ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Tropical convexity via cellular resolutions

Florian Block1 and Josephine Yu2
1Technische Universität München, Zentrum Mathematik Boltzmannstr. 3 85748 Garching Germany Boltzmannstr. 3 85748 Garching Germany
2University of California Department of Mathematics Berkeley CA 94720 Berkeley CA 94720

DOI: 10.1007/s10801-006-9104-9

Abstract

The tropical convex hull of a finite set of points in tropical projective space has a natural structure of a cellular free resolution. Therefore, methods from computational commutative algebra can be used to compute tropical convex hulls. Tropical cyclic polytopes are also presented.

Pages: 103–114

Full Text: PDF

References

1. D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics, Springer, 1995.
2. M. Develin and B. Sturmfels, “Tropical Convexity”, Documenta Math. 9 (2004): 1-27.
3. D. R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry,
2002. Available at http://www.math.uiuc.edu/Macaulay2/.
4. M. Joswig, “Tropical Halfspaces”, arXiv: math.CO/0312068, 2003.
5. Maple. Available at http://maplesoft.com.
6. E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, Springer, 2004.
7. R. A. Milowski, Computing Irredundant Irreducible Decompositions of Large Scale Monomial Ideals, ISSAC 2004, Santanders, Spain,
2004. Software available at http://milowski. org/software.html.
8. K. Polthier, JavaView, a 3D geometry viewer and a mathematical visualization software. Available at




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition