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Abstract We determine the Möbius function of a poset of compositions of an integer.
In fact, we give two proofs of this formula, one using an involution and one involving
discrete Morse theory. This composition poset turns out to be intimately connected
with subword order, whose Möbius function was determined by Björner. We show
that, using a generalization of subword order, we can obtain both Björner’s results and
our own as special cases.

1. Introduction

If A is any set then the corresponding Kleene closure or free monoid, A∗ is the set of
words with letters from A, i.e.,

A∗ = {w = w(1)w(2) . . . w(n) | n ≥ 0 and w(i) ∈ A for all i}.

We denote the length (number of elements) of w by |w|.
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Letting P denote the positive integers, we see that P∗ is the set of integer com-
positions (ordered partitions). We can turn P∗ into a partially ordered set by letting
u ≤ w if there is a subword w(i1)w(i2) . . . w(il) of w having length l = |u| such that
u( j) ≤ w(i j ) for 1 ≤ j ≤ l. For example, 433 ≤ 16243 because of the subword 643.
Bergeron, Bousquet-Mélou and Dulucq [2] were the first to study P∗, enumerating
saturated chains that begin at its minimal element. Snellman has also studied saturated
chains in this poset as well as two other partial orders on P∗ [21, 22]. One of these
other partial orders was originally defined by Björner and Stanley [8] who showed
that it has analogues of many of the properties of Young’s lattice. One of the main
results of this paper is a formula for the Möbius function of P∗.

This order on P∗ is closely related to subword order. If A is any set then the
subword order on A∗ is defined by letting u ≤ w if w contains a subsequence
w(i1), w(i2), . . . , w(il) such that u( j) = w(i j ) for 1 ≤ j ≤ l = |u|. By way of illus-
tration, if A = {a, b} then abba ≤ aabbbaba because w(1)w(3)w(5)w(8) = abba.
Note that we use the notation A∗ when referring to subword order as opposed to the
partial order on P∗, even though we use ≤ for both. We will always give enough
context to make it clear which poset we are dealing with. Björner [4] was the
first to completely determine the Möbius function of subword order, although spe-
cial cases had been obtained previously by Farmer [13] and Viennot [24]. In fact,
Björner gave two proofs of his formula, one using an involution [5] and one using
shellability [4]. He also gave a demonstration with Reutenauer [6] via generating
functions on monoids. Another proof was given by Warnke [26] using induction,
while Wang and Ma [25] used Cohen-Macaulayness to investigate μ. We derive
the Möbius function formula for P∗ using first combinatorial and then topological
techniques.

In the next section, we review Björner’s result for subword order as well as the
related definitions which will be useful for P∗. This section contains a statement of
our formula for the Möbius function of P∗ in Theorem 2.2. Section 3 is devoted to
giving a proof of this theorem using a sign-reversing involution.

Although intervals in A∗ are shellable, those in P∗ need not even be connected as
evident from the example in Fig. 2, so we need a more powerful tool to study the
topology of this composition poset. For this we turn to discrete Morse theory, which
was developed by Forman [14, 15] and has been a powerful tool in the computation of
the homology of many CW-complexes arising naturally in topological combinatorics.
A method for applying this theory to the order complex of a poset was given by Babson
and Hersh [1], and further studied by Hersh herself [16]. Since this is a relatively recent
addition to the combinatorial toolbox, we provide an exposition of the basic ideas of
the theory in Section 4. The subsequent section gives a Morse theoretic proof of
Theorem 2.2.

The similarity between the formulas for the Möbius functions of A∗ and P∗ leads one
to ask if there is a common generalization. In fact, if P is any poset then there is a partial
order on P∗ which we call generalized subword order. It has been used in the context
of well-quasi-ordering; see Kruskal’s article [18] for a survey of the early literature.
When P is a chain or an antichain, one recovers our results or Björner’s, respectively.
This construction is studied in Section 6. We end with a section of comments and open
problems.
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2. Subword and composition order

We now review Björner’s formula for the Möbius function of subword order, refor-
mulating it slightly so as to emphasize the connection to the composition order which
is our main objective. We assume the reader is familiar with Möbius functions, but all
the necessary definitions and theorems we use here can be found in Stanley’s text [23,
Sections 3.6–3.7].

We first need to restate the definition of the partial order in A∗ in a way that,
although slightly more complicated, has a direct connection with the Möbius function.
Suppose we have a distinguished symbol, 0, and suppose that 0 �∈ A. Then a word
η = η(1)η(2) . . . η(n) ∈ (A ∪ 0)∗ has support

Supp η = {i | η(i) �= 0}.

An expansion of u ∈ (A ∪ 0)∗ is a word ηu ∈ (A ∪ 0)∗ such that the restrictions of u
and ηu to their supports are equal. For example, if u = abba then one expansion of
u is ηu = a0b0b00a. An embedding of u into w is an expansion ηuw of u which has
length |w| and satisfies

ηuw(i) = w(i) for all i ∈ Supp ηuw.

Note that u ≤ w in A∗ if and only if there is an embedding of u into w. The example
expansion ηuw given above is exactly the embedding which corresponds to the subword
of w = aabbbaba given at the beginning of the third paragraph of this paper. If w is
clear from context we simply write ηu for ηuw.

The Möbius function of A∗ counts certain types of embeddings. If a ∈ A then a
run of a’s in w is a maximal interval of indices [r, t] such that

w(r ) = w(r + 1) = · · · = w(t) = a.

Continuing our example, the runs in w = aabbbaba are [1, 2], [3, 5], [6, 6], [7, 7],
and [8, 8]. Call an embedding ηu into w normal if, for every a ∈ A and every run [r, t]
of a’s in w, we have

(r, t] ⊆ Supp ηu

where (r, t] denotes the half-open interval. In our running example, this means that
w(2) = a and w(4) = w(5) = b must be in any normal embedding. (If r = t then
(r, t] = ∅, so there is no restriction on runs of one element.) Thus in this case there
are precisely two normal embeddings of u into w, namely

ηu = 0a0bba00 and 0a0bb00a.

Define
(
w

u

)
n

to be the number of normal embeddings of u into w.
We now have everything in place to state Björner’s result.
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Theorem 2.1 (Björner [4]). If u, w ∈ A∗ then

μ(u, w) = (−1)|w|−|u|
(

w

u

)
n

.

Finishing our example, we see that

μ(abba, aabbbaba) = (−1)8−4 · 2 = 2.

We now turn to P∗. The definitions of support and expansion are exactly as before,
but the notion of embedding must be updated to reflect the different partial order. To
this end we define an embedding of u into w as an expansion ηu of u having length
|w| such that

ηu(i) ≤ w(i) for 1 ≤ i ≤ |w|.

Again, u ≤ w in P∗ is equivalent to the existence of an embedding of u into w. An
interval in P∗ is displayed in Fig. 1.

If u ≤ w and ηw is an expansion of w then there is a unique last or rightmost
embedding ρuw of u into ηw which has the property that for any other embedding
ηuw of u into ηw one has Supp (ηuw) ≤ Supp (ρuw). (If S = {i1 < · · · < im} and S′ =
{i ′

1 < · · · < i ′
m} then we write S ≤ S′ to mean that i j ≤ i ′

j for 1 ≤ j ≤ m.) Note that
ρuw depends on ηw, not just on w, but the expansion of w used will always be clear
from context.

Fig. 1 The interval [322, 3322] and its maximal chains
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Like subword order, we define normal embeddings for P∗ in terms of runs (defined
in the same way in this context). We say that an embedding ηu into w is normal if the
following conditions hold.

1. For 1 ≤ i ≤ |w| we have ηu(i) = w(i), w(i) − 1, or 0.
2. For all k ≥ 1 and every run [r, t] of k’s in w, we have

(a) (r, t] ⊆ Supp ηu if k = 1,
(b) r ∈ Supp ηu if k ≥ 2.

Comparing this with Björner’s definition, we see that in P∗ a normal embedding can
have three possible values at each position instead of two. Also, the run condition
for ones is the same as in A∗, while that condition for integers greater than one is
complementary. As an example, if w = 2211133 and u = 21113, then there are two
normal embeddings, namely ηu = 2101130 and 2011130. Note that 2001113 and
0211130 are not normal since they violate conditions (1) and (2), respectively.

As with subword order, the Möbius function for compositions is given by a signed
sum over normal embeddings, although here the sign of a normal embedding depends
on the embedding itself and not just the length of the compositions. Given a normal
embedding ηu into w we define its defect to be

d(ηu) = #{i | ηu(i) = w(i) − 1}.

The sign of the embedding is, then, (−1)d(ηu ).
We can now state our main theorem about P∗.

Theorem 2.2. If u, w ∈ P∗ then

μ(u, w) =
∑
ηu

(−1)d(ηu )

where the sum is over all normal embeddings ηu into w.

In the example of the previous paragraph, this gives

μ(21113, 2211133) = (−1)2 + (−1)0 = 2.

Although this example does not show it, it is possible to have cancellation among the
terms in the sum for μ.

3. Proof by sign-reversing involution

We now prove Theorem 2.2 using a sign-reversing involution. The proof is similar in
nature to Björner’s proof in [5], but is significantly more complicated.

Proof (of Theorem 2.2): If u = w then there is exactly one normal embedding ηww

and it has defect 0. This gives (−1)0 = 1 = μ(w, w), as desired.
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Now assume that u < w = w(1) · · · w(n). Since the Möbius recurrence uniquely
defines μ, it suffices to show that∑

v∈[u,w]

∑
ηvw

(−1)d(ηvw) = 0,

where the inner sum is over all normal embeddings of v into w. We prove this by
constructing a sign-reversing involution on the set of normal embeddings ηvw for
v ∈ [u, w].

Let ρuv denote the rightmost embedding of u into ηvw, so for all i ∈ [1, n],

ρuv(i) ≤ ηvw(i) ≤ w(i). (1)

Also let s denote the left-most index where ρuv and w differ, i.e., s = min{i : ρuv(i) �=
w(i)}. Since u < w, s must exist, and by the definition of s we have

ρuv(i) = ηvw(i) = w(i) for all i ∈ [1, s). (2)

Set k = w(s), so ηvw(s) is k, k − 1, or 0 by normality and ρuv(s) ≤ k − 1. Finally, let
[r, t] denote the indices of the run of k’s in w that contains the index s.

Our involution maps ηvw to the embedding ηvw = ηvw(1) · · · ηvw(n) where ηvw(i) =
ηvw(i) for all i �= s and ηvw(s) is determined by the following rules. If k = 1 then

ηvw(s) =
{

0 if ηvw(s) = 1,

1 if ηvw(s) = 0.
(3)

If k ≥ 2, s > r , and ρuv(s) = 0 then

ηvw(s) =
{

0 if ηvw(s) = k − 1,

k − 1 if ηvw(s) = 0.
(4)

Finally, if k ≥ 2 and either s = r or ρuv(s) �= 0 then

ηvw(s) =
{

k − 1 if ηvw(s) = k,

k if ηvw(s) = k − 1.
(5)

It is not obvious that this map is defined for all normal embeddings ηvw when
k ≥ 2. For example, if s > r and ρuv(s) = 0, then we should apply (4), but it is
a priori possible that ηvw(s) = k, in which case (4) is not defined. However, since
s > r , ρuv(s − 1) = w(s − 1) = k by (2), and this contradicts our choice of ρuv as the
rightmost embedding of u into ηvw. Similar issues arise when s = r or ρuv(s) �= 0: if
s = r then ηvw(s) �= 0 by normality, and if ρuv(s) �= 0 then ηvw(s) �= 0 by (1).

Having established that this map is indeed defined on all normal embeddings, we
have several properties to prove. First, it is evident from (3), (4), and (5) that the number
of elements equal to k − 1 changes by exactly one in passing from ηvw to ηvw, and
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thus (−1)d(ηvw) = −(−1)d(ηvw). We must now prove that ηvw is a normal embedding of
v into w for some v ∈ [u, w] and that this map is an involution.

We begin by showing that ηvw is an embedding of some v ∈ [u, w] into w. It follows
from the fact that ηvw is an embedding into w and the definition of our map that ηvw is
an embedding of some word v into w, so we only need to show that v ≥ u. We prove
this by showing that

ηvw(i) ≥ ρuv(i) (6)

for all i ∈ [1, n]. This is clear for all i �= s because for these indices ηvw(i) = ηvw(i) ≥
ρuv(i). Furthermore, ρuv(s) ≤ k − 1 by the definition of s, so the only case in which
(6) is not immediate is when k ≥ 2 and ηvw(s) = 0. However, this can only occur
from using (4), which requires that ρuv(s) = 0, completing the demonstration that
v ∈ [u, w].

We now aim to show that ηvw is a normal embedding. If ηvw(s) > 0 then
Supp (ηvw) ⊇ Supp (ηvw), so the normality of ηvw follows from the normality of ηvw

and the fact that ηvw(s) is either k − 1 or k. If ηvw(s) = 0 then there are two cases
depending on whether (3) or (4) was applied. Suppose first that (3) was applied, so
k = 1. Comparing (3) with the definition of normality, we see that it suffices to show
s = r . Suppose to the contrary that s ∈ (r, t]. Since s is the left-most position at which
ρuv and w differ, we have ρuv(s) = 0 and ρuv(s − 1) = 1. However, this contradicts
our choice of ρuv as the rightmost embedding of u in ηvw. Now suppose that (4) was
applied, so s > r and ρuv(s) = 0. Then (2) implies that ηvw(r ) = ηvw(r ) = k, and
normality is preserved.

It only remains to show that this map is an involution. Consider applying the map
to ηvw. In this process, we define ρuv to be the rightmost embedding of u into ηvw,
s = min{i : ρuv(i) �= w(i)}, and k = w(s). We then follow the rules (3) (4), and (5) to
construct an embedding ηvw, which we would like to show is equal to ηvw.

First we claim that ρuv = ρuv . Suppose to the contrary that ρuv �= ρuv . By (6),
ηvw(i) ≥ ρuv(i) for all i , so ρuv also gives an embedding of u into v, and thus the only
way we can have ρuv �= ρuv is if ρuv is further to the right than ρuv . This requires that

0 = ρuv(s) < ρuv̄(s) ≤ k (7)

and that

ηvw(s) < ηvw(s). (8)

Because we are assuming that ρvw is further to the right than ρvw, there is some
position to the left of s at which ρuv is nonzero. In fact, (2) shows that we must have
ρuv(s − 1) �= 0 and also implies that

ηvw(s) < ρuv(s) = ρuv(s − 1) = w(s − 1). (9)

We now consider the three cases arising from each of the rules (3), (4), and (5) in turn.

Springer



124 J Algebr Comb (2006) 24:117–136

Suppose (3) was applied so k = 1. It follows from (8) and the definition of our map
that ηvw(s) = 0. Also (7) and (9) give w(s − 1) = ρuv(s) = 1. However, this implies
that ηvw zeroed out a 1 which was not the first in its run, contradicting normality.

Now suppose (4) was applied. Then by (8) we have ηvw(s) = k − 1. We also have
s > r which in conjunction with (9) gives ρuv(s) = w(s − 1) = k. This implies that
ηvw(s) < ρuv(s), but that contradicts the v version of (1).

Finally suppose that (5) was used. By (7) it must be the case that s = r . Also,
Eq. (8) gives ηvw(s) = k − 1 and ηvw(s) = k. Now applying (7) and (9) we have
k − 1 < w(s − 1) = ρuv(s) ≤ k, so w(s − 1) = k which contradicts that fact that s =
r .

Now that we have established the equality of ρuv and ρuv , the fact that this map
is an involution can be readily observed. We must have s = s, so k = k, and thus we
apply the same rule to go from ηvw to ηvw as we applied to get ηvw from ηvw, and each
of these rules is clearly an involution.

�

4. Introduction to discrete Morse theory

In this section we review the basic ideas behind Forman’s discrete Morse theory [14, 15]
as well as Babson and Hersh’s method for applying the theory to the order complex
of a poset [1].

Let X be a CW-complex. Since we will be working in reduced homology, we
assume that X has an empty cell ∅ of dimension −1 which is contained in every cell
of X . If σ is a d-cell (cell of dimension d) in X then let σ ∂ be the set of (d − 1)-cells
τ which are contained in the closure σ̄ . Dually, let σ δ denote the set of (d + 1)-cells
τ such that σ ⊂ τ̄ .

A real-valued function f on the cells of X is a Morse function if it satisfies the
following two conditions.

1. For every cell σ of X we have

(a) #{τ ∈ σ ∂ | f (τ ) ≥ f (σ )} ≤ 1, and
(b) #{τ ∈ σ δ | f (τ ) ≤ f (σ )} ≤ 1.

2. If τ ∈ σ δ and f (τ ) ≤ f (σ ) then σ is a regular face of τ .

Intuitively, the first condition says that, with only certain exceptions, f increases
with dimension. In fact, f (σ ) = dim σ is a perfectly good Morse function on X ,
although we will see shortly that it is not very interesting. A simple example of a
Morse function on a CW-complex is given in Fig. 1 where the value of f is given next
to each cell σ and we also set f (∅) = −1.

The fact that condition (1) holds for every cell implies that, in fact, at most one
of the two sets under consideration has cardinality equal to 1. Thus the function
f induces a Morse matching between pairs of cells σ, τ with σ ∈ τ ∂ and f (σ ) ≥
f (τ ). Furthermore, condition (1) implies that this matching is acyclic in the following
sense: the directed graph formed from the Hasse diagram of the face poset of X by
directing every edge of the matching upwards and all other edges downwards has no
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directed cycles. The regularity condition ensures that for each matched pair there is
an elementary collapse of τ̄ onto τ̄ − (τ ∪ σ ).

The cells which are not matched by f are called critical. From the acyclicity
property and the fact that each individual collapse is a homotopy equivalence, it
follows that X can be collapsed onto a homotopic complex X f built from the critical
cells. In our example, the cells labeled 1 and 2 are matched, and after collapsing we
clearly have a complex which is still homotopically a circle. Note that if we take f to
be the dimension function then every cell is critical and X f = X , so the cell complex
does not simplify in this case which does not help in understanding its structure.

Let m̃d be the number of critical d-cells of X and let b̃d be the d-th reduced Betti
number over the integers. We also use χ̃ (X ) for the reduced Euler characteristic. From
the considerations in the previous paragraph, we have the following Morse inequalities
which are analogous to those in traditional Morse theory.

Theorem 4.1 (Forman [15]). For any Morse function on a cell complex X we have

1. b̃d ≤ m̃d for d ≥ −1, and
2. χ̃ (X ) = ∑

d≥−1(−1)dm̃d .

(One can get further inequalities relating various partial alternating sums of the b̃d

and m̃d .) Continuing our example, we see that m̃−1 = m̃0 = m̃1 = 1 which bound
b̃−1 = b̃0 = 0 and b̃1 = 1, as well as χ̃ (X ) = −1 + 1 − 1 = −1, as expected.

We now turn to the special case of order complexes. Let P be a poset and consider
an open interval (u, w) in P . The corresponding order complex 	(u, w) is the abstract
simplicial complex whose simplices (faces) are the chains in (u, w). We are interested
in the order complex because of the fundamental fact [20] that

μ(u, w) = χ̃ (	(u, w)). (10)

Therefore finding a Morse function for 	(u, w) could permit us to derive the
corresponding Möbius value as well as give extra information about its Betti numbers.
Suppose we have an ordering of the maximal chains of (u, w) (facets of 	(u, w)), say
C1, C2, . . . , Cl . Call a face (subchain) σ of Ck new if it is not contained in any C j

for j < k. We would like to construct a Morse matching inductively, where at the kth
stage we extend the matching on the faces in C j for j < k by matching up as many
of the new faces σ in Ck as possible. It turns out that under fairly mild conditions
on the facet ordering, one can construct such a matching so that all the new faces in
Ck are matched if there are an even number of them, and only one is left unmatched
if the number is odd. Thus adding each facet contributes at most one critical cell.
A maximal chain contributing a critical cell is called a critical chain. In reading the
details of this construction, the reader may find it useful to refer to the example of the
interval [322, 3322] ⊂ P∗ given in Fig. 2. Note that, by abuse of notation, we include u
and w when writing out a maximal chain C , even though C is really a subset of the open
interval (u, w). Also, because of the way our chain order is constructed, we start with
the top element w and work down to u which is dual to what is done normally. Thus in
a chain C , terms like “first” and “last” refer to this ordering of C’s elements. Finally,
we list the elements of a chain as embeddings into w for reasons which will become
apparent when we also describe the labels given to the edges (covers) of a chain.
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Fig. 2 A Morse function on a CW-complex

To define the types of chain orderings we consider, suppose we have two chains C :
w = v0 v1 . . . u and C ′ : w = v′

0 v′
1 . . . u where

x y means that x covers y. Then we say that C and C ′ agree to index j if vi = v′
i

for i ≤ j . In addition, C and C ′ diverge from index j if they agree to index j and
v j+1 �= v′

j+1. In addition, we use the notation C ′ < C to mean that C ′ comes before
C in the order under consideration. An ordering of the maximal chains of [u, w] is a
poset lexicographic order, or PL-order for short, if it satisfies the following condition.
Suppose C ′ and C diverge from index j with C ′ < C . Then for any maximal chains D′

and D which agree to index j + 1 with C ′ and C , respectively, we must have D′ < D.
Note that orderings coming from the EL-labelings introduced by Björner [3] or from
the more general CL-labelings of Björner and Wachs [9] are PL-orders as long as one
breaks ties among labels consistently.

The PL-order we use in P∗ is as follows. If x y is a cover then y is obtained
from x by reducing a single part of x by 1. Thus there is a unique normal embedding
of y into x , since if a 1 is reduced to 0 then it must be the first element in the run
of ones to which it belongs. Similarly, for any expansion ηx there is a unique normal
embedding of y into ηx . Now given any chain C : w = v0 v1 . . . u
we inductively associate with each v j an embedding ηv j into w where ηv0

= w and,
for j ≥ 0, ηv j+1

is the unique normal embedding of v j+1 into ηv j . We label the edge
v j v j+1 of C with the index i of the position which was decreased in passing
from ηv j to ηv j+1

. Furthermore, we often write ηv j in place of v j when listing the
elements of C . Figure 2 illustrates this labeling. It is important to note that although
ηv j+1

is normal in ηv j , it need not be normal in w. We should also remark that this
labeling is similar to the one used by Björner [4] in his CL-shelling of the intervals in
subword order. Finally, if one orders the chains of [u, w] using ordinary lexicographic
order on their label sequences, then the result is a PL-order. This is due to the fact
that if two chains agree to index j then their first j labels are the same. The chains in
Fig. 2 are listed in PL-order.

We now return to the general exposition. To construct our matching, when we come
to a chain C : w = v0 v1 . . . u in a given order we must be able to
determine which faces of C are new. Denote the open interval I from vi to v j in C by

I = C(vi , v j ) = vi+1 vi+2 . . . v j−1.

(Do not to confuse this with an open interval in the poset.) Then I is a skipped interval
if C − I ⊂ C ′ for some C ′ < C . It is a minimal skipped interval or MSI if it does not
strictly contain another skipped interval. In Fig. 2, the MSI’s are circled. One can find
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the MSI’s by taking the maximal intervals in C − (C ∩ C ′) for each C ′ < C and then
throwing out any that are not containment minimal in C . Let I = I(C) be the set of
MSI’s in C . Then it is easy to check that a face σ is new in C if and only if σ has a
nonempty intersection with every I ∈ I(C).

The set I in not quite sufficient to construct the matching because the MSI’s can
overlap and we will need a family of disjoint intervals J . It happens that in all the
critical chains for P∗, the intervals in I will already be disjoint. So I = J and we will
not need the following construction, but we include it for completeness. In general,
there are no containments among the intervals inI, so they can be ordered I1, I2, I3, . . .

according to when they are first encountered on C . We now inductively construct the
set J = J (C) of J -intervals as follows. Let J1 = I1. Then consider the intervals
I ′
2 = I2 − J1, I ′

3 = I3 − J1, . . .; throw out any which are not minimal; and pick the
first one which remains to be J2. Continue this process until there are no nonempty
modified MSI’s left.

We are finally in a position to describe the matching. List the maximal chains
of [u, w] using a PL-order. A family K of intervals of a maximal chain C covers
the chain if C = ∪K. There are three cases depending on whether I(C) or J (C)
covers C or not. First suppose that I(C) does not cover C , so neither does J (C),
and pick x0 to be the first vertex in C − ∪I. Consider the map σ → σ	{x0} where
	 is symmetric difference (not the order complex). One can show that this map is a
fixed-point free involution on the new faces σ in C which extends the Morse matching
already constructed from the previous chains. Now suppose that J = {J1, J2, . . . , Jr }
does cover C and consider the new face σC = {x1, x2, . . . , xr } where xi is the first
element of Ji for 1 ≤ i ≤ r . Given any other new face σ �= σC , we find the interval Ji

of smallest index where σ ∩ Ji �= {xi } and map σ → σ	{xi }. This involution pairs
up all new faces in C except σC , which is critical. Finally, suppose that I covers C
but J does not. Then we use the mapping of the second case to pair up all new faces
whose restriction to ∪J is different from σC . We also pair up the remaining new
faces (including σC ) by using the mapping of the first case where we take x0 to be the
first vertex in C − ∪J . Thus we have outlined the proof of the following theorem,
remembering that the dimension of a simplex is one less than its number of vertices.

Theorem 4.2 ([1]). Let P be a poset and [u, w] be a finite interval in P. For any
PL-order on the maximal chains of [u, w], the above construction produces a Morse
matching in 	(u, w) with the following properties.

1. The maximal chain C is critical if and only if J covers C.
2. If C is critical then its unique critical cell has dimension #J (C) − 1.

5. A Morse theory derivation of μ

We are now ready to find the critical cells for the PL-order in P∗ defined previously.
We first need three lemmas which will prove useful in a number of cases. Unless
otherwise specified, we always use the notation

C : w = v0
l1 v1

l2 v2
l3 . . . ld vd = u (11)
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for labeled maximal chains, or

C : w = ηv0
l1 ηv1

l2 ηv2
l3 . . . ld ηu (12)

if we wish to be specific about the embeddings determined by C . We also use

l(C) = (l1, l2, . . . , ld )

for its label sequence.
Take an interval [u, w] ⊂ P∗ with |u| = |w| and let mi = w(i) − u(i). Now con-

sider the multiset Muw = {{1m1 , 2m2 , . . .}} where imi means that i is repeated mi times.
Then every permutation of M is the label sequence for a unique maximal chain in
[u, w] and this accounts for all the chains. (In fact, [u, v] is isomorphic to the poset
of submultisets of Muw.) We record this simple observation for later reference.

Lemma 5.1 (Same length lemma). If |u| = |w| then the the label function l gives a
bijection between the maximal chains in [u, w] and the permutations of Muw. In
particular, if Muw contains only one distinct element (possibly with multiplicity) then
[u, w] contains a unique maximal chain.

If |u| < |w| then we no longer have the nice bijection of the previous paragraph, but
we can still say something. Let C be a maximal chain as in (11) and let l ′ = (l ′1, . . . , l ′d )
be any permutation of the label sequence l(C). Then l ′ defines a sequence of expansions
ηv′

0
, ηv′

1
, . . . , ηv′

d
where ηv′

0
= w and for j ≥ 1 we get ηv′

j
from ηv′

j−1
by subtracting one

from position l ′j in ηv′
j−1

. It is still true that C ′ : w = v′
0 v′

1 . . . v′
d = u

is a maximal chain in [u, w]. We call C ′ the chain specified by l ′. Since ηv′
j
may not be

a normal embedding in ηv′
j−1

, we may not have l(C ′) = l ′. Still, at the first place where

l(C ′) and l ′ differ, that difference must have been caused because using the label in
l ′ would have resulted in changing a 1 to a 0 where that 1 was not the first in its run.
Thus the corresponding normal embedding in l(C ′) uses the first 1 in that run which
is to the left. Hence l(C ′) ≤ l ′ in lexicographic order. We summarize this discussion
in the following lemma.

Lemma 5.2 (Chain specification lemma). If C is a maximal chain in [u, w] and l ′ is
any permutation of l(C) then l(C ′) ≤ l ′ where C ′ is the chain specified by l ′.

As our first application of the Chain Specification Lemma, we can determine what
happens at descents. A descent of C is v j ∈ C such that l j > l j+1. An ascent is defined
by reversing the inequality.

Lemma 5.3 (Descent lemma). If v j is a descent of C then it is an MSI.

Proof: Let l ′ be the permutation of l(C) gotten by interchanging l j and l j+1 and let
C ′ be the chain specified by l ′. Then by Lemma 5.2 we have l(C ′) ≤ l ′ < l(C), so C ′

comes before C in PL-order and it is easy to check that C ′ diverges from C at v j−1

and rejoins C at v j+1. Thus {v j } is a skipped interval; and since the interval contains
only one element it must also be minimal. �
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We only need a few more definitions to state our result characterizing the critical
chains. A chain C will be said to have a certain property, e.g., weakly decreasing, if
l(C) has that property. Also, if ηu is a normal embedding into w then we need to keep
track of the zero positions which did not come from decreasing a 1 in w by letting

D(ηu) = #{i | ηu(i) = 0, w(i) ≥ 2}.

Theorem 5.4. Consider the maximal chains in [u, w] ⊂ P∗ in the given PL-order.

1. There is a bijection between critical chains C and normal embeddings ηu into w

where the chain corresponding to ηu is the unique weakly decreasing chain ending
at ηu.

2. If C is critical and ends at ηu then I(C) = J (C) and

#I(C) = d(ηu) + 2D(ηu) − 1.

We shall prove this theorem by considering 3 cases: when C is weakly decreasing
and ends at a normal embedding, when C is weakly decreasing and does not end at a
normal embedding, and when C is not weakly decreasing. Note that for any embedding
ηu into w, there is at most one weakly decreasing chain ending at ηu , and that if ηu

is normal then such a chain will exist because it will be possible to make each cover
normal. Thus there is a bijection between normal embeddings and weakly decreasing
chains ending at them, but we need to show such chains are critical. To do so, we
define a plateau of C to be an interval C(vi , v j ) such that (li+1, li+2, . . . , l j ) is a run
of length at least 2 in l(C).

Proposition 5.5. If C is weakly decreasing and ends at a normal embedding ηu then
C is critical, I(C) = J (C), and #I(C) = d(ηu) + 2D(ηu) − 1.

Proof: Every descent is an MSI of C by the Descent Lemma, so any other MSI must
be contained in a plateau by minimality. In fact, we claim that any plateau C(vi , v j )
is an MSI. Without loss of generality we can assume vi = w (since otherwise vi is a
descent and so no MSI can contain it) and v j = u.

To show C = C(w, u) is a skipped interval, first note that by construction l(C)
consists of c repeated k = j − i ≥ 2 times, so w(c) = ηu(c) + k. Thus by normality
and the fact that k ≥ 2 we get ηu(c) = 0 and w(c) = k. Using normality again implies
that c cannot be the first element in its run of k’s in w, and thus w(c − 1) = k. Because
of this, there is a chain C ′ from w to u all of whose labels are c − 1. By construction
C ′ < C and C ∩ C ′ = ∅, so C is a skipped interval as desired.

To show the plateau is minimal suppose, to the contrary, that there is a skipped
interval I ⊂ C and let w = v0, u = vk . Note that because |v0| = |v1| = · · · = |vk−1|,
the Same Length Lemma applies to show that there is only one chain (namely an
interval of C) between any two of these compositions. Thus the chain C ′ giving rise
to I must rejoin C at an embedding η′

u of u into w, and hence also contain v1 in order
to cut out a proper subinterval. From this and normality of ηu we have

η′
u(c) < k = w(c − 1) = ηu(c − 1). (13)
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Also, |u| = |w| − 1 implies that C ′ must zero out exactly one element of w. Since
C ′ < C , that element must be in a position strictly to the left of position c, but then
because ηu and η′

u are both expansions of u we are forced to have ηu(c − 1) = η′
u(c),

contradicting (13).
Now we know thatI(C) consists of the descents and plateaus of C which are disjoint

and cover C by their definition, so J (C) = I(C) and C is critical by Theorem 4.2. To
count the number of MSI’s, note that if c is a position counted by d(ηu) then the vertex
just after the edge labeled c in C will be a descent, unless that edge is the very last
one. On the other hand, if c is counted by D(ηu) then the run of c’s in l(C) contribute
both a plateau and a descent just after the plateau to I (unless the run is at the end
of C when only the plateau will be an interval). In this manner we count each MSI
exactly once for a total of d(ηu) + 2D(ηu) − 1 intervals. �

Proposition 5.6. If C is weakly decreasing and ends at an embedding ηu which is not
normal then C is not critical.

Proof: As in the proof of the previous proposition, it suffices to consider the case
where l(C) consists of a label c repeated k ≥ 2 times so that w(c) = ηu(c) + k. If
ηu(c) > 0 then |w| = |u| and so the Same Length Lemma applies to show that C is
the only chain from w to c. In particular, it is the lexicographically first chain and thus
not critical.

If ηu(c) = 0 then w(c) = k and, since ηu is not normal, it must be that c is the first
index in this run of k’s in w. Let

ηu(c − 1) = w(c − 1) = h �= k. (14)

To demonstrate that C is not critical, it suffices to show that there is no MSI I containing
the element v1 in C . Suppose, to the contrary that such an interval I exists and let
C ′ be a chain giving rise to I . Using the Same Length Lemma as in the proof of
Proposition 5.5 (third paragraph) we see that C ′ must rejoin C at u and this forces
I = C(w, u).

To finish the proof, it suffices to find a skipped interval I ′′ ⊂ I since that will
contradict the minimality of I . Let b be the smallest label in l(C ′). Then b < c since
l(C ′) < l(C) = (ck). The same argument used at the end of the third paragraph of the
previous proposition together with Eq. (14) give

η′
u(c) = ηu(c − 1) = h �= k = w(c).

Since the parts of a composition can only (weakly) decrease along a chain, we must
have η′

u(c) < w(c). It follows that c is a label on C ′. Now consider any permutation
of l(C ′) which starts l ′′ = (c, b, . . .) and let C ′′ be the chain specified by l ′′. Then
by construction and the Chain Specification Lemma l(C ′′) ≤ l ′′ < l(C). This implies
that C ′′ < C in PL-order and, by construction again, C ′′ contains v1. Thus no MSI of
C can contain v1, a contradiction.

�

Our third and final proposition completes the proof of Theorem 5.4

Springer



J Algebr Comb (2006) 24:117–136 131

Proposition 5.7. If C is not weakly decreasing then C is not critical.

Proof: If C is not weakly decreasing then it has an ascent v. It suffices to show that v

is in no MSI. Suppose, to the contrary, that v is in an MSI, I = C(vi , v j ). Then by the
Descent Lemma, I contains no descents and so C is weakly increasing from vi to v j .
As in the previous two proofs, it is no loss of generality to assume vi = w and v j = u
so that C is itself an MSI.

Since C is an MSI, it is not the first chain in [u, w]. That first chain is the unique
weakly increasing chain which ends at the rightmost embedding ρu of u into w. Thus
if ηu is the embedding defined by C then we must have ηu �= ρu .

For ηu define

zη( j) = #{i ≤ j | ηu(i) = 0}

and similarly define zρ( j) for ρu . Because ρu is rightmost we always have zρ( j) ≥
zη( j) with equality when j = |w|. But ρu is not equal to ηu , so there is an index a
such that zρ(a) > zη(a). Thus there is a first index c > a such that zρ(c) = zη(c). This
definition of c forces ηu(c) = 0 and ρu(c) = k for some k > 0. But ηu and ρu are
embeddings of the same composition, so there must be some index b with a ≤ b < c
such that ηu(b) = ρu(c) = k and ηu(i) = 0 for b < i ≤ c.

We can now derive a contradiction by constructing a smaller skipped interval in C as
follows. We have w(c) ≥ ρu(c) = k and ηu(c) = 0. Since C is weakly increasing, the
labels equal to c must occur as a plateau. Therefore there must be vertices w′, u′ ∈ C
such that I ′ = C(w′, u′) satisfies ηw′ (c) = k, ηu′ (c) = 0, and l(I ′) = (ck). But

ηw′ (i) = ηu′ (i) = ηu(i) =
{

k if i = b,

0 if b < i < c,

so there is a chain C ′ from w′ to u′ with l(C ′) = (bk). Since b < c, I ′ is a skipped
interval and we have obtained the desired contradiction. �

We can now rederive the formula for μ(u, w) in P∗. Combining Eq. (10) with
Theorems 4.1, 4.2, and 5.4 we obtain

μ(u, w) = χ̃ (u, w) =
∑

C

(−1)dim σC =
∑
ηu

(−1)d(ηu )+2D(ηu )−2 =
∑
ηu

(−1)d(ηu )

where the first sum is over all critical chains C in (u, w) and the other two are over all
normal embeddings ηu into w.

We end this section by remarking that the Morse method can be used as a powerful
tool not just for proving theorems but for discovering the correct statement to be proved.
The reader may have found our definition of a normal embedding somewhat ad hoc.
However, by starting with the very natural chain labeling used above and looking at
the critical chains, one is quickly led to this definition in order to characterize the
embeddings at which such chains end. Similarly, the defect may seem to have come
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out of nowhere, but in order to determine the dimension of the critical cells one is
forced to define this quantity as well as its big brother, D(ηu).

6. Generalized subword order

We can now generalize both our result and Björner’s as follows. Let (P, ≤P ) be any
poset. The generalized subword order over P is the partial order on P∗ obtained
by setting u ≤P∗ w if w contains a subsequence w(i1), w(i2), . . . , w(i|u|) such that
u( j) ≤P w(i j ) for 1 ≤ j ≤ |u|. We get ordinary subword order when P = A is an
antichain and we get our composition poset when P = P.

It is a simple matter to recast this generalized order in terms of embeddings. Let 0̂
be a special element which is not in P and let P̂ be the poset obtained by adjoining 0̂
as a minimum element, i.e., 0̂ <P̂ x for all x ∈ P . Then the definitions of support and
expansion are as usual, just replacing 0 with 0̂. An embedding of u into w is a length
|w| expansion ηu of u with

ηu(i) ≤P̂ w(i) for 1 ≤ i ≤ |w|.

As expected, u ≤P∗ w if and only if there is an embedding of u into w.
Finding an analogue of normality in this context is more delicate, and so far we

have only been able to do it for a special class of posets. However, there is evidence
that more general results are possible; the next section contains a discussion of this
issue. First note that the definition of a run carries over verbatim to any P∗. Now call
P a rooted tree if its Hasse diagram is a tree with a minimum element. A rooted forest
is a poset where each connected component of its Hasse diagram is a rooted tree. Note
that both antichains and chains are rooted forests. Note also that if P is a rooted forest
then P̂ is a rooted tree so the following definition makes sense. If x ∈ P where P is
a rooted forest then let x− be the element adjacent to x on the unique path from x to
0̂ in the Hasse diagram for P̂ . For a rooted forest, a normal embedding of u into w is
an embedding ηu into w satisfying two conditions.

1. For 1 ≤ i ≤ |w| we have ηu(i) = w(i), w(i)−, or 0̂.
2. For all x ∈ P and every run [r, t] of x’s in w, we have

(a) (r, t] ⊆ Supp ηu if x is minimal in P ,
(b) r ∈ Supp ηu otherwise.

Finally, we need the definition of defect in this situation, which is as expected:

d(ηu) = #{i | ηu(i) = w(i)−}

for a normal embedding ηu into w. The following theorem is the promised general-
ization of Theorems 2.1 and 2.2. Both of the two proofs we have given of the special
case where P = P generalize easily, with the minimal elements in P playing the role
of 1 and the rest functioning like the integers k ≥ 2.
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Theorem 6.1. Let P be a rooted forest. Then the Möbius function of P∗ is given by

μ(u, w) =
∑
ηu

(−1)d(ηu ),

where the sum is over all normal embeddings ηu of u into w.

7. Comments and open problems

There are several possible avenues for future research. We discuss some of them here.

7.1. Generating functions

As mentioned in the introduction, Björner and Reutenauer [6] gave another proof of
the formula for μ in A∗ using generating functions on monoids. Let Z〈〈A〉〉 denote
the algebra of formal series using the elements in A as noncommutative variables and
the integers as coefficients. Such a series can be written

f =
∑
w∈A∗

cww

for certain cw ∈ Z. For example, given u ∈ A∗ one can consider the series

m(u) =
∑
w≥u

(
w

u

)
n

w. (15)

Björner and Reutenauer showed that (15) is rational for any u and obtained, upon
specialization of the variables, nice expressions for various ordinary generating func-
tions associated with the Möbius function of A∗. They also derived results for the zeta
function of A∗. The map m : A∗ → Z〈〈A〉〉 can be extended to a continuous linear
endomorphism of Z〈〈A〉〉. In fact, the full incidence algebra of A∗ is isomorphic to a
subalgebra of this endomorphism algebra. Björner and Reutenauer gave another proof
of Theorem 2.1 using this fact.

It is natural to try and apply these ideas to P∗, and more generally to rooted forests.
This has been done by Björner and Sagan [7].

7.2. The poset of permutations

Our original interest in P∗ came from the rapidly growing subject of permutation
patterns. For an overview of permutation patterns the reader is referred to Bóna’s
text [10]. Let Sn denote the nth symmetric group and let π ∈ Sn and σ ∈ Sk . We say
that π contains a σ -pattern, and write π ≥ σ , if there are indices i1 < i2 < · · · < ik

such that the subsequence π (i1)π (i2) . . . π(ik) has the same pairwise comparisons
as σ (1)σ (2) . . . σ (k). This subsequence is called a copy of σ in π . For example,
312 ≤ 24153 because of the copy 413. This defines a partial order on the set of all
finite permutations. Figure 3 displays the interval [1, 31524] in this poset. Wilf was
the first to ask the following question.
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Fig. 3 The Hasse diagram for the interval [1, 31524] in the pattern containment ordering on permutations

Question 7.1 (Wilf [27]). What can be said about the Möbius function of permutations
under the pattern-containment ordering?

Given two permutations π ∈ Sm and σ ∈ Sn , their direct sum is the permutation of
length m + n whose first m elements form σ and whose last n elements are the copy of
π gotten by adding m to each element of π . For example, 132 ⊕ 32145 = 13265478.
A permutation is said to be layered if it can expressed as the direct sum of some number
of decreasing permutations. (An equivalent characterization of layered permutations
is that they are the permutations that contain neither a 231-pattern nor a 312-pattern.)
Our previous example is layered because 13265478 = 1 ⊕ 21 ⊕ 321 ⊕ 1 ⊕ 1. Clearly
the set of layered permutation of length n is in bijection with the set of compositions
of n. Almost as clearly, this bijection sends the pattern-containment order to the
composition order we have considered, so Theorem 2.2 answers Wilf’s question for
the set of layered permutations.

Any normal embedding approach to describing the Möbius function for permuta-
tions in general would need to incorporate non-unitary weights, as witnessed by the
fact that μ(1, 31524) = 6.

7.3. Factor order

Subword order is not the only partial order on the set of words. We say that the word
u is a factor of the word w if there exist (possibly empty) words v1 and v2 so that
w = v1uv2, or in other words, if u occurs as a contiguous subword in w. Björner [5]
showed that the Möbius function for factor order only takes on values in {0, ±1} and
gave a recursive rule that allows the computation of μ(u, w) in O(|w|2) steps.

The factor order can be defined on P∗ for any poset P: we say that u is a factor of
w if there are words v1, v2, v3 such that:

1. w = v1v2v3,
2. |v2| = |u|,
3. u(i) ≤ v2(i) for all 1 ≤ i ≤ |u|.
Indeed, this is one of the orders on P∗ studied by Snellman [21, 22]. The Möbius
function of P∗ under factor order remains unknown.
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Fig. 4 The Hasse diagram for the poset �

7.4. Subwords over �

The smallest poset to which Theorem 6.1 is inapplicable is the poset � depicted in
Fig. 4. The Möbius function of �∗ seems to be quite interesting. In fact, numerical
evidence points to a surprising connection with the Tchebyshev polynomials of the
first kind, Tn(x), which can be defined as the unique polynomials such that Tn(cos θ ) =
cos(nθ ).

Conjecture 7.2. For all i ≤ j , μ(ai , c j ) is the coefficient of x j−i in Ti+ j (x).

As with the poset of permutations, a normal embedding interpretation of μ(ai , ci )
would need to use weights because, for example, μ(a, cc) = −3.

One possible way to attack this conjecture would be to use the three-term recurrence
for Tn(x). Translating this in terms of the conjecture, it would suffice to show that

μ(ai , c j ) = 2μ(ai , c j−1) − μ(ai−1, c j−1)

for j ≥ i ≥ 1 However, we have not been able to see any relationship between the
intervals [ai , c j ], [ai , c j−1], and [ai−1, c j−1] which would permit us to derive this
relation for their Möbius functions.

There are two closely related areas where the Tchebyshev polynomials have ap-
peared. A permutation π is said to avoid a permutation σ if it does not contain a
σ -pattern. Chow and West [11] showed that the generating function for the number
of permutations in Sn avoiding both 132 and 12 . . . k for fixed k can be expressed in
terms of Tchebyshev polynomials of the second kind. Mansour and Vainshtein [19] ex-
tended this result to count permutations avoiding 132 and containing exactly r copies
of 12 . . . k.

More recently, Hetyei [17] defined poset maps T and U which he called Tchebyshev
transformations of the first and second kind. This is because when applied to the ladder
poset Ln , the cd-index of the images can be expressed in terms of Tn(x) and Un(x).
Since the cd-index is related to the Möbius function, it is conceivable that Hetyei’s
map could be used to prove our conjecture, but the posets T (Ln) are not isomorphic
to any of our intervals [ai , c j ] in general, so it is not clear how to proceed. However,
these maps are very interesting in their own right and have been further studied by
Ehrenborg and Readdy [12].

Acknowledgements We are indebted to Patricia Hersh for useful discussions and references.
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