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1. Introduction

Recently a new homotopy theory for graphs and simplicial complexes was defined
(cf. [3, 4]). The motivation for the definition came initially from a desire to find
invariants for dynamic processes that could be encoded via (combinatorial) simplicial
complexes. The invariants were supposed to be topological in nature, but should at the
same time be sensitive to the combinatorics encoded in the complex, in particular to
the level of connectivity of simplices (see [7]). Namely, let � be a simplicial complex
of dimension d, let 0 ≤ q ≤ d be an integer, and let σ0 ∈ � be a simplex of dimension
greater than or equal to q . One obtains a family of groups

Aq
n(�, σ0), n ≥ 1,
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Fig. 1 A 2-dimensional
complex � with nontrivial A1

1.

the A-groups of �, based at σ0. These groups differ from the classical homotopy groups
of � in a significant way. For instance, the group A1

1(�, σ0), for the 2-dimensional
complex � in Figure 1 is isomorphic to Z, measuring the presence of a “connectivity”
hole in its center. (See the example on p. 101 of [4].) The theory is based on an approach
proposed by R. Atkin [1, 2]; hence the letter “A.” This is not to be mistaken with the
A1-homotopy theory of schemes by Voevodsky [9].

The computation of these groups proceeds via the construction of a graph, �q (�),
whose vertices represent simplices in �. There is an edge between two simplices if
they share a face of dimension greater than or equal to q. This construction suggested
a natural definition of the A–theory of graphs, which was also developed in [4].
Proposition 5.12 in that paper shows that A1 of the complex can be obtained as the
fundamental group of the space obtained by attaching 2-cells into all 3- and 4-cycles
of �q (�).

The goal of the present paper is to generalize this result. Let� be a simple, undirected
graph, with distinguished base vertex v0. We will construct an infinite cell complex
X� together with a homomorphism

An(�, v0) −→ πn(X�, v0).

Moreover, we can show this homomorphism to be an isomorphism if a (plausible)
cubical analog of the simplicial approximation theorem holds.

There are several reasons for this generalization. One reason is the desire for a
homology theory associated to the A-theory of a graph. A natural candidate is the
singular homology of the space X� . This will be explored in a future paper.

Another reason is a connection to the homotopy of the complements of certain
subspace arrangements. While computing An−3

1 of the order complex of the Boolean
lattice Bn , it became clear that this computation was equivalent to computing the fun-
damental group of the complement of the 3-equal arrangement [6]. (This result for the
k-equal arrangement was proved independently by A. Björner [5].) To generalize this
connection to a wider class of subspace arrangements, a topological characterization
of A-theory is needed.

The content of the paper is as follows. After a brief review of the definition of
A-theory, we construct the model space X� , followed by a proof of the main result
(Theorem 5.2). The main result refers to a yet unknown analog of a simplicial ap-
proximation theorem in the cubical world (Property 5.1). The last section introduces
the loop graph of a graph, and we prove that the (n + 1)-st A-group of the graph is
isomorphic to the n-th A-group of the loop graph, in analogy to a standard result about
classical homotopy.
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2. A-theory of Graphs

We first recall the definition given in Sect. 5 of [4].

Definition 2.1. Let �1 = (V1, E1), �2 = (V2, E2) be simple graphs, that is, graphs
without loops and multiple edges.

(1) The Cartesian product (cf. [10]) �1��2 is the graph with vertex set V1 × V2. There
is an edge between (u1, u2) and (v1, v2) if either u1 = v1 and u2v2 ∈ E2 or u2 = v2

and u1v1 ∈ E1. The product can also be viewed as the 1-skeleton of the product
cell complex, where �1 and �2 are viewed as 1-dimensional cell complexes.

(2) Slightly different from standard notation we define a (simplicial) graph homomor-
phism f : �1 −→ �2 to be a set map V1 −→ V2 such that, if uv ∈ E1, then either
f (u) = f (v) or f (u) f (v) ∈ E2. A graph homomorphism viewed as a map of cell
complexes is the same as a cellular map.

(3) Let �′
1 ⊂ �1 and �′

2 ⊂ �2 be subgraphs. A (relative) graph homomorphism f :
(�1, �

′
1) −→ (�2, �

′
2) is a graph homomorphism f : �1 −→ �2 which restricts to

a graph homomorphism f |�′
1

: �′
1 −→ �′

2. In the case that a graph �′ is a single
vertex graph with vertex v, we will denote �′ by v. In particular, we will deal with
homomorphisms such as f : (�1, v1) −→ (�2, v2), where vi ∈ Vi , i = 1, 2, is a
vertex.

(4) Let In be the graph with n + 1 vertices labeled 0, 1, . . . , n, and n edges (i − 1)i
for i = 1, . . . , n.

Next we define homotopy of graph homomorphisms and homotopy equivalence of
graphs.

Definition 2.2. (1) Let f, g : (�1, v1) −→ (�2, v2) be graph homomorphisms. We call
f and g A–homotopic, denoted by f 
A g, if there is an integer n and a graph
homomorphism

φ : �1�In −→ �2,

such that φ(−, 0) = f , and φ(−, n) = g, and such that φ(v1, i) = v2 for all i .

Definition 2.3. (1) Let

In
m = Im� · · · �Im

be the n-fold Cartesian product of Im for some m. We will call In
m an n-cube of

height m. Its distinguished base point is O = (0, . . . , 0).
(2) Define the boundary ∂In

m of a cube In
m of height m to be the subgraph of In

m
containing all vertices with at least one coordinate equal to 0 or m.

It is easy to show that any graph homomorphism from In
m to � can be extended to a

graph homomorphism from In
m ′ to � for any m ′ ≥ m. In other words, there is an inclu-

sion Hom(In
m, �) ↪→ Hom(In

m ′ , �), and hence each element f ∈ Hom(In
m, �) defines
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an element f ∈ lim−→ Hom(In
m, �) in the colimit. This in mind, we will sometimes omit

the subscript m.

Definition 2.4. Let An(�, v0), n ≥ 1, be the set of homotopy classes of graph homo-
morphisms

f : (In, ∂In) −→ (�, v0).

For n = 0, we define A0(�, v0) to be the pointed set of connected components of�, with
distinguished element the component containing v0. We will denote the equivalence
class of a homomorphism f in An(�, v0) by [ f ].

We can define a multiplication on the set An(�, v0), n ≥ 1, as follows. Given ele-
ments [ f ], [g] ∈ An(�, v0), represented by

f, g :
(
In

m, ∂In
m

) −→ (�, v0),

defined on a cube of height m, we define [ f ] ∗ [g] ∈ An(�, v0) as the homotopy class
of the map

h :
(
In

2m, ∂In
2m

) −→ (�, v0),

defined on a cube of height 2m as follows.

h(i1, . . . , in) =
⎧⎨⎩ f (i1, . . . , in) if i j ≤ m for all j,

g(i1 − m, . . . , in) if i1 > m and i j ≤ m for j > 1,

v0 otherwise.

Alternatively, using Theorem 5.16 in [4], one can describe the A-theory of graphs
using multidimensional “grids” of vertices as follows. Let � be a graph with distin-
guished vertex v0. Let An(�, v0) be the set of functions

Zn −→ V (�),

from the lattice Zn into the set of vertices of � which take on the value v0 almost
everywhere, and for which any two adjacent lattice points get mapped into either the
same or adjacent vertices of �. We define an equivalence relation on this set as follows.
Two functions f and g are equivalent, if there exists

h : Zn+1 −→ V (�),

in An+1(�, v0) and integers k and l, such that

h(i1, . . . , in, k) = f (i1, . . . , in),

h(i1, . . . , in, l) = g(i1, . . . , in)

for all i1, . . . , in ∈ Z. For a definition of a group operation on the set of equivalence
classes see Prop. 3.5 of [4]. Then it is straightforward to see that An(�, v0) is isomorphic
to the group of equivalence classes of elements in An(�, v0). It will be useful to think
of An(�, v0) in those terms.
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Remark 2.5. Even though the definition of Aq
n(�, σ0) as mentioned in the introduc-

tion will not be needed in the sequel, we include it here for completeness. Let � be a
simplicial complex, 0 ≤ q ≤ dim �, and σ0 ∈ � a simplex of dim σ0 ≥ q. Let �q (�)
be the graph on the vertex set {σ ∈ � : dim σ ≥ q} and edges given by pairs of sim-
plices that share a common q-face. Then we define Aq

n(�, σ0) := An(�q (�), σ0) (cf.
Theorem 5.16 of [4]).

3. A cubical set setting for the A-theory of graphs

We now define a cubical set C∗(�) associated to the graph � (see [8]). This gives the
right setup in order to obtain a close connection to the space X� which we define in
the next section. Let In

∞ be the “infinite” discrete n-cube, that is, the infinite lattice
labeled by Zn .

Definition 3.1. A graph homomorphism f : In
∞ → � stabilizes in direction (i, ε), i =

1, . . . , n, ε ∈ {±1} if there exists an m0 = m0( f, i, ε), s.t. for all m ≥ m0

f (a1, . . . , ai−1, εm0, ai+1, . . . , an) = f (a1, . . . , ai−1, εm, ai+1, . . . , an).

Let

Cn(�) = Homs
(
In
∞, �

)
,

the set of graph homomorphisms from the infinite n-cube to � that stabilize in each
direction (i, ε).

For each “face” of In
∞, i.e., for each choice of (i, ε), i = 1, . . . , n, ε ∈ {±1}, we

define face maps

α′
i,ε : Cn(�) −→ Cn−1(�),

by

α′
i,ε( f )(a1, . . . , an−1) = f (a1, . . . , ai−1, εm0, ai , . . . , an−1),

where m0 = m0( f, i, ε). In other words α′
i,ε( f ) is the map in Cn−1(�) whose values

are equal to the stable values of f in direction (i, ε).
Degeneracy maps

β ′
i : Cn−1(�) −→ Cn(�),

i = 1, . . . , n, are defined as follows. Given a map f ∈ Cn−1(�), extend it to a map
on In

∞ by

β ′
i ( f )(a1, . . . , an) = f (a1, . . . , ai−1, ai+1, . . . , an),
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Fig. 2 An illustration of a map
h in the definition of ∼.

for each (a1, . . . , an) ∈ In
∞. It is straightforward to check that in this way C∗(�) is a

cubical set.
We now imitate the definition of combinatorial homotopy of Kan complexes; see,

e.g. [8, Ch. 1.3].

Definition 3.2. We define a relation on Cn(�), n ≥ 0. Let f, g ∈ Cn(�). Then f ∼ g
if there exists h ∈ Cn+1(�) such that for all i = 1, . . . , n, ε ∈ {±1}:

(1) α′
i,ε( f ) = α′

i,ε(g),
(2) α′

i,ε(h) = β ′
nα

′
i,ε( f ) = β ′

nα
′
i,ε(g),

(3) α′
n+1,−1(h) = f and α′

n+1,1(h) = g.

This is illustrated in Figure 2. A few vertices of the cube In+1
∞ are shown. They are

differently shaded correspondingly to their image vertex in �. The vertical coordinate
axis corresponds to the coordinates 1, . . . , n, the horizontal axis corresponds to the
coordinate n + 1. The maps f and g are indicated by the two vertical lines. Relation
(1) corresponds to the fact that they stabilize in all directions (i, ε), i ≤ n, identically.
In the picture this is indicated by the fact that in the north direction the image vertex
is the constant white vertex, and in the south direction, it is the constant black vertex.
Relation (2) says that h also stabilizes in the same way in these directions. Finally
relation (3) yields that in the west direction h stabilizes identical to f and in the east
direction h stabilizes identical to g.

Proposition 3.3. The relation defined above is an equivalence relation. �

Definition 3.4. Let v0 ∈ � be a distinguished vertex. Let B∗(�, v0) ⊂ C∗(�) be the
subset of all maps that are equal to v0 outside of a finite region of I∗

∞.
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Observe that the equivalence relation ∼ restricts to an equivalence relation on
B∗(�, v0), also denoted by ∼.

Proposition 3.5. There is a group structure on the set Bn(�, v0)/ ∼ for all n ≥ 1,
and, furthermore,

(Bn(�, v0)/ ∼) ∼= An(�, v0).

The proof is straightforward. For a definition of the group structure see Prop. 3.5
of [4].

4. Definition of X�

Let � be a finite, simple (undirected) graph. In this section we define a cell complex
X� associated to �. This complex will be defined as the geometric realization of a
certain cubical set M∗(�). As before, let In

1 be the discrete n-cube. Let

Mn(�) = Hom
(
In

1, �
)
,

the set of all graph homomorphisms from In
1 to �. We define face and degeneracy

maps as follows.
First note that In

1 has 2n faces Fi,ε, with i = 1, . . . , n, and ε ∈ {±1}, corresponding
to the two faces for each coordinate. For i = 1, . . . , n, ε ∈ {±1}, let

ai,ε : In−1
1 −→ In

1

(x1, . . . , xn−1) 
−→ (x1, . . . , xi−1,
ε+1

2 , xi , . . . xn−1)

be the graph homomorphism given by inclusion of In−1
1 as the (i, ε)-face of In

1. For
i = 1, . . . , n define

bi : In
1 −→ In−1

1

(x1, . . . , xn) 
−→ (x1, . . . , xi−1, xi+1, . . . xn)

to be the projection in direction i .
Now let

αi,ε : Mn(�) −→ Mn−1(�)

f 
−→ f ◦ ai,ε
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be the map induced by ai,ε. Likewise,

βi : Mn−1(�) −→ Mn(�)

f 
−→ f ◦ bi

to be the map induced by bi . In this way we obtain a cubical set M∗(�).
To each cubical set is associated a cell complex, namely its geometric realization.

We recall the construction for M∗(�). Let Cn be the geometric n-dimensional cube.
We can define functions ai,ε and bi on Cn in a fashion as above. Define the space

|M∗(�)| =
⊎
n≥0

Mn(�) × Cn/ ∼,

where ∼ is the equivalence relation generated by the following two types of equiva-
lences:

(αi,ε( f ), xn−1) ∼ ( f, ai,ε(xn−1)), f ∈ Mn(�), xn−1 ∈ Cn−1 (4.1)

(β j (g), xn) ∼ (g, b j (xn)), g ∈ Mn−1(�), xn ∈ Cn. (4.2)

We will denote the cell complex |M∗(�)| by X� .

5. The main result

Before we state the main result we will introduce the following plausible property,
which is a special case of a general cubical approximation theorem. We have not found
it in the literature and have not been able to prove it yet.

Property 5.1. Let X be a cubical set, and let f : Cn −→ |X | be a continu-
ous map from the n-cube to the geometric realization of X, such that the re-
striction of f to the boundary of Cn is cubical. Then there exists a cubi-
cal subdivision Dn of Cn and a cubical map f ′ : Dn −→ |X | which is ho-
motopic to f and the restrictions of f and f ′ to the boundary of Dn are
equal.

Theorem 5.2. There is a group homomorphism

φ : An(�, v0) −→ πn(X�, v0),

for all n ≥ 1. If a cubical analog of the simplicial approximation theorem such as 5.1
holds, then φ is an isomorphism.

Proof: First we define φ. Let [ f ] ∈ An(�, v0) ∼= Bn(�, v0)/ ∼. Then a representative
f is a graph homomorphism

f : In
∞ −→ �,
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whose value on vertices outside a finite region is equal to v0, say for vertices outside
of a cube with side length r . Our goal is to define a continuous map

f̃ : Cn −→ X�,

such that f̃ sends the boundary of Cn to v0.
Let Dn be a cubical subdivision of Cn into cubes of side length 1/r . The 1-skeleton

of Dn can be identified with In
r , which is contained in In

∞. And each subcube of In
r can

be identified with In
1. Hence, f restricts to a graph homomorphism on each cube in

the 1-skeleton of Dn , that is, a graph homomorphism

f̂ : In
1 −→ �.

Thus, f̂ ∈ Hom(In
1, �). Now define f̃ on each subcube of Dn by

f̃ (x) = [( f̂ , x)] ∈ X� =
( ⊎

n

Hom(In
1, �) × Cn

)
/ ∼ .

The equivalence relation ∼ guarantees that f̃ is well-defined on overlapping faces.
Therefore, our definition extends to give a map

f̃ : Dn −→ X�.

So define

φ([ f ]) = [ f̃ ].

We need to show that φ is well-defined. Let f ∼ g be two maps in Bn(�, v0). Then
there exists a homotopy h ∈ Bn+1(�, v0) such that α′

n+1,−1(h) = f and α′
n+1,1(h) = g.

We claim that φ(h) gives a homotopy between φ( f ) and φ(g). From the definition of
φ it is easy to see that

φ
((

α′
i,ε(h)

)
(y) = [(αi,ε(h̃), y)],

for all i, ε. Therefore, the restriction of

φ(h) : Dn+1 −→ X�

to the (n + 1, −1)-face is equal to the map from Dn to X� , sending x to
[(α′

n+1,−1(h), x)], which is equal to φ( f ); similarly for φ(g). It now follows that φ(h)
is a homotopy between φ( f ) and φ(g). This shows that φ is well-defined.

Now we show that φ is a group homomorphism. Recall [4, p. 111] that the
multiplication in An(�, v0) is given by juxtaposing “grids.” This carries over directly
to Bn(�, v0)/ ∼. On the other hand, the multiplication in πn(X�, v0) is given by using
the comultiplication on (Cn, ∂Cn). It is then straightforward to check that φ preserves
multiplication.
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From here on we assume that Property 5.1 holds. Under this assumption we show
that φ is onto. We first show that every element in πn(X�, v0) contains a cubical
representative. Let [ f ] ∈ πn(X�, v0). Then f : Cn −→ X� sends the boundary of Cn

to the base point v0. Trivially then, the restriction of f to the boundary is a cubical
map. By Property 5.1 f is homotopic to a cubical map on a cubical subdivision Dn of
Cn , and agrees with f on the boundary. That is, [ f ] contains a cubical representative.
So we may assume that f is cubical on Dn .

Consider the restriction of f to the 1-skeleton of Dn . It induces in the obvious
way a graph homomorphism g : In

∞ −→ �, that is, an element [g] ∈ Bn(�, v0)/ ∼.
We claim that φ(g) = [ f ], that is, g̃ ∼ f . We use induction on n. If n = 1, then we
are done, since any two maps on the unit interval that agree on the end points are
homotopic. Changing f up to homotopy we may assume that f and g̃ are equal on
the 1-skeleton.

Now let n > 1. Note that

f : Dn −→ X� =
( ⊎

n≥0

Hom
(
In

1, �
)) × Cn/ ∼

is cubical, so each n-cube Cn in the cubical subdivision Dn is sent to an n-cube in
X� . The particular n-cube it is mapped to is determined by the image of the map
on the 1-skeleton, since the map is cubical. This in turn determines an element in
Hom(In

1, �), serving as the label of the image cube. Hence, f and g̃ map each n-cube
of the subdivision Dn to the same n-cube in X� . By induction we may assume that f
and g̃ are equal on the boundary of each n-cube. But observe that any two maps into
Cn that agree on the boundary are homotopic, via a homotopy that leaves the boundary
fixed. This shows f and g̃ are homotopic on each n-cube of the cubical subdivision
Dn . Pasting these homotopies together along the boundaries, we obtain a homotopy
between f and g̃, so that [ f ] = [g̃].

To show that φ is one-to-one under the assumption of Property 5.1, suppose that
f, g ∈ Bn(�, v0)/ ∼ such that φ( f ) = φ(g) ∈ πn(�, v0). Then there exists a homo-
topy h : Cn+1 −→ X� such that the restrictions of h to the (n + 1)-directional faces
are φ( f ) and φ(g), respectively. As above, we may assume that h is cubical on a
subdivision Dn+1 of Cn+1, providing a homotopy between cubical approximations
of φ( f ) and φ(g) on a subdivision Dn of Cn . Now observe that the restriction
of h to the 1-skeleton of Dn+1 induces a graph homomorphism h′ : In+1

1 −→ � in
Bn+1(�, v0), whose restrictions to the (n + 1)-directional faces are refinements of f
and g, respectively. But these refinements are equivalent to f and g, respectively.
Thus, [ f ] = [g] ∈ Bn(�, v0)/ ∼. �

6. Path- and loop graph of a graph

This section is devoted to further develop the connection between classical homotopy
theory and A–theory. In classical homotopy theory the computation of the homotopy
group πn+1(X ) of a space X can be reduced to the computation of πn(�X ), the n-th
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homotopy group of the loop space �X of X . Here we want to introduce the path graph
P� and the loop graph �� of a graph � such that naturally An(��) ∼= An+1(�).

Definition 6.1. Let � be a graph with base vertex ∗. Define the path graph P� =
(VP�, EP�) to be the graph on the vertex set

VP� = {ϕ : Im → � : m ∈ N, ϕ a graph homomorphism with ϕ(0) = ∗}.

The edge set EP� is given as follows. Consider two vertices ϕ0 : Im → � and ϕ1 :
Im ′ → �. Assuming m ≤ m ′ extend ϕ0 to a map ϕ′

0 : Im ′ → � by repeating the last
vertex ϕ0(m) at the end:

ϕ′
0(y) =

{
ϕ0(y), if y ≤ m,

ϕ0(m), otherwise.

Define {ϕ0, ϕ1} to be an edge if there exists a graph homomorphism � : Im ′�I1 → �

such that �(•, 0) = ϕ′
0 and �(•, 1) = ϕ1.

There is a graph homomorphism p : P� → � given by p(ϕ) = ϕ(m) for a vertex
ϕ : Im → � of P�.

Definition 6.2. For a graph � define the loop graph �� of � to be the induced subgraph
of P� on the vertex set p−1(∗). We define the base vertex of �� to be the vertex
ϕ0 : I0 → �, i.e., the map that sends the single vertex of I0 to ∗ in �. To avoid too
much notation we will denote this map by ∗ as well.

Note that for a graph homomorphism ψ : (�1, ∗) → (�2, ∗) there is an induced map
�ψ : (��1, ∗) → (��2, ∗) defined by �ψ(ϕ)(y) = ψ(ϕ(y)) where ϕ : Im → �1 and
y is a vertex of Im .

Remark 6.3. Consider the constant loop ϕm : Im → � in ��, i.e., ϕm(x) = ∗ ∈ � for
all vertices x of Im . If a loop ϕ : Im → � is connected to ϕm via an edge, then it is also
connected to ϕ0 = ∗ via an edge.

Analogously to classical topology we have the following.

Proposition 6.4. There is a natural isomorphism An(��)
∼=−→ An+1(�) for n ≥ 1. Fur-

thermore, there is a bijection A0(��)
∼=−→ A1(�).

Proof: The case n ≥ 1. Let [ f ] ∈ An(��), i.e., f is a graph homomorphism f :
(In

m, ∂In
m) → (��, ∗). For x a vertex of In

m there is an m f (x) such that f (x) is a
graph homomorphism f (x) : (Im f (x), ∂Im f (x)) → (�, ∗). Let m ′ = maxx {m f (x), m}.
We want to define a graph homomorphism α( f ) : (In+1

m ′ , ∂In+1
m ′ ) → (�, ∗). For that
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Fig. 3 The maps f and α( f ).

reason write In+1
m ′ = In

m ′�Im ′ and let (x, y) be a vertex of In
m ′�Im ′ . Now let

α( f )(x, y) =
{

f (x)(y), if x is a vertex of In
m ⊂ In

m ′ and y ≤ m f (x),

∗, otherwise.

The construction is shown in Figure 3, where n = 1, m = 10, and m ′ = 12. The vertical
line is In

m , the horizontal lines indicate the paths f (x), the whole square indicates α( f ).
We claim that the map [ f ] → [α( f )] is well defined and the desired natural iso-

morphism.

Well definedness: First of all it is easy to check that α( f ) is a graph ho-
momorphism α( f ) : (In+1

m ′ , ∂In+1
m ′ ) → (�, ∗). Now let [ f ] = [g] ∈ An(��), i.e.,

there exists an A–homotopy H : In
m�Il → �� between f and g. Now let m ′ =

maxx,x ′ {m f (x), mg(x ′), m} and define H̄ : In
m ′�Im ′�Il → � by

H̄ (x, y, t) =
{

H (x, t)(y), if x is a vertex of In
m and y ≤ m H (x,t),

∗, otherwise.

Then H̄ is a graph homomorphism and an A–homotopy between (possibly extended
to a larger cube) α( f ) and α(g).

Homomorphism: Is straightforward; similar techniques play a role that are needed
to show that An(�) is a group for n ≥ 1.

Surjectivity: For [h] ∈ An+1(�), say h : (In+1
m , ∂In+1

m ) → (�, ∗), consider the map
f defined by f (x)(y) = h(x, y) for x a vertex of In

m, y a vertex of Im . This map is
not quite what we want since it is a map f : (In

m, ∂In
m) → (��, ϕm), where ϕm is the

constant loop Im → � as in Remark 6.3. Now define f ′ : (In
m, ∂In

m) → (��, ∗) by
f ′(x) = ∗ ∈ �� for x a vertex of ∂In

m and f ′(x) = f (x) for x a vertex of In
m \ ∂In

m .
Thanks to Remark 6.3, f ′ is a well defined graph homomorphism and clearly α( f ′) =
h.

Injectivity: Consider f : (In
m, ∂In

m) → (��, ∗) and g : (In
m ′ , ∂In

m ′ ) → (��, ∗) such
that [α( f )] = [α(g)], i.e., there is an A–homotopy H : In

m ′′�Il → � between (possibly
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extended to a larger cube) α( f ) and α(g), where m ′′ = maxx,x ′ {m f (x), mg(x ′), m, m ′}.
Define H̄ : In

m ′′�Il → �� by H̄ (x, t)(y) = H (x, y, t). Then H̄ (x, t) : Im ′′ → �� for
all x and t . Furthermore H̄ (x, t) = ϕm for x a vertex of ∂In

m ′′ . As before we replace H̄
by H̄ ′ by changing it only on the boundary and by replacing α( f ) by f and α(g) by
g.

H̄ ′(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H̄ (x, t), if x a vertex of In

m ′′ \ ∂In
m ′′ and t �= 0, m,

f (x), if t = 0 and x a vertex of In
m ⊂ In

m ′′ ,

g(x), if t = m and x a vertex of In
m ′ ⊂ In

m ′′ ,

ϕ0, otherwise.

Then by Remark 6.3 H̄ ′ is a graph homomorphism and it yields an A–homotopy
between (possibly extended to a larger cube) f and g.

Naturality: Let ψ : (�1, ∗�1 ) → (�2, ∗�2 ) be a graph homomorphism and f :
(In

m, ∂In
m) → (��1, ∗). Then for a vertex x of In

m we obtain

ψ#(α�1 ( f ))(x, y) =
{

ψ( f (x)(y)), if y ≤ m f (x),

ψ(∗�1 ), otherwise.

=
{

�ψ( f )(x)(y), if y ≤ m�ψ( f )(x),

∗�2 , otherwise.

= α�2 ((�ψ)#( f )).

The remaining case n = 0: Consider an element [ϕ] of A0(��), i.e., a connected com-
ponent of �� represented by a loop ϕ : Im → �. This loop defines an element [ϕ] (this
time a homotopy class) of A1(�). Well definedness and bijectivity of this assignment is
immediate. �
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