any partial linear space with an abelian Singer group. (Lemma
3.1 only uses the fact that S is a partial linear space).
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4. Pairs (S, G) of spread-type

In [7] it is shown that for every partial geometry S with α = 1, that is every finite
generalized quadrangle, which admits an abelian Singer group G, the pair (S, G) is of
spread-type, yielding that S is the generalized linear representation of a generalized
hyperoval.

Next suppose that α ≥ 2 and that (S, G) is of spread type. Choose any point x in
S and denote the t + 1 lines through x by L0, L1, . . . , Lt . It readily follows that LG

i
determines a spread (of symmetry) of S, explaining the introduced terminology. Let
Si be the stabilizer in G of the line Li , i = 0, 1, . . . , t . Then it is also easily seen that
the pair (G, J = {S0, S1, . . . , St }) is an SPG-family in the sense of [6]. From Theorem
2.5 of that same paper [6] it then follows that S is isomorphic to a partial geometry
constructed from a PG-regulus. We will now have a closer look at the parameters in
the case α = 2.

Theorem 4.1. Let S be a partial geometry pg(s, t, 2) and let G be an abelian regular
automorphism group of S. If the pair (S, G) is of spread type, then S is constructed
from a PG-regulus and hence s = qm+1 − 1 for some prime power q and some positive
integer m. Moreover, either t = 2, in which caseS is a translation net, or t = 2(s + 2).
In the latter case, q is necessarily a power of 3.

Proof: By Theorem 2.5 of [6] S is constructed from an (S)PG-regulus R, say
an (S)PG-regulus consisting of m-dimensional spaces in PG(n, q), implying
s = qm+1 − 1 for a certain prime power q . Consider two distinct intersecting lines.
The stabilizers in G of these lines have size s + 1 and clearly generate a subgroup
of G of size (s + 1)2. Consequently v = (s + 1)(st + 2)/2 is divisible by (s + 1)2.
It follows that (s + 1) divides (st + 2), that is, (s + 1) divides (s + 1)t − t + 2.
Consequently t = z(s + 1) + 2, z ∈ N. If z = 0, then S is a translation net. Next
suppose that z ≥ 1. Let L0, . . . , Lt denote the t + 1 lines through a fixed point
x . Denote the stabilizers in G of Li by Si , i = 0, 1, . . . , t . The lines L0 and L1

determine in a natural way an (s + 1) × (s + 1)-grid L0L1, which corresponds to
the subgroup S0S1 of G. As S is a pg(s, t, 2), at most s of the lines L2, . . . , Lt

can intersect this grid in a point distinct from x . Consequently there exists a
line, say without loss of generality L2, intersecting L0L1 only in x . It follows
that S0S1S2 is a subgroup of order (s + 1)3 of G. Hence (s + 1)2 should divide
st + 2 = (s + 1)t − t + 2. As we already know that s + 1 divides t − 2, we easily see
that s + 1 must divide (t − 2)/(s + 1) − t . Since t − 2 is divisible by s + 1 we obtain
that s + 1 divides (t − 2)/(s + 1) − 2. If (t − 2)/(s + 1) − 2 = 0, then t = 2(s + 2).
Now assume that s + 1 ≤ (t − 2)/(s + 1) − 2. This implies t ≥ s2 + 4s + 5. As
on the other hand for partial geometries (s + 1 − 2α)t ≤ (s + 1 − α)2(s − 1)
(see Chapter 13 of [14]), we see that (s − 3)t ≤ (s − 1)3. Consequently s = 3
(the case s = 2 yields a dual net, which we do not consider). Substitution
in the identity (s + 1)(t + 1) ≡ 0 (mod s + t − 1) from Corollary 2.3 yields
4(t + 1) ≡ 0 (mod t + 2), and so t + 2 must divide 4. Hence t ∈ {0, 2}, a con-
tradiction. Finally to obtain that q = 3h , it is sufficient to substitute t = 2(s + 2)
in (s + 1)(t + 1) ≡ 0 (mod s + t − 1) from Corollary 2.3. This proves the
theorem. �
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Consequently, if S is a proper partial geometry with α = 2 admitting an abelian
Singer group G such that the pair (S, G) is of spread type, then S is a pg(3h(m+1) −
1, 2(3h(m+1) + 1), 2) constructed from a PG-regulus consisting of m-dimensional sub-
spaces of PG(3m + 2, 3h), for some positive integers m and h (the dimension 3m + 2
of the projective space follows from the definition of a PG-regulus given the parameters
s and t).

Remark 4.2. It is important to notice that there exists a very interesting example of a
PG-regulus R in PG(5, 3) yielding a pg(8, 20, 2). This PG-regulus is due to Mathon
[5] and is the only known PG-regulus yielding a pg(s, 2(s + 2), 2). Further notice that
such a partial geometry has the same parameters as the partial geometry T ∗

2 (K), which
would arise from a maximal 3-arc K in PG(2, q); it is however well known that such
a maximal arc does not exist, see Cossu [4], Thas [15], Ball, Blokhuis and Mazzocca
[1].

5. Pairs (S, G) of mixed-type

Let S be a proper partial geometry pg(s, t, 2) and G an abelian Singer group of S.
Suppose that the pair (S, G) is of mixed type. Then there are x(s + 1), x ∈ N0, lines L
through any given point such that the stabilizer of L in G is trivial (as the orbit of any
such line contains exactly s + 1 lines through the given point), and p lines through
any given point with a stabilizer in G of order s + 1. So t + 1 = x(s + 1) + p for
certain x, p ∈ N0.

Lemma 5.1. Suppose that S is a proper partial geometry pg(s, t, 2) and that G is an
abelian Singer group of S such that the pair (S, G) is of mixed type. Then, with the
above notation, p 
= 1.

Proof: Suppose by way of contradiction that p = 1. From Corollary 2.3 we obtain
that

x(s + 1)2 + s + 1 ≡ 0 (mod (x + 1)(s + 1) − 2).

Hence, after multiplying with (x + 1)2 we obtain

x [(x + 1)(s + 1)]2 + (x + 1) [(x + 1)(s + 1)] ≡ 0 (mod (x + 1)(s + 1) − 2),

that is,

6x + 2 ≡ 0 (mod (x + 1)(s + 1) − 2).

Consequently 5x + 3 ≥ xs + s, and so s < 5. For s = 3 we find that 6x + 2 must
be divisible by 4x + 2, yielding x = 0, a contradiction. If s = 4, then 6x + 2 has
to be divisible by 5x + 3, from which follows that x = 1 and consequently t = 5.
Substitution in the original identity (s + 1)(t + 1) ≡ 0 (mod s + t − 1) yields 30 ≡
0 (mod 8), the final contradiction. �
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Lemma 5.2. If S and G are as in the previous lemma, then p = y(s + 1) + 3 for
certain y ∈ {0, 1}. Further, if y = 1, then also x = 1.

Proof: Consider two distinct intersecting lines with stabilizers in G of size s + 1. As in
Theorem 4.1 we obtain that (s + 1)2 divides v = (s + 1)(st + 2)/2 and consequently
that t = z(s + 1) + 2, that is p = y(s + 1) + 3 for certain y ∈ N. Suppose that y ≥ 1.
Again as in Theorem 4.1 we deduce that (s + 1)3 must divide v, which yields that
t = 2(s + 2), that is x = y = 1. �

Remark 5.3. Although the author strongly tends to believe that no partial geometries
pg(s, t, 2) S with an abelian Singer group G exist such that (S, G) is of mixed type,
he has not yet been able to prove this conjecture to be correct. In view of the existence
of pg(s, 2(s + 2), 2), divisibility conditions will clearly not help excluding this case.

6. Pairs (S, G) of rigid type

In this section we will obtain that there is a unique partial geometry pg(s, t, 2) S such
that the pair (S, G) is of rigid type, namely the partial geometry pg(5, 5, 2) of van Lint
and Schrijver.

6.1. The parameters

From now on let S be a proper partial geometry pg(s, t, 2) admitting an abelian
Singer group such that the pair (S, G) is of rigid type. One immediately observes
that t + 1 = x(s + 1) for certain x ∈ N0 (same argument as in the previous section).
Further, Corollary 2.3 implies that (s + 1)(t + 1) ≡ 0 (mod s + t − 1), that is

x(s + 1)2 ≡ 0 (mod (x + 1)(s + 1) − 3).

Multiplying with (x + 1)2 yields

x [(x + 1)(s + 1)]2 ≡ 0 (mod (x + 1)(s + 1) − 3)

from which follows that

9x ≡ 0 (mod (x + 1)(s + 1) − 3).

Hence 9x ≥ (x + 1)(s + 1) − 3 from which we deduce that s < 8.

Theorem 6.1. If S is a proper partial geometry pg(s, t, 2) and G is an abelian Singer
group of S such that the pair (S, G) is of rigid type, then (s, t) = (5, 5).

Proof: We will one by one handle the cases s = 3, 4, . . . , 7.
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292 J Algebr Comb (2006) 24:285–297� If s = 3 we obtain that 9x must be divisible by 4x + 1 which yields that x = 2 and
hence t = 7. Substituting this in the original identity 2 + st ≡ 0 (mod s + t − 1)
gives us a contradiction.� In the case where s = 4 we obtain that 9x is divisible by 5x + 2. This implies x = 0,
a contradiction.� For s = 5 we obtain that 9x is divisible by 6x + 3, and so x = 1 and t = 5.� Finally, the cases s = 6 and s = 7 can easily be excluded analogously as in the
case s = 4.

�

6.2. G is elementary abelian

Let S and G be as in the previous subsection, that is, S is a pg(5, 5, 2) and G is
an abelian automorphism group of S acting regularly on the points of S. We will
show that G is elementary abelian. Although we know that s = t = 5, we will in this
subsection always write s, as we believe that this makes general arguments easier to
read.

Now choose any fixed point x in S. We will identify the point y of S with the
unique g ∈ G for which xg = y. Finally, D will denote the set of all points (elements
of G), with exclusion of id , that are collinear with id . We notice that this notation
comes from the theory of partial difference sets, as it is easily checked that D is a
partial difference set in G (see e.g. [13]).

Lemma 6.2. We have D2 ⊂ D.

Proof: Choose any g ∈ D, and consider the lines L = 〈id, g〉 and Lg . The line Lg

consists of all points f g with f ∈ L . For any such f with id 
= f 
= g the point f g
is collinear with f and g on L . If g2 were not collinear with id, then necessarily g2

would be collinear with some f ∈ L \ {id, g}. However this f is already collinear
with g and f g on Lg , implying that f would be collinear with more then 2 points on
Lg , a contradiction. We conclude that g2 ∈ D. (Notice that g2 /∈ L since otherwise
the stabilizer of L in G would not be trivial).

�

Lemma 6.3. Suppose L is a line through id. If we denote the points of L by
id, g1, g2, . . . , gs, then L2 := {id, g2

1, g2
2, . . . , g2

s } is a set of two by two collinear
points, no three on a line.

Proof: From the previous lemma we know that id ∼ g2
i , for all i ∈ {1, 2, . . . , s}.

We now show that g2
i ∼ g2

j , for i 
= j . Consider the lines Mi := 〈gi , g2
i 〉 and M j :=

〈g j , g2
j 〉. Then Mi ∩ M j = gi g j . Note that gi g j /∈ D since the unique points on L

collinear with gi g j are gi and g j . From the fact that gi ∼ g j it follows that the point
gl gi on Mi is collinear with the point gl g j on M j , for all l /∈ {i, j}. Now assume that
g2

i would not be collinear with g2
j . Then g2

i has to be collinear with either g j or gl g j

for some l /∈ {i, j}. If g2
i would be collinear with g j , then it would be collinear with

at least three points on L , a contradiction. Would g2
i be collinear with gl g j for some
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l /∈ {i, j}, then gl g j would be collinear with the distinct points gi g j , gl gi and g2
i on

Mi , again a contradiction. It follows that L2 is indeed a set of two by two collinear
points. Next, suppose there is a line containing at least three distinct points of L2. From
the fact that α = 2 it is immediate that in this case L2 is a line through id (distinct
from L), say, without loss of generality, Lg1

−1

. Hence g2g−1
1 = g2

j for certain j . This

implies that j = 2, as the point g2g−1
1 is collinear with id, g2 and g j on L . But then

g−1
1 = g2, a contradiction. The lemma follows. �

Although the following lemma can be avoided, it provides interesting information
on the structure of the geometry S with respect to the group G.

Lemma 6.4. Let the line L be as in the previous lemma. Suppose h ∈ G, with h /∈
D ∪ {id}. Then one, and only one, of the following cases occurs:� h ∈ 〈g2

i , g2
j 〉 for unique i and j , i 
= j ;� h ∈ 〈gi , g2

i 〉 for exactly two values of i .

Proof: Suppose h = 〈g2
i , g2

j 〉 ∩ 〈g2
l , g2

k 〉 or h = 〈g2
i , g2

j 〉 ∩ 〈gl , g2
l 〉, where i, j, k, l are

pairwise distinct. In each case g2
l would be collinear with three points on 〈g2

i , g2
j 〉, a

contradiction.
Any point h ∈ 〈gi , g2

i 〉 \ {gi , g2
i } can be written as h = g j gi for certain j 
= i .

Hence, such h also belongs to the line 〈g j , g2
j 〉. Now assume that there would be

a third index k, with i 
= k 
= j , such that h ∈ 〈gk, g2
k 〉. Then g2

k would be collinear
with the three distinct points gk gi , h and g2

i on 〈gi , g2
i 〉, a contradiction.

Denote by X1 the number of elements of G \ (D ∪ {id}) on lines of type 〈g2
i , g2

j 〉
and by X2 the number of elements of G \ (D ∪ {id}) on lines of type 〈gi , g2

i 〉. Easy
counting shows

X1 = s(s − 1)2/2

,
X2 = s(s − 1)/2

and hence

|D ∪ {id}| + X1 + X2 = (s + 1)(s2 + 2)/2 = v.

The lemma now easily follows. �

Lemma 6.5. Let the line L be as before. Then g3
i = id for all i .

Proof: First suppose that g3
i does not belong to D ∪ {id}. Since L2 is a clique of size

s + 1 (and so g3
i is collinear with exactly two points of L2) the previous lemma implies

that either g3
i ∈ 〈g2

i , g2
k 〉, or g3

i = 〈gi , g2
i 〉 ∩ 〈gk, g2

k 〉, k 
= i . In the first case we see that
g2

k ∈ 〈g2
i , g3

i 〉 and hence g2
k = g f g2

i for certain f ∈ {1, 2, . . . , s}. Hence g2
k is collinear

with id, gk and g f on L , which implies that f = k. But then gk = g2
i , a contradiction.
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In the second case it follows that g3
i = gi gk , again yielding the contradiction gk = g2

i .
We conclude that g3

i ∈ D ∪ {id}.
Now suppose that g3

i 
= id . From g2
i ∼ g3

i and g3
i ∈ D it follows that g3

i = g2
k for

certain k 
= i , or that g3
i = gi . In the first case the point g3

i = g2
k would be collinear

with three distinct points, id, gi and gk on L , a contradiction. The second case is
absurd as well, as it would imply g2

i = id . The lemma is proved. �

Corollary 6.6. For all g ∈ G we have g3 = id

Proof: This follows immediately as each g ∈ G can be written as g = f h, with
f, h ∈ D.

�
Corollary 6.7. The group G is elementary abelian.

Corollary 6.8. The mapping β : G → G : g �→ g2 is an automorphism of G.

Proof: It is clear that β is an endomorphism of G (G is abelian!). We need to show
that β is bijective. Assume by way of contradiction that g2 = h2 for certain g 
= h in
G. By the above we obtain id = g3 = h3 = g2h. This implies that g3 = g2h, that is
g = h, a contradiction.

�

Remark 6.9. Although β is an automorphism of G it does not induce an automorphism
of our geometry S. It has nevertheless an interesting geometric interpretation. Let S
be a partial geometry pg(5, 5, 2) admitting an abelian Singer group. It is, using the
above, easily seen that every two distinct collinear points (elements of G) g and h are
contained in two cliques of size 6, namely the one defined by the line L := 〈g, h〉,
and the one defined by Mβ , where M = 〈g2, h2〉, which is a set of 6 points of S no
three of which are collinear (note that since D2 = D, g2 is indeed collinear with h2).
In fact every two distinct collinear points are contained in exactly two distinct cliques
of order 6 as the number of points collinear with two given distinct collinear points
equals 11, and two distinct cliques of size 6 intersect in at most two distinct points.
Define C to be the set of all cliques that arise as the “squares” of lines of S. Then the
geometry with as point set the elements of G, with as line set the elements of C and
with as incidence relation containment is a pg(5, 5, 2) S∗ and β is an isomorphism
from S to S∗.

6.3. The uniqueness of S

Throughout this section S will be a pg(5, 5, 2) and G the elementary abelian group
of order 81 acting regularly on the points of S. We will show that S is unique. We
will again identify the points of S with elements of G. The set D will again be the set
of all elements distinct from id collinear with id. Let L be any line through id . We
denote the points of L by id , g1, g2, g3, g4 and g5. Further denote by Li , i = 1, . . . , 5
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the line through id containing g2
i . The unique point on Li \ {id} collinear with g j is

the point g j g2
i .

Lemma 6.10. We have g1g2g3g4g5 = id.

Proof: Consider the point g1g2. On L1 this point is collinear with g2
1 and g2g2

1 and
we have g1g2 = (g2

1)(g2g2
1). Analogously the two points collinear with g1g2 on L2

are uniquely determined (g2
2 and g1g2

2). As g1g2 is already collinear with g2
1 and g2

2

it cannot be collinear with g2
i for i /∈ {1, 2} (recall that a point exterior to a clique of

order 6 is collinear with exactly 2 points of this clique). Suppose that g1g2 would be
collinear with g1g2

3. Then, as g1g2 = (g1g2
3)(g2g3), we would obtain that g2g3 belongs

to D (recall Lemma 2.2), a contradiction. Hence, using an analogous reasoning, we
obtain that the points collinear with g1g2 on L3, L4 and L5 are g4g2

3, g5g2
3, g3g2

4, g5g2
4 ,

g3g2
5 and g4g2

5. There is a unique h such that g1g2 = (g4g2
3)h. Moreover h must be

collinear with id (as it maps g4g2
3 to a collinear point) and g1g2 (as g4g2

3 belongs to D).
It follows that h must be one of the points collinear with g1g2 on L3, L4 or L5 (note that
h cannot belong to L , L1 or L2 since g1g2 = (g1)(g2) = (g2

1)(g2g2
1) = (g2

2)(g1g2
2)). We

have that h 
= g4g2
3 since otherwise this would imply that g1g2 = g3g2

4, a contradiction.
Suppose that h = g5g2

3. Then g1g2 = g4g2
3 g5g2

3 = g3g4g5, from which we deduce that
g5 = (g1g2

3)(g2g2
4). Hence g5 would be collinear with g2g2

4, a contradiction. Further,
as g1g2 /∈ D ∪ {id}, h /∈ {g3g2

4, g5g2
4, g3g2

5}. It follows that h = g4g2
5, that is, g1g2 =

g2
3 g2

4 g2
5, that is, g1g2g3g4g5 = id . �

Theorem 6.11. The geometry S is unique.

Proof: Supposes S is a pg(5, 5, 2) with a regular abelian automorphism group G.
We need to show that S ∼= S. For the geometry S we will use the same notation
as above. In the geometry S we will identify the points with the elements of G.
Choose any line L of S through idG and denote its points distinct from idG by gi ,
i = 1, 2, . . . , 5. We define a mapping γ from G to G as follows: γ (idG) := idG ,
γ (gi ) := gi , i = 1, 2, . . . , 5, and γ (

∏
i gi ) := ∏

i gi . We will show that γ is well

defined and is in fact an isomorphism between S and S. In order to show that γ is well
defined we should show that

∏
i gi = ∏

j g j implies that
∏

i gi = ∏
j g j . It is clear

that the group G is generated by D, hence by {g1, g2, g3, g4, g5}, and so, because of
the previous lemma, by {g1, g2, g3, g4}. Hence every point of S (element of G) can
be expressed in a unique way—as there are exactly 81 points—as gi1

1 gi2

2 gi3

3 gi4

4 , with
ik ∈ {0, 1, 2}, k = 1, . . . , 4. From this one easily sees that γ is well defined. And from
the definition of γ it is now also clear that γ is an isomorphism between G and G.
Further, as (with a little abuse of notation) γ (L) = L , LG is the set of all lines of S,

and L
G

is the set of all lines of S, is easily deduced that γ is an isomorphism between
S and S. �

Corollary 6.12. LetS be a proper partial geometry pg(s, t, 2) and let G be an abelian
group acting regularly on the points ofS. If the pair (S, G) is rigid thenS is isomorphic
to the partial geometry of van Lint and Schrijver.

Springer



296 J Algebr Comb (2006) 24:285–297

Corollary 6.13. IfS is a proper partial geometry pg(s, t, 2) with t 
≡ 2 (mod s + 1)
admitting an abelian Singer group, then S is isomorphic to the partial geometry of
van Lint and Schrijver.

Proof: If t 
≡ 2 (mod s + 1) the the pair (S, G) must be of rigid type. �

Remark 6.14. In the above proof we use the fact that there is a pg(5, 5, 2) with an
abelian Singer group known. This is however not necessary, as our proof is implicitly
constructive. Namely the following can be checked. Let G be the elementary abelian
group of order 81. Let gi , i = 1, . . . , 5 be 5 distinct non-identity elements in G. Sup-
pose that gi1

1 gi2

2 gi3

3 gi4

4 gi5

5 = id, ik ∈ {0, 1, 2}, if and only if all ik are equal. Finally
define L := {id, g1, . . . , g5}. Then the geometry with as point set the elements of
G, as line set the set {Lg | g ∈ G} and with as incidence relation containment is a
pg(5, 5, 2). Notice that the existence of such gi is well known. For example consider
the group G ∼= (Z4

3, +) as the set of all 4-tuples over Z3 and define L as the set L :=
{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−1, −1, −1, −1)}. This
also gives us an easy geometric interpretation of the van Lint-Schrijver partial ge-
ometry: it is the geometry in AG(4, 3) of all translates of the set L .

7. Overview

We can now bring the results of the previous sections together in the following theorem.

Theorem 7.1. Let S be a proper partial geometry pg(s, t, 2), and suppose that there
exists an abelian automorphism group G of S acting regularly on the points of S.
Then either S is a pg(3h(m+1) − 1, 2(3h(m+1) + 1), 2) constructed from a PG-regulus
in PG(3m + 2, 3h), or S is a pg(s, x(s + 1) + 2, 2) with (S, G) of mixed type, or S is
a pg(5, 5, 2) isomorphic to the partial geometry of van Lint and Schrijver.
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