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Abstract Kostka numbers and Littlewood-Richardson coefficients appear in com-
binatorics and representation theory. Interest in their computation stems from the
fact that they are present in quantum mechanical computations since Wigner [15].
In recent times, there have been a number of algorithms proposed to perform this
task [1–3, 11, 12]. The issue of their computational complexity has received at-
tention in the past, and was raised recently by E. Rassart in [11]. We prove that
the problem of computing either quantity is #P-complete. Thus, unless P = N P ,
which is widely disbelieved, there do not exist efficient algorithms that compute these
numbers.

Keywords Kostka numbers . Littlewood-Richardson coefficients . Computational
complexity

1. Introduction

Let N = {1, 2, . . .} be the set of positive integers and Z≥0 = N ∪ {0}.
Let λ = (λ1, . . . , λs) ∈ Ns , λ1 ≥ λ2 ≥ . . . ≥ λs ≥ 1, μ = (μ1, . . . , μt ) ∈ Zt

≥0, ν =
(ν1, · · · , νu) ∈ Zu

≥0 and α = (α1, . . . , αv) ∈ Nv , α1 ≥ · · · ≥ αv ≥ 1. The Kostka num-
ber Kλμ and the Littlewood-Richardson coefficient cν

λα play an essential role in the
representation theory of the symmetric groups and the special linear groups. Their
combinatorial definitions can be found in Section 2. These have been present in quan-
tum mechanical computations since the time of Wigner ([15]). Recently, in [11],
E. Rassart asked whether there exist fast (polynomial time) algorithms to compute
Kostka numbers and Littlewood Richardson coefficients (Question 1, page 99). We
prove that the two quantities are #P-complete (see Theorems 1, 2). It is known that if a
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#P-complete quantity were computable in polynomial time, P = N P . An explana-
tion of this fact is sketched in Section 2. Thus, under the widely believed hypothesis
that P �= N P , there do not exist efficient (polynomial time) algorithms to compute
Kostka numbers and Littlewood-Richardson coefficients.

In [1], Barvinok and Fomin show how the set of all non-zero Kλμ for a given μ can
be produced in time that is polynomial in the total size of the input and output. They also
give a probabilistic algorithm running in time, polynomial in the total size of input and
output, that computes the set of all non-zero Littlewood-Richardson coefficients cν

λμ

given λ and μ. In [3], methods for the explicit computation of the Kostka numbers and
Littlewood-Richardson coefficients using vector partition functions are discussed. Kλμ

is the multiplicity of the weight μ in the representation Vλ of the lie algebra slr+1(C)
of the special linear group having highest weight λ and cν

λα is the multiplicity of Vν

in the tensor product Vλ ⊗C Vα . They also appear in the representation theory of the
symmetric groups (see chapter 7, [5]). While there are formulas for Kλμ and cν

λα due
to Kostant and Steinberg respectively ([3], [2]), the number of terms is, in general,
exponential in the bit-length of the input. The positivity of Kλμ can be answered in
polynomial time (see Proposition 1), and so can the question of whether cν

λα > 0,
though the latter is a non-trivial fact established by K. Mulmuley and M. Sohoni [8],
and uses the proof of the Saturation Conjecture by Knutson and Tao [7]. This fact plays
an important role in the approach to the P vs N P question [9] due to K. Mulmuley
and M. Sohoni.

We reduce the #P-complete problem of finding the number |I(a, b)| of 2 × k con-
tingency tables to that of finding some Kostka number Kλμ. Kostka numbers are known
to be also Littlewood-Richardson (LR) coefficients. Thus, their computation reduces
to computing some LR coefficient cν

λα , where λ, μ, α and ν can be computed in time
polynomial in the size of (a, b). The main tool used in the reduction to finding Kostka
numbers is the R-S-K correspondence ([5], pages 40–41) between the set I(a, b) of
contingency tables and pairs of tableaux having contents a and b respectively.

2. Preliminaries and notation

NP is the class of decision problems, e : ∪n∈N{0, 1}n → {0, 1}, for which there exists
a polynomial time Turing machine M and a polynomial p such that (∀n ∈ N), (∀x ∈
{0, 1}n), e(x) = 1 if and only if ∃y, y ∈ {0, 1}p(n) such that M accepts (x, y)}.

The class #P is the class of functions f : ∪n∈N{0, 1}n → Z≥0, for which there
exists a polynomial time Turing machine M and a polynomial p such that (∀n ∈
N), (∀x ∈ {0, 1}n), f (x) = |{y ∈ {0, 1}p(n) such that M accepts (x, y)}|. Valiant de-
fined the counting class #P in his seminal paper [13]. Many counting problems are
naturally in #P . For example, counting the number of integer points in a polytope,
membership queries to which can be answered in polynomial time is a problem in #P .

A problem W ∈ N P is N P-complete, if given a black box that solves instances of
W in polynomial time, any problem in N P can be solved in polynomial time. Similarly,
a counting problem X ∈ #P is #P-complete if given a black box that provides solutions
to instances of X in polynomial time, any problem in the class #P can be solved in
polynomial time. Note that by definition, counting the number of solutions to any
problem in N P is in #P . Thus if a #P-complete counting problem could be solved
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Fig. 1 Left to right, the shapes λ, α and the skew shape λ ∗ α

in polynomial time, we could find the number of solutions to any problem in N P
efficiently (in polynomial time.) and thereby solve it, by checking if the number of
solutions is ≥ 1.

The following problem of computing the number of 2 × k contingency tables is
known to be #P-complete. Let a = (a1, a2) ∈ Z≥0, a1 ≥ a2 and b = (b1, . . . bk) ∈
Zk

≥0. We denote by I(a, b) the set of 2 × k arrays of nonnegative integers whose
row sums are a1 and a2 respectively and whose column sums are b1, . . . , bk . Geo-
metrically, I(a, b) can be viewed as the set of integer points in the intersection of
the multidimensional rectangular block defined by the column sums, and the di-
agonal hyperplane given by the first row sum. Counting the number of elements
in I(a, b) was proved to be #P-complete by R. Kannan, M. Dyer and J. Mount in
[4].

A Young diagram ([5], page 1) is a collection of boxes, arranged in left justified
rows, such that from top to bottom, the number of boxes in a row is monotonically
(weakly) decreasing. The first two shapes in Fig. 1 are Young diagrams. A filling
is a numbering of the boxes of a Young diagram with positive integers, that are not
necessarily distinct. A Young tableau or simply tableau is a filling such that the
entries are

1. weakly increasing from left to right across each row, and
2. strictly increasing from top to bottom, down each column.

P and Q, in Fig. 2, are Young tableaux. A skew diagram is the diagram obtained
from removing a smaller Young diagram out of a larger one. The third shape in Fig. 1 is
a skew shape. A skew tableau is a filling of the boxes of a skew diagram with positive
integers, non-decreasing in rows, and strictly increasing in columns (see Fig. 5). Let
λ := (λ1, . . . , λs). If the number of boxes in the i th row of a tableau, for 1 ≤ i ≤ s is
λi , the tableau is said to have shape λ. If the tableau houses μ j copies of j for j ≤ t

1 111

2

111 

2 3
R–S–K

2       1         1

1       1         1 2

232

P Q

Fig. 2 An instance of the correspondence between I(a, b) and ∪λ̌T(λ̌, a) × T(λ̌, b) for a = (4, 3), b =
(3, 2, 2)
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and μ := (μ1, . . . , μt ), it is said to have content μ. Thus, in Fig. 2, P and Q have the
same shape (5, 2), but contents (3, 2, 2) and (4, 3) respectively.

Given two shapes λ and α, λ ∗ α is defined to be the skew-shape obtained by
attaching the lower left corner of α to the upper right corner of λ as in Fig. 1 (see [5],
page 60). size(λ, μ) denotes the number of bits used in the description of this tuple of
vectors. For λ := (λ1, . . . , λs), let |λ| = ∑s

i=1 λi . For vectors λ, μ, we say that λ � μ

if |λ| = |μ| and ∀i,
∑

j≤i λ j ≥ ∑
j≤i μ j . In addition, if λ �= μ, we say λ � μ. This

ordering is called the dominance ordering.
We call a tableau Littlewood-Richardson or LR, if, when its entries are read

right to left, top to bottom, at any moment, the number of copies of i that have been
encountered is greater than or equal to the number of copies of i + 1 that have been
encountered ([5], page 63). We denote the set of all (possibly skew) tableaux of shape λ

and content μ by T(λ, μ), and its subset consisting of all LR (possibly skew) tableaux
by LRT(λ, μ). The Kostka number Kλμ is the number of tableaux of shape λ and
content μ, i.e |T(λ, μ)| ([5], page 25). The Littlewood-Richardson coefficient cν

λα is
the number of LR skew tableaux of shape λ ∗ α of content ν, i.e |LRT(λ ∗ α, ν)| (this
follows from Corollary 2, (v), page 62 and Lemma 1, page 65 of [5]).

3. The problems are in #P

The particular representation of partitions used above seems to be the most reasonable
in the context of computing Kostka numbers and Littlewood-Richardson coefficients.
The answer to whether or not a problem is in #P depends on the format in which the
input is specified. If for example, we store partitions by their transposes, then these
problems are no longer in the class #P . This can be seen by considering the Kostka
number equal to the number of standard tableaux on a n × 2 rectangular array. By the
hook length formula, the number of such tableaux is the Catalan number

(
2n
n

)
/(n + 1)

which is exponential in n. However if the shape and content were represented as the
transposes of the corresponding partitions, they occupy only O(log n) space. And
so the Kostka number is doubly exponential in the size of the input. It is not hard
to see that this is impossible for counting problems in the class #P . On the other
hand, if the partitions were represented in unary, it is not clear what the complexity
of computing Kostka numbers and LR coefficients is. In unary, the partition (3, 2, 1)
would be represented as (111, 11, 1). Thus unlike in the binary case, one cannot
represent partitions with very large parts efficiently. It is clear that the problems are in
#P for the unary case, but it is not clear whether they are #P-complete.

The tableau shapes λ, α and contents μ, ν are described by vectors with integer
coefficients. The Littlewood-Richardson coefficient number cν

λα counts the number
of integer points of a polytope of dimension O(size(λ, μ)2), given by the intersec-
tion of O(size(λ, μ)2) halfspaces. The defining coefficients of these halfspaces have
size O(size(λ, μ)). This follows from the encoding of relevant skew tableaux in the
form of Littlewood-Richardson triangles (see [10].) Therefore the computation of
Littlewood-Richardson coefficients is in #P . The Kostka number Kλμ is known to
correspond to Littlewood-Richardson coefficients in parameters whose sizes are poly-
nomial in size(λ, μ). For the sake of completeness, an explicit correspondence has

Springer



J Algebr Comb (2006) 24:347–354 351

been established in Lemma 2. It follows that the problem of computing the Kostka
number Kλμ is in #P .

Proposition 1. Givenλandμ, whether or not Kλμ > 0 can be answered in polynomial
time.

Proof: Let λ, μ be defined as in Section 1. For any permutation σ of the set {1, . . . , t},
let σ (μ) be the vector (μσ (1), . . . , μσ (t)). It is a known fact that Kλμ = Kλσ (μ) (see
[5], page 26). Let σ be a permutation such that ∀i ≤ t − 1, μσ (i) ≥ μσ (i+1). For
any μ̌, whose components are arranged in non-increasing order, it is known that
Kλμ̌ > 0 if and only if λ � μ̌ (see [5], page 26). Whether λ � σ (μ) can be checked
in time that is O(size(λ, μ)). Thus, whether or not Kλμ > 0 can be answered in time
O(size(λ, μ) ln(size(λ, μ)), which is the time it takes to find a permutation σ that
arranges the components of μ in non-increasing order. �

4. Hardness results

Lemma 1. Given a = (a1, a2) ∈ Z2
≥0, a1 ≥ a2, and b = (b1, . . . , bk) ∈ Zk

≥0, let λ =
(a1 + a2, a2) and μ = (b1, . . . , bk, a2). Then, |I(a, b)| = Kλμ.

Proof: The R-S-K (Robinson-Schensted-Knuth) correspondence ([5], pages 40–41)
gives a bijection between I(a, b), the set of 2 × k contingency tables with row sums
a and column sums b, and pairs of tableaux (T1, T2) having a common shape but
contents a and b respectively. In other words, we have a bijection between I(a, b) and
∪λ̌T(λ̌, a) × T(λ̌, b). A sample correspondence is shown in Fig. 2.

Claim 1. For every shape λ̌ = (λ̌1, λ̌2), such that that λ̌ � a, there is exactly one tableau
having shape λ̌ and content a. For any other shape λ̌ there is no tableau having shape
λ̌ and content a.

It follows from the proof of Proposition 1 that the existence of a tableau with shape
λ̌ and content a is equivalent to the condition λ̌ � a. Any tableau with content a =
(a1, a2) can have at most two rows, since the entries in a single column are all distinct.
The filling in which the first a1 boxes of the top row contain 1 and all others contain
2 is a tableau (see Q in Fig. 3). Since all the copies of 1 must be in the first row and
must be in a contiguous stretch including the leftmost box, this is the only tableau in
T(λ, a). Hence the claim is proved.

1 1

2

1 1 1 1 2

P Q

32111

2 3

32

3

1

22

P

Discard Q

Construct Q

Fig. 3 An instance of the correspondence between ∪λ̌T(λ̌, a) × T(λ̌, b) and ∪λ̌�aT(λ̌, b) for a = (4, 3)
and b = (3, 2, 2).
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1 1 1 2 3

Truncate

Extend

4 4

3 42

2 3111

2 3

Fig. 4 An instance of the correspondence between ∪λ̌�aT(λ̌, b) and T(λ, μ), where a = (4, 3), b =
(3, 2, 2), λ = (7, 3) and μ = (3, 2, 2, 3)

Thus there is a bijection between ∪λ̌T(λ̌, a) × T(λ̌, b) and the set of tableaux of
content b having some shape λ̌ � a. i.e, there is a bijection between ∪λ̌T(λ̌, a) ×
T(λ̌, b) and ∪λ̌�aT(λ̌, b). An example of this is provided in Fig. 3. Let us now consider

the set ∪λ̌�aT(λ̌, b).

Claim 2. Any tableau in ∪λ̌�aT(λ̌, b) can be extended to a tableau of the shape λ =
(a1 + a2, a2) by filling the boxes that are in λ but not λ̌, with k + 1. This extension is
a bijection between ∪λ̌�aT(λ̌, b) and T(λ, μ).

If there is a tableau of shape λ̌ and content a, λ̌1 ≤ a1 + a2, and λ̌2 ≤ a2. λ̌ � a =⇒
λ̌1 ≥ a2 = λ2. Therefore no two of the boxes in λ which are not in λ̌ belong to the same
column. Those of these boxes, that are present in a given row, occupy a contiguous
stretch that includes the rightmost box. Therefore by filling them with k + 1 we get
a tableau in T(λ, μ). Conversely, given a tableau T in T(λ, μ), deleting all boxes of
T filled with k + 1 gives a tableau in ∪λ̌�aT (λ̌, b). These two maps are inverses of

each other and hence provide a bijection between ∪λ̌�aT (λ̌, b) and T(λ, μ). Hence
the claim is proved.

An example of this correspondence has been illustrated in Fig. 4. Therefore,
|I(a, b)| = | ∪λ̌ T(λ̌, a) × T(λ̌, b)| = | ∪λ̌�a T(λ̌, b)| = |T(λ, μ)| = Kλμ. �

Theorem 1. The problem of computing Kλμ, even when λ has only 2 rows, is #P-
complete.

Proof: Computing Kλμ is in #P as shown in Section 3. Now the result follows from
Lemma 1 because the computation of |I(a, b)| is known to be #P-complete ([4]). �

Lemma 2. Given λ = (λ1, λ2) ∈ Z2
≥0, λ1 ≥ λ2, and μ = (μ1, . . . , μ�) ∈ Z�

≥0, let
α = (α1, . . . , α�−1) where (∀i)αi = ∑

j>i μi , and ν = (ν1, . . . , ν�), where ∀i ≤ � −
1, νi = αi + μi , and ν� = μ�. Then Kλμ = cν

λα .

Proof: cν
λα is, by definition, |LRT(λ ∗ α, ν)|, which is the number of LR tableaux on

the skew shape λ ∗ α that have content ν. The skew shape λ ∗ α consists of a copy of
λ and a copy of α, as in Figs. 1 and 5. For any skew tableau S of shape λ ∗ α, we shall
denote by S|α , the restriction of S to the copy of α and by S|λ, the restriction of S to
the copy of λ. Thus, S|α is a tableau of shape α and S|λ is a tableau of shape λ.

Let S ∈ LRT(λ ∗ α, ν). For i ≤ � − 1, it follows from the LR and tableau con-
straints that the i th row of S|α must consist entirely of copies of i .
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4

3 3 3

2 2 2 2 2

1 1 1 1 1 1 1

Fig. 5 An instance of the correspondence between T(λ, μ) and LRT(λ ∗ α, ν) for λ = (7, 3) and μ =
(3, 2, 2, 3), α = (7, 5, 3) and ν = (10, 7, 5, 3)

Consequently, S|λ must have content ν − α = μ. In other words, S|λ ∈ T(λ, μ).
Conversely, given any tableau T ∈ T(λ, μ), let S(T ) be the skew tableau of shape
λ ∗ α in which S(T )|λ = T and the i th row of S(T )|α consists entirely of copies of
i . It is not difficult to see that S(T ) ∈ LRT(λ ∗ α, ν). S(T )|λ = T , thus we have a
bijection between LRT(λ ∗ α, ν), the set of LR skew tableaux of shape λ ∗ α having
content ν and T(λ, μ), the set of tableaux of shape λ having content μ. Hence
Kλμ = |T(λ, μ)| = |LRT(λ ∗ α, ν)| = cν

λα as claimed.
�

Theorem 2. The problem of computing cν
λα , even when λ has only 2 rows is #P-

complete.

Proof: By the explanation in Section 3, computing cν
λα is in #P . We have already

proved in Theorem 1, that the computation of Kλμ is #P-complete. The result now
follows from Lemma 2. �

5. Conclusion

We proved that the problems of computing Kostka numbers and Littlewood-
Richardson coefficients are #P-complete. The reduction to computing Kostka numbers
was from the #P-complete problem [4] of computing the number of contingency ta-
bles having given row and column sums. The problem of computing Kostka numbers
was then reduced to that of computing Littlewood-Richardson coefficients. FPRAS
(Fully Polynomial Randomized Approximation Schemes) are known to exist for con-
tingency tables with two rows. Thus we obtain FPRAS for a restricted class of Kostka
numbers from the correspondence in Lemma 1. It would be of interest to know if
such schemes exist for Kostka numbers and Littlewood-Richardson coefficients with
general parameters.
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