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Abstract Let � and B̄ be a subset of � = PG(2n − 1, q) and a subset of PG(2n, q)
respectively, with � ⊂ PG(2n, q) and B̄ �⊂ �. Denote by K the cone of vertex � and
base B̄ and consider the point set B defined by

B = (
K\�) ∪ {X ∈ S : X ∩ K �= ∅},

in the André, Bruck-Bose representation of PG(2, qn) in PG(2n, q) associated to a
regular spread S of PG(2n − 1, q). We are interested in finding conditions on B̄ and
� in order to force the set B to be a minimal blocking set in PG(2, qn). Our interest is
motivated by the following observation. Assume a Property α of the pair (�, B̄) forces
B to turn out a minimal blocking set. Then one can try to find new classes of minimal
blocking sets working with the list of all known pairs (�, B̄) with Property α. With this
in mind, we deal with the problem in the case � is a subspace of PG(2n − 1, q) and
B̄ a blocking set in a subspace of PG(2n, q); both in a mutually suitable position. We
achieve, in this way, new classes and new sizes of minimal blocking sets in PG(2, qn),
generalizing the main constructions of [14]. For example, for q = 3h, we get large
blocking sets of size qn+2 + 1 (n ≥ 5) and of size greater than qn+2 + qn−6 (n ≥ 6).
As an application, a characterization of Buekenhout-Metz unitals in PG(2, q2k) is
also given.
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1. Introduction

Let �n be a finite projective plane of order n. A blocking set in �n is a point set B
intersecting every line and containing none. A point P of B is said to be essential if
B \ {P} is not a blocking set, that is if a line � exists meeting B exactly in the point
P. When all points of B are essential no proper subset of B is a blocking set and B is
called minimal.

Let PG(n, q) denote the n–dimensional projective space associated with the (n +
1)−dimensional vector space G F(q)n+1 over the finite field G F(q) with q elements,
q a prime power. Following [12], a blocking set in PG(n, q), n ≥ 2, is defined as a
point set B intersecting every hyperplane and containing no line. A blocking set B is
called linear [21] if its points are defined by the non-zero vectors of a G F(q ′)−vector
subspace of G F(q)n+1, G F(q ′) a subfield of G F(q); in this case B is also called
G F(q ′)−linear. We say that B is planar if it is contained in a plane of PG(n, q).
The definitions of essential point and minimal blocking set extend to blocking sets in
PG(n, q) in an obvious way. When a subspace S of PG(n, q) meets a blocking set B
just in one point P we say that S is tangent to B in P. It is straightforward to see that
if PG(h, q) is an h−dimensional subspace of PG(n, q), h > 1, then every blocking
set in PG(h, q) is also a blocking set in PG(n, q) and the minimality is preserved.

The above two definitions of blocking set clearly coincide for the Desarguesian
plane PG(2, q).

Unfortunately, in the literature the terminology on blocking sets is not yet standard,
so sometimes it is possible to find slight variations of the previous definitions. For
example, in [6] a blocking set in PG(n, q) is defined as a 1−blocking set. For infor-
mation on main results and recent developments of blocking set theory we refer the
reader to [5, 8, 17, 22, 23, 27, 29, 30]. Here we will survey just some results useful in
what follows.

Baer subplanes and unitals in PG(2, q2) and ovoids in PG(3, q) are examples of
extremal minimal blocking sets, in the sense of the following two classical results.

Result 1.1. (A. A. Bruen [8] for n = 2; A. Beutelspacher [6] for n > 2) The minimum
possible size of a blocking set B in a finite projective space PG(n, q), n ≥ 2, is
q + √

q + 1 and the bound is attained if, and only if, q is a square and B is a Baer
subplane.

Actually, the result of A. A. Bruen [8] was proved also for non Desarguesian finite
projective planes. Moreover, in the case n > 2, improved results have been obtained
by L.Storme and Sz.Weiner [26].

Result 1.2. (A. A. Bruen and J. A. Thas, [12]) Let B be a minimal blocking set in
PG(n, q). Then we have the following:

– if n = 2, |B| ≤ q
√

q + 1 and equality holds if, and only if, q is a square and B is
a unital;

– if n = 3, |B| ≤ q2 + 1 and equality holds if, and only if, B is an ovoid;
– if n ≥ 4, |B| <

√
qn+1 + 1.
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For n > 2, the notion of ovoid can be generalized to a non singular quadric Q
of PG(n, q) : it is a point set of Q meeting every generator of Q exactly once.
Ovoids of a non singular parabolic quadric Q(2n, q) in PG(2n, q) contain exactly
qn + 1 points and it is known that they exist if and only if, n = 2, 3 ( A. Gunawar-
dena and E. Moorhouse [15] for q odd, J. A. Thas [32] for q even). Very deep re-
sults about ovoids of Q(2n, q) have been recently obtained by S. Ball in [2] and
by S. Ball, P. Govaerts and L. Storme in [3]. In particular, these authors prove that
an ovoid O of Q(2n, q), n = 2, 3, meets every elliptic quadric Q−(2n − 1, q) on
Q(2n, q) in 1 mod p points, p the characteristic of G F(q) (see [2] for n = 2, [3]
for n = 3). So, since every hyperplane of PG(2n, q) intersecting Q(2n, q) not in a
Q−(2n − 1, q) has some points on O, the following useful result on blocking set can be
stated.

Result 1.3. Every ovoid of a non singular parabolic quadric Q(2n, q) of PG(2n, q),
n = 2, 3, is a minimal blocking set in PG(2n, q).

Minimal blocking sets in PG(2, q) of size less than 3(q + 1)/2 are called small
and have been intensively studied by several authors; an updated survey on them with
a quite complete bibliography can be found in [30, Sect. 3.1]. Here we only recall a
result by A. Blokhuis [7] stating the non existence of small blocking sets in PG(2, p),
p a prime. Conversely, very few results are known about minimal blocking sets of
PG(n, q) whose order is “close” to the bounds of Result 1.2, especially when n > 2.

These blocking sets are called large and we refer to [30, Sect. 3.4] for details. In
this direction, in the case of PG(2, q), new interesting results were sketched and
announced by A. Gács, T.Szőnyi and Zs.Weiner in [30], but completed and appeared
explicitly in [14] afterwards; among them we recall the following.

Result 1.4. (A. Cossidente, A. Gács, C. Mengyán, A. Siciliano, T. Szőnyi and Zs.
Weiner, [14]) (i) In PG(2, qn) there are minimal blocking sets of size qn+1 + 1, if
n ≥ 2, and minimal blocking sets of size qn+1 + qn−3 + 1, if n ≥ 3.

(ii) In PG(2, q2) there is a minimal blocking set for any size in the interval
[4q log q, q

√
q − q + 2

√
q].

The first part of this result is achieved by generalizing the well known construction
for the Buekenhout-Metz unitals [13]. Actually, the authors prove that to some cones
in PG(2n, q) with base an ovoid of PG(3, q) there correspond minimal blocking sets
in the André, Bruck-Bose representation of PG(2, qn) in PG(2n, q). The second part
of the result is based on a construction that relies on a statistical argument.

In this paper, in the same spirit of Result 1.4(i), we introduce some more gen-
eral constructions consisting of cones in PG(2n, q) of base a blocking set in a
suitable subspace of PG(2n, q) such that minimal blocking sets in André, Bruck-
Bose representations of PG(2, qn) are achieved. In this way we can exhibit new
classes and new sizes of minimal blocking sets in PG(2, qn). Some of these blo-
cking sets are large and sometimes their sizes lie in the interval of Result 1.4(ii).
We note that, in this last case, our constructions are purely geometrical and do not
rely on statistical arguments as the corresponding ones of Result 1.4(ii). As an ap-
plication of our results we give a characterization of Buekenhout-Metz unitals in
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PG(2, q2k), also showing how the existence of non Buekenhout-Metz unitals de-
pends on that of a special kind of blocking sets in projective spaces. We point out
that, to get new results by our constructions, we especially need examples and prop-
erties of minimal blocking sets which are not planar. As we will see in the next
sections, some useful results can be found in [16] and [31]; here we only recall the
following.

Result 1.5. (U. Heim, [16]) Let q = ph be a power of a
prime p. For every integer d > 2, there exist blocking sets in
PG(d, q), not contained in a hyperplane, of size (d − 1)q −
(d − 3)q/p + 1, if h > 2, and of size (d − 1)q − (d − 3)(q + 1)/2 + d − 1, if
q = p is an odd prime.

2. Preliminaries

Let us briefly recall the well known André, Bruck-Bose representation of the plane
PG(2, qn). Let S be a regular (n − 1)-spread of a hyperplane � = PG(2n − 1, q) in
�′ = PG(2n, q). A point-line geometry � = �(S), isomorphic to PG(2, qn), can
be defined in the following way [1, 9, 10]: (i) the points are the points of �′ \ � (affine
points) and the elements of S, (ii) the lines are the n-dimensional subspaces of �′

which intersect � in an element of S (affine lines) and the (n − 1)-spread S, (iii) the
point-line incidences are inherited from �′.

The incidence structure � = �(S) can also be defined without the assumption
that the spread S is regular and, in this case, � is a translation plane [9]. As we are
interested in Desarguesian planes, for the rest of the paper we do not care about this
more general context. However, we point out that most of our results extend to finite
translation planes in a very natural way.

Now let � and B̄ be a subset of � and a subset of �′ not contained in �, respectively.
Denote by K = K (�, B̄) the cone of vertex � and base B̄, i.e.

K = K (�, B̄) =
⋃
P̄∈B̄

〈P̄, �〉, (1)

and consider the subset B = B(�, B̄) of � defined by

B = B(�, B̄) = (
K \ �

) ∪ {X ∈ S : X ∩ K �= ∅}. (2)

We are interested in finding conditions on B̄ and � in order to force the set
B to be a minimal blocking set in �. Our interest is motivated by the fol-
lowing observation. Assume a Property α of the pair (�, B̄) forces B to turn
out a minimal blocking set. Then one can try to find new classes of minimal
blocking sets working with the list of all known pairs (�, B̄) with Property α.

With this in mind, we deal with the problem in the case � is a subspace of �

and B̄ a minimal blocking set in a subspace of �′; both in a mutually suitable
position.
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We point out that the notation introduced in this section will be used for the rest of
the paper, even without explicitly recalling it.

3. Construction 1

Let Y be a fixed element of the spread S of � and let � be a hyperplane of Y . Let �′

be an (n + 1)-dimensional subspace of �′ such that �′ ∩ � = ∅ and assume that B̄ is
a subset of �′ not contained in �. Note that, since �′ ∩ � = ∅, the intersection of �′

and Y is a point T and

〈P̄, �〉 ∩ 〈P̄ ′, �〉 = �, (3)

for any distinct points P̄, P̄ ′ ∈ B̄. Moreover, define K = K (�, B̄) and B = B(�, B̄)
by (1) and (2), respectively. If B̄ ∩ � ⊆ Y, the number γ of elements of S distinct
from Y and meeting K is 0, otherwise γ ≥ qn−1. The bound γ = qn−1 is attained if,
and only if, B̄ ∩ � is a point not in Y. The size of B is given by

|B| = |K \ �| + γ + 1 = qn−1|B̄ \ �| + γ + 1. (4)

Proposition 3.1. B is a blocking set of the plane � if, and only if, the following
properties are fulfilled:

(i) B̄ meets every hyperplane of �′ not through T,

(ii) B̄ contains no hyperplane of �′,
(iii) B̄ contains no line through T,

(iv) a spread element X ∈ S exists such that X ∩ K = ∅.

Proof: Let B̄ satisfy the four properties above. Let Sn be an n-dimensional subspace
of �′ not contained in � and assume Sn ∩ � = ∅. Then dim〈Sn, �〉 = 2n − 1 and, as
a consequence, dim(〈Sn, �〉 ∩ �′) = n. This implies that there exists a point P̄ ∈ B̄ ∩
〈Sn, �〉 ∩ �′ and hence Sn ∩ 〈P̄, �〉 �= ∅. Moreover Sn is not contained in K . Actually,
under this assumption, (3) implies that the n−dimensional subspace 〈Sn, �〉 ∩ �′ is
contained in B̄; a contradiction by (ii). In conclusion, the cone K blocks any n-
dimensional subspace Sn of �′ defining a line in � not through Y and no such Sn is
contained in it. To conclude that B is a blocking set of �, it is enough to note that
B ∩ S �= ∅, as Y ∈ B, and no line of � through Y is contained in B by (iii) and (iv).

Conversely, assume that B is a blocking set in � and suppose that there exists an
n−dimensional subspace S′

n of �′ not through T such that B̄ ∩ S′
n = ∅. The subspace

spanned by S′
n and � is a hyperplane H of �′; so H ∩ � is a hyperplane of � and

must contain a unique spread element Z , which turns out to be distinct from Y. Now,
if Sn is an n-dimensional subspace of H through Z not contained in �, there exists a
common point P of Sn and K , as B is a blocking set in �. Then P is on a line joining
a point of � and a point P̄ of B̄ which must belong to S′

n = H ∩ �′, a contradiction.
So, B̄ blocks every hyperplane of �′ not on T . Moreover, it is straightforward to
prove (iii) and (iv) and, as a consequence, � = �′ ∩ � is not contained in B̄. Finally,
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assume the existence of an n−dimensional subspace S′
n other than � and contained in

B̄. As already noted, the (2n − 1)−dimensional subspace S2n−1 = 〈S′
n, �〉 contains

an element Z of the spread S, so we can consider an n−dimensional subspace Sn

through Z and contained in S2n−1. Since every point of Sn is on a line meeting S′
n and

�, Sn should be contained in K ; a contradiction, as B does not contain lines of �. It
follows the validity of (ii), finishing the proof. �

The minimum size of a subset B̄ verifying the Properties (i)-(iv) is q + 1; in this case
B̄ is a line of �′ meeting � in a point distinct from T and the corresponding B is a
minimal blocking set of PG(2, qn) of size qn + qn−1 + 1. Actually, qn + qn−1 + 1
is the smallest size of a blocking set of PG(2, qn) of type B(�, B̄), as easily follows
from Result 1.1. Moreover, it follows from (4) that, if a blocking set B = B(�, B̄) in
PG(2, qn) has size qn + qn−1 + 1, then B̄ is a line of �′ meeting � in a point distinct
from T .

Corollary 3.2. If B̄ is a blocking set of �′, then B is a blocking set of �.

Proof: It is enough to remark that every blocking set in �′ fulfills Properties (i)-(iv)
of Proposition 3.1. �

Proposition 3.1 has a kind of converse, in the following sense.

Proposition 3.3. Let B̄ ′ be a subset of �′ not contained in � and disjoint from �.

Define K (�, B̄ ′) and B(�, B̄ ′) by (1) and (2), respectively, and assume that B(�, B̄ ′)
is a blocking set of �. Then there exist an (n + 1)-dimensional subspace �′ of �′ skew
to � and a subset B̄ of �′ verifying Properties (i)-(iv) of Proposition 3.1 such that
B(�, B̄) = B(�, B̄ ′).

Proof: Let �′ be an (n + 1)-dimensional subspace of �′ intersecting Y in a point
T �∈ � and define B̄ = K (�, B̄ ′) ∩ �′. It is straightforward to see that K (�, B̄) =
K (�, B̄ ′), so B(�, B̄) = B(�, B̄ ′), concluding the proof. �

Note that if B̄ fulfills Properties (i)-(iv) of Proposition 3.1, then B̄ ∪ {T } meets
every hyperplane of �′ and, if B̄ contains a subset B̄ ′ which is either a blocking set
or a line, then B(�, B̄ ′) is a blocking set in PG(2, qn) and B(�, B̄ ′) ⊆ B(�, B̄). So,
as we are interested in minimal blocking sets and we know the structure of B(�, B̄)
when B̄ is a line, w.l.o.g. we suppose for the rest of the section that B̄ is a minimal
blocking set of �′. Moreover, we assume that � = �′ ∩ � is a tangent hyperplane of
B̄ at a point Q, i.e.

�′ ∩ � ∩ B̄ = {Q}.

By Corollary 3.2, B is a blocking set of � and, in order to check its minimality, we
distinguish the following two cases in the next subsections: Q ∈ Y and Q �∈ Y .
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3.1. Construction 1a

Under the assumption Q ∈ Y, i.e. Q = T, we have

B = (
K \ �

) ∪ {Y }

and the size of B is given by

|B| = |K \ �| + 1 = qn−1(|B̄| − 1) + 1. (5)

By next proposition the line intersection numbers of B can be determined.

Proposition 3.4. Let Sn be a line of � other than S. If Sn contains Y and � is the line
Sn ∩ �′, then

|B ∩ Sn| = qn−1|(� ∩ B̄) \ {Q}| + 1. (6)

If Sn does not contain Y and S′
n = 〈Sn, �〉 ∩ �′, then

|B ∩ Sn| = |B̄ ∩ S′
n|. (7)

Moreover, Equality (7) holds for any hyperplane S′
n of �′ not through Q and for each

of the qn−1 lines Sn of � contained in 〈�, S′
n〉.

Proof: Equality (6) is straightforward; so assume Sn is not on Y . Then

B ∩ Sn = (K \ �) ∩ Sn =
⋃
P̄∈B̄

(〈P̄, �〉 ∩ Sn) =
⋃

P̄∈B̄∩S′
n

(〈P̄, �〉 ∩ Sn),

where S′
n = 〈Sn, �〉 ∩ �′. Since 〈P̄, �〉 ∩ 〈P̄ ′, �〉 = � for any distinct points P̄, P̄ ′ ∈

B̄ and dim(〈P̄, �〉 ∩ Sn) = 0 if P̄ ∈ B̄ ∩ S′
n , we obtain (7). Now assume S′

n is a
hyperplane of �′ not through Q and consider the (2n − 2)−subspace H = 〈S′

n ∩
�, �〉. Since H is a hyperplane of �, there exists a unique element X ∈ S, X �= Y,

contained in H. If Sn is one of the qn−1 lines of � on X contained in 〈S′
n, �〉, then

〈Sn, �〉 = 〈S′
n, �〉, 〈Sn, �〉 ∩ �′ = S′

n and Equality (7) follows. �

The above proposition allows us to prove the minimality of B.

Proposition 3.5. B is a minimal blocking set of �.

Proof: The line S is a tangent to B at the point Y , so Y is an essential point
of B. Let P be an affine point of B, i.e. P ∈ K\� and let P̄ be the unique
point of B̄ such that P ∈ 〈P̄, �〉. Since B̄ is a minimal blocking set of �′, an n-
dimensional subspace S′

n of �′ exists such that S′
n ∩ B̄ = {P̄}. Then, by Proposition
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3.4, |B ∩ Sn| = 1 for each line of � contained in 〈�, S′
n〉. Note that 〈�, S′

n〉 con-
tains some lines of �, since 〈�, S′

n〉 ∩ � is a hyperplane of � and consequently it
contains an element of the spread S. On the other hand, as P ∈ 〈�, S′

n〉, there ex-
ists one line of � through P contained in 〈�, S′

n〉, hence P is an essential point
of B. �

Construction 1a generalizes the following already known constructions:� If the base B̄ of the cone K is an ovoid in a 3-dimensional space contained in
�′, then we get the ovoidal cone construction [14], also described in [30, Section
3.4]. Note that when n = 2, this is exactly the well known construction for the
Buekenhout-Metz unitals [13].� If the base B̄ of the cone K is a planar blocking set of �′, then we get a con-
struction equivalent to the Construction 2.12 as described in the comment after
Proposition 3.24 of [30]. Indeed, following the notation of [30], consider the block-
ing set B∗ = B” obtained by Construction 2.12 in the above mentioned comment.
This blocking set can be seen as a sort of “cone” in π = PG(2, qh) with vertex V̄ ′

(a (h − 2)−dimensional projective subspace over G F(q), projection of V ′ from P
onto π ) contained in a point R̄ of π (projection of the subspace R from P onto
π ) and with base a minimal blocking set B̄ of a subplane PG(2, q) of π such that
R̄ ∩ PG(2, q) = R̄ ∩ B̄ is a point over G F(q) not belonging to V̄ ′. This is exactly
the representation in PG(2, qh) of a minimal blocking set obtained by Construction
1a with n = h, choosing as base of the cone K a minimal planar blocking set.

Moreover, the linearity is preserved, in the sense of the next proposition.

Proposition 3.6. The blocking set B is linear in PG(2, qn) if, and only if, B̄ is a linear
blocking set in �′.

Proof: Throughout the proof we represent �′, �′ and � as the projective spaces
associated with the G F(q)–vector spaces V, U and L , respectively. Assume B̄ is a
G F(q ′)-linear blocking set of �′, where G F(q ′) is a subfield of G F(q) and q = q ′h .
This means that the points of B̄ are defined by the non zero vectors of an h-dimensional
vector subspace W of U over G F(q ′); i.e. B̄ = {P̄ = 〈w〉 : w ∈ W \ {0}}. Now, if
P = 〈v〉 is a point in K \ � and P̄ = 〈w〉 is the unique point of B̄ such that P ∈ 〈P̄, �〉,
then we can write v = u + αw, with u ∈ L , w ∈ W and α ∈ G F(q) \ {0}. This implies
that P = 〈α−1v〉, where α−1v ∈ 〈L , W 〉G F(q ′), i.e. the points of K , and hence the points
of B, are defined by the non zero vectors of the G F(q ′)-vector subspace 〈L , W 〉G F(q ′) of
V, which has dimension nh. Then B is a G F(q ′)-linear blocking set of �. Conversely,
it is easy to see that the linearity of B implies that of B̄. �

Our aim is to find new families of minimal blocking sets in PG(2, qn) choosing
as base of the cone K some suitable minimal blocking sets of �′. To this end, among
some classes of non planar blocking sets of PG(3, q) constructed by G. Tallini in [31],
we selected the following five examples B̄i , that are minimal:

B̄1 = (r \ π ) ∪ T with | B̄1 | = 2q + 1 ,
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where r is a line, π is a plane not containing r and T is a set of (q + 1) non collinear
points of π having the point π ∩ r as a nucleus;

B̄2 = (r \ {N1, N2}) ∪ (K1 ∪ K2) with | B̄2 | = 3q + 1 ,

where r and r ′ are skew lines, q > 2, N1 and N2 are distinct points on r and Ki

(i = 1, 2) is a (q + 1)-set in the plane πi = 〈Ni , r ′〉, disjoint from r ′, having Ni as a
nucleus and satisfying the following property: (
) every point of r ′ is on at least one
line of πi different from r ′ and disjoint from Ki ;

B̄3 = (r \ {N1, N2, N3}) ∪ K1 ∪ K2 ∪ K3 with | B̄ | = 4q + 1 ,

where r and r ′ are skew lines, q > 2 is even, N1, N2 and N3 are three distinct points
on r, K1 is a (q + 1)-set in the plane π1 = 〈N1, r ′〉 disjoint from r ′, having N1 as a
nucleus and satisfying property (
), Ki (i = 2, 3) is the projection of K1 on the plane
πi = 〈Ni , r ′〉 from the point N j , where {i, j} = {2, 3};

B̄4 = (�1 ∪ �2 ∪ �3) \ (r1 ∪ r2) ∪ {P1, P2} with | B̄ | = 3q − 1 ,

where �1, �2, �3 are distinct lines of a regulus of a hyperbolic quadric, q > 2, r1, r2

are two distinct lines of the opposite regulus, Pi is a point on ri (i = 1, 2) such that
Pi �∈ ∪3

j=1� j ;

B̄5 = (
O \ {∪h

i=1Ci }
) ∪ {∪h

i=1 Ni } with | B̄ | = q(q − h) + 1 ,

where O is an ovoid of PG(3, q), q is even, π1, . . . , πh (1 ≤ h ≤ q − 2) are distinct
planes through an external line r to O intersecting O in the (q + 1)-arcs C1, . . . , Ch

with nuclei N1, . . . , Nh respectively.
Now, let S3 be a 3-dimensional subspace of �′ and let B̄i be one of the previous

examples of blocking sets of S3 with � ∩ Y ∩ B̄i = {Q} and having S3 ∩ � as a tangent
plane. Then, via the cone K having B̄i as base, we get minimal blocking sets Bi of
PG(2, qn) (n ≥ 2) of the following sizes:

| B1 | = 2qn + 1 (n ≥ 2), | B2 | = 3qn + 1 (q > 2, n ≥ 2),

| B3 | = 4qn + 1 (q > 2 even, n ≥ 2), | B4 | = 3qn − 2qn−1 + 1 (q > 2),

| B5 | = kqn + 1 (q even, 2 ≤ k ≤ q − 1).

The sizes of B2 (if q is even) and B3 (if q > 4) seem to be new in the spectrum of
known cardinalities of minimal blocking sets of PG(2, qn) (see [30]), even compared
with the interval of Result 1.4 (ii). Also the sizes of the blocking sets B5 should be
new when either n is odd and k ≥ 3 or n is even and 3 ≤ k < 4n log q. Computing
the intersection numbers with respect to lines one can verify that B1 and B4 are not
contained in the union of four lines, hence they are not isomorphic to the examples of
the same size obtained by the so-called IMI construction (see [18, 19, 30]). Similarly,
it is possible to prove that B2 (q odd) is not contained in the union of three conics
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through a point, then it cannot be obtained by the parabola construction described in
[28]. Some of the above remarks can be summarized in the following result.

Proposition 3.7. In PG(2, qn),n ≥ 2, there exist minimal blocking sets of sizes kqn +
1, q even and 3 ≤ k ≤ q − 1.

The next proposition gives some further sizes for minimal blocking sets in
PG(2, qn).

Proposition 3.8. In PG(2, qn), for every d = 3, 4, . . . , n + 1, there exist minimal
blocking sets B of size: |B| = (d − 1)qn − (d − 3)qn/p + 1, if q = ph and h > 2,

and |B| = (d − 1)qn − (d − 3) (q+1)
2

qn−1 + d − 1, if q is an odd prime.

Proof: By (5), it is enough to use as base of the cone K a blocking set B̄ of type
described in Result 1.5. �

Now, let O be an ovoid of the parabolic quadric Q(2r, q) (r = 2, 3) of PG(2r, q)
and, if r = 2, assume that O is non classical, i.e. O is not an elliptic quadric of
PG(3, q). By Result 1.3, the ovoid O is a minimal blocking set of PG(2r, q) of size
qr + 1. If n ≥ 2r − 1, PG(2r, q) can be embedded as a subspace in �′ in such a way
that � ∩ Y ∩ O = � ∩ O = {Q} and we can consider the minimal blocking set BO

of PG(2, qn) obtained via the cone K with O as a base. Then

|BO | = qn+r−1 + 1, (8)

where n ≥ 3 if r = 2 and n ≥ 5 if r = 3.

Proposition 3.9. (i) In PG(2, qn), n ≥ 3, with either q = ph with p an odd prime
and h > 1 or q = 22e+1 with e ≥ 1, there exist minimal blocking sets of size qn+1 + 1,
not obtained via the ovoidal cone construction [14].
(i i) In PG(2, qn), n ≥ 5 and q = 3h with h ≥ 1, there exist minimal blocking sets of
size qn+2 + 1.

Proof: Examples of non classical ovoids of Q(4, q) are known only for q = ph ,
h > 1, p an odd prime (Kantor ovoids), for q = 3h, h > 2, (Thas-Payne ovoids), for
q = 32h+1, h > 0 (Ree-Tits slice ovoids), for q = 35 (Penttila-Williams ovoid) and
for q = 22e+1, e > 1 (Tits ovoids) (see for instance [20, 32]). The known ovoids of
Q(6, q) are the Thas-Kantor ovoids of Q(6, q) with q = 3h and h ≥ 1 and the Ree-Tits
ovoids of Q(6, q) with q = 32h+1, h > 0 (see for instance [20, 32]). Then by (8), (i)
and (i i) follow from these two remarks, respectively. �

3.2. Construction 1b

Suppose that Q �∈ Y and let Z be the unique element of S such that Q ∈ Z . Moreover,
recall the notation � ∩ Y = {T }. By (4) the size of B is given by

|B| = qn−1(|B̄| − 1) + qn−1 + 1 = qn−1|B̄| + 1
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and the line intersection numbers of B can be determined as in Construction 1a.

Proposition 3.10. Let Sn be a line of � other than S. If Sn contains Y and � is the
line Sn ∩ �′, then

|B ∩ Sn| = qn−1|� ∩ B̄| + 1. (9)

If Sn does not contain Y and S′
n = 〈Sn, �〉 ∩ �′, then

|B ∩ Sn| = |B̄ ∩ S′
n|. (10)

Moreover, Equality (10) holds for any hyperplane S′
n of �′ not through T and for each

of the qn−1 lines Sn of � contained in 〈�, S′
n〉.

Remark 3.11. Note that, if Sn is a line of � passing through a point of B ∩ S different
from Y , then Q ∈ S′

n = 〈Sn, �〉 ∩ �′. �

Proposition 3.12. Let P be an affine point of B and let P̄ = 〈P, �〉 ∩ �′. Then P is
an essential point of B if and only if there exists in �′ a tangent hyperplane to B̄ at
the point P̄ not through T .

Proof: If Sn is a line of � tangent to B at the point P, then S′
n = 〈Sn, �〉 ∩ �′ is a

hyperplane of �′ not through T tangent to B̄ at the point P̄, and conversely. �

The above proposition shows that the minimality of B does not automatically follow
from the minimality of B̄, as in Construction 1a ; to this end we need some extra
conditions on B̄. We say that B̄ satisfies Condition (∗) with respect to the point T if:

(∗) for each point P̄ ∈ B̄ \ {Q} there exists a tangent hyperplane to B̄ passing through
P̄ not containing T .

Corollary 3.13. The affine points of B are essential points of B if, and only, if B̄
satisfies Condition (∗) w.r.t. the point T .

Remark 3.14. If B̄ is a minimal blocking set of �′ contained in an h-dimensional
subspace Sh of �′ with h ≤ n and T �∈ Sh , then B̄ satisfies Condition (∗) w.r.t. the
point T . �

Now, let X be a point of B ∩ S different from Y and let Sn−1 = 〈X, �〉 ∩ �. Then
the intersection numbers of B with respect to the lines of � through X , different from
S, are determined by the intersection numbers of B̄ with respect to the hyperplanes
of �′, different from �, containing Sn−1. Conversely, if Sn−1 is a hyperplane of �

passing through Q and not containing T , then the intersection numbers of B̄ with
respect to the hyperplanes of �′, different from �, containing Sn−1, determine the
intersection numbers of B with respect to the lines of � through the unique element
X of S contained in 〈Sn−1, �〉 ∩ � (see Prop.3.10). Hence, we have:
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Proposition 3.15. Let X ∈ B ∩ S, with X �= Y . Then X is an essential point of B
if and only if there exists a hyperplane S′

n of �′, different from �, tangent to B̄ and
containing the subspace 〈X, �〉 ∩ �. Also, the number of essential points of B on
S \ {Y } is equal to the number of hyperplanes of � passing through Q, not containing
T and contained in a tangent hyperplane to B̄ different from �.

If B ′ is a minimal blocking set of � contained in B, by the previous results, we get

Corollary 3.16. If B̄ satisfies Condition (∗) w.r.t. the point T, then

|B ′| = qn−1(|B̄| − 1) + tQ + 1,

where tQ is the number of hyperplanes of � passing through Q not containing T and
contained in a tangent hyperplane to B̄ different from �.

Proof: By Corollary 3.13 and Proposition 3.15, we only have to check that Y is
an essential point of B. If Y is not an essential point of B, then each line of �′

passing through T and not contained in � contains a point of B̄ different from Q, i.e.
|B̄| ≥ qn + 1. Since |B̄| ≤ q

n+2
2 + 1 (see Result 1.2), we have that n = 2, |B̄| = q2 + 1

and hence B̄ is an ovoid of �′. But, in this case, B̄ does not satisfy Condition (∗) with
respect to the point T, contradicting our assumption. �

Denote by S′
h the h-dimensional space spanned by B̄ and let Sh−1 = S′

h ∩ �. Since
B̄ is contained in S′

h , it is a blocking set of S′
h with respect to the hyperplanes.

Proposition 3.17. (1) If h ≤ n and T �∈ Sh, then

|B ′| = qn−1(|B̄| − 1) + qn−h + lQ(qn−h+1 − qn−h) + 1,

where lQ is the number of hyperplanes of Sh−1 passing through Q contained in a
hyperplane of S′

h tangent to B̄ different from Sh−1; in particular 0 ≤ lQ ≤ qh−2 +
· · · + q + 1.

(2) If h ≤ n, T ∈ Sh and B̄ satisfies Condition (∗) w.r.t. the point T , then

|B ′| = qn−1(|B̄| − 1) + sQqn−h+1 + 1,

where sQ is the number of hyperplanes of Sh−1 passing through Q, not containing T
and contained in a hyperplane of S′

h tangent to B̄ different from Sh−1; in particular
0 ≤ sQ ≤ qh−2.

Proof: Suppose that h ≤ n and that T �∈ Sh . By Remark 3.14 B̄ satisfies Condition
(∗) w.r.t. the point T and hence all the affine points of B are essential points. Then, to
determine the size of B ′, by Corollary 3.16, we have to determine the number tQ of
hyperplanes of � through Q, not containing T and contained in a tangent hyperplane to
B̄ different from �. It is easy to see that each hyperplane of � containing Sh−1 and not
containing T is contained in a tangent hyperplane to B̄ different from �, hence such
hyperplanes determine qn−h essential points of B on the line S. Now, suppose that
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Sn−1 is a hyperplane of � passing through Q, not passing through T and not containing
Sh−1, then dim(Sh−1 ∩ Sn−1) = h − 2. In this case Sn−1 determines an essential point
of B ∩ S if and only if there exists a hyperplane of S′

h tangent to B̄, different from
Sh−1, containing Sh−1 ∩ Sn−1. Since through each (h − 2)-dimensional subspace of
Sh−1 through Q there pass qn−h+1 − qn−h hyperplanes of � not containing T , we
get tQ = qn−h + lQ(qn−h+1 − qn−h), where lQ is the number of (h − 2)-dimensional
subspaces of Sh−1 passing through Q contained in a hyperplane of S′

h tangent to B̄
different from Sh−1. In a similar way it is possible to prove (2). �

If B̄ is a blocking set of �′ contained in a plane π and T ∈ π , then it is possible
to verify that our construction is equivalent to Construction 2.12 described in [30,
Proposition 3.24 Case 1]. Also, if B̄ is an ovoid of a 3-dimensional space S3 and
T �∈ S3, then we get the examples constructed in [14, Theorem 2.8].

Corollary 3.18. If B̄ is a planar blocking set and T �∈ 〈B̄〉 = π , then

|B ′| = qn−1(|B̄| − 1) + qn−2 + 1,

if � ∩ π is the unique tangent line to B̄ passing through Q in π , and

|B| = |B ′| = qn−1|B̄| + 1,

if there exist at least two tangent lines to B̄ in π passing through Q. In particular, if q
is a square and B̄ is a unital of π , we get minimal blocking sets in PG(2, qn) of size
qn√q + qn−2 + 1.

Corollary 3.19. In PG(2, qn), q even, there exist minimal blocking sets of size kqn+
qn−1 + 1, with 2 ≤ k ≤ q − 1.

Proof: If B̄ is one of examples B̄5 of Section 3.1 contained in a 3-dimensional sub-
space S3 of �′, with Q = Ni for some i , and T �∈ S3 (n ≥ 3), then lQ = q + 1 and
hence |B| = |B ′| = kqn + qn−1 + 1 (2 ≤ k ≤ q − 1). �

Finally, let B̄ = O be a non classical ovoid of the parabolic quadric Q(2r, q),
r = 2, 3 (see Result 1.3). Since dim〈O〉 = 2r , if n ≥ 2r , we can choose T �∈ 〈O〉 and,
by Proposition 3.17 (1), we get from O a minimal blocking set BO of PG(2, qn). If
r = 2 and n ≥ 4, we have

|BO | = qn+1 + qn−4 + lQ(qn−3 − qn−4) + 1,

where 0 ≤ lQ ≤ q2 + q + 1. If r = 3 and n ≥ 6, we have

|BO | = qn+2 + qn−6 + lQ(qn−5 − qn−6) + 1,
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where 0 ≤ lQ ≤ q4 + q3 + q2 + q + 1. Applying this construction to the known ex-
amples of ovoids of Q(4, q) and Q(6, q) (see for instance [20, 32]), we obtain the
following existence results.

Proposition 3.20. (i) In PG(2, qn), n ≥ 4 with either q = ph, p odd prime, and
h > 1 or q = 22e+1 with e ≥ 1, there exist minimal blocking sets of size qn+1 + qn−4 +
lQ(qn−3 − qn−4) + 1, for some positive integer lQ ≤ q2 + q + 1.
(i i) In PG(2, qn), n ≥ 6 and q = 3h with h ≥ 1, there exist minimal blocking sets
of size qn+2 + qn−6 + lQ(qn−5 − qn−6) + 1 for some positive integer lQ ≤ q4 + q3 +
q2 + q + 1.

4. Construction 2

In this section we give a generalization of Construction 1a. More precisely, under the
assumption dim� ≤ n − 2, we investigate when a slight variation of a construction
of type 1a still produces a blocking set of �. To do this, we need some more notation.

Let Y and � be a fixed element of S and an s-dimensional subspace of Y, re-
spectively, with 0 ≤ s ≤ n − 2. Let � be a (2n − s − 2)-dimensional subspace of �

disjoint from � and put � = Y ∩ �. For every spread element X other than Y, let
In−1(X ) be the (n − 1)-dimensional subspace 〈�, X〉 ∩ �. Note that In−1(X ) is dis-
joint from �, for any X ∈ S \ {Y }.

Now let �′ be a (2n − s − 1)-dimensional subspace of �′ disjoint from � such that
� = �′ ∩ � and denote by F = F(S, �) the family of n-dimensional subspaces of �′

containing an (n − 1)-dimensional subspace of type In−1(X ). Let B̄ be an F-blocking
set of �′, i.e. a blocking set of �′ with respect to the n-dimensional subspaces belonging
to F , such that B̄ ∩ � = �. Finally, define K and B by (1) and (2), respectively, and
note that under our assumption:

B = (K \ �) ∪ {Y }.

Proposition 4.1. B is a blocking set of the plane � of size

|B| = qs+1
[|B̄| − (qn−s−2 + · · · + q + 1)

] + 1.

Proof: Let Sn be an n-dimensional subspace of �′ defining a line
of � not passing through Y . Then dim〈Sn, �〉 = n + s + 1, hence
dim(〈Sn, �〉 ∩ �′) = n, and In = 〈Sn, �〉 ∩ �′ is an element of F .
This implies that there exists a point P̄ ∈ B̄ ∩ In and Sn ∩ 〈P̄, �〉 �= ∅.

It follows that the cone K blocks all the n-dimensional subspaces of �′ defin-
ing a line of � not passing through Y and hence B is a blocking set of �. �

As in the case of Construction 1a, the line intersection numbers of B can be easily
determined.
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Proposition 4.2. If Sn is a line of � passing through Y , then

|B ∩ Sn| = qs+1|(B̄ ∩ �′
n−s−1) \ �| + 1, (11)

where �′
n−s−1 = Sn ∩ �′.

If Sn is a line of � not passing through Y , then

|B ∩ Sn| = |B̄ ∩ In|,

where In = (〈�, Sn〉 ∩ �′) ∈ F . Also, if In ∈ F and In �⊂ �, then

|B ∩ Sn| = |B̄ ∩ In|,

for each of the qs+1 lines Sn of � contained in 〈�, In〉.

Proof: If Sn is a line of � passing through Y , then

Sn ∩ B = (Sn ∩ (K \ �)) ∪ {Y } =
⎛⎝ ⋃

P̄∈(B̄\�)∩�′
n−s−1

(〈�, P̄〉 ∩ Sn
)⎞⎠ ∪ {Y },

where �′
n−s−1 = Sn ∩ �′, hence (11) follows.

Let Sn be a line of � not passing through Y and let X ∈ Sn ∩
S. As in the proof of Proposition 3.4, we have that |B ∩ Sn| = |B̄ ∩
In|, where In = 〈�, Sn〉 ∩ �′ and In ∈ F . Now, let In ∈ F, In not con-
tained in �, then there exists X ∈ S, X �= Y , such that 〈�, In〉 ∩ � =
〈�, X〉 ∩ �. Hence 〈�, In〉 contains qs+1 lines Sn of � such that |B ∩ Sn| =
|B̄ ∩ In|. �

By Proposition 4.2, the minimality of B as a blocking set easily follows from that
of B̄.

Corollary 4.3. If B̄ is a minimal F-blocking set of �′, then B is a minimal blocking
set of �.

Remark 4.4. If dim� = n − 2, then F is the family of all n-dimensional subspaces
of �′; in this case Construction 2 exactly comes from Construction 1a. �

It seems natural at this point to investigate when a blocking set obtained by Con-
struction 1a can be also achieved by Construction 2, with dim� < n − 2. To do this,
let us give some more preliminaries.

Under the assumption n = mt , 1 < t < n, a unique normal (m − 1)-spread S∗ of
� = PG(2mt − 1, q) can be associated with the regular (n − 1)-spread S of � so
that S∗ induces on each element X ∈ S a normal (m − 1)-spread S∗(X ) [24, 25]. We
define anS∗−subspace of � as a subspace T of � which is union of elements ofS∗. As
a consequence, an S∗−subspace T, other than a spread element of S∗, has dimension
of type dm − 1, with 2 ≤ d ≤ 2t. The spread S∗, together with the S∗−subspaces,
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is an incidence structure PG(S∗) isomorphic to PG(2t − 1, qm). Here, the (d − 1)−
dimensional subspaces, 0 < d − 1 < 2t − 1, are the (m − 1)−spreads S∗(T ) induced
by S∗ on the S∗−subspaces T of dimension dm − 1 of �. Finally, an incidence
structure PG+(S∗) isomorphic to PG(2t, qm) can be defined in the following way:
(i) the points are the points of �′ \ � and the elements of S∗, (ii) the d-dimensional
subspaces, 0 < d < 2t, are the dm-dimensional subspaces of �′ which intersect � in
an S∗−subspace of dimension dm − 1 and the d−dimensional subspaces of PG(S∗),
(iii) the incidences are inherited from the inclusion relation.

Note that PG(S∗) is a hyperplane of PG+(S∗) and S ′ = {S∗(X ) : X ∈ S} turns
out to be a regular (m − 1)-spread of PG(S∗). It follows that we can work at the
same time with two André, Bruck-Bose representations of PG(2, qn) : the usual one
in PG(2n, q) and a second one in PG+(S∗) ∼= PG(2t, qm).

Now let B be a blocking set of PG(2, qn) obtained by Construction 1a in PG+(S∗)
∼= PG(2t, qm), i.e. B is associated with a cone K in PG+(S∗) of vertex a (t − 2)-
dimensional subspace S∗(�) of PG(S∗) contained in an element S∗(Y ) of S ′ and
having as base a minimal blocking set B̄ of a (t + 1)-dimensional subspace �′ of
PG+(S∗) disjoint from S∗(�). Note that, under our assumptions, the blocking set B
of PG(2, qn) is defined in PG(2n, q) by a cone K ∗ of vertex �, with � ⊂ Y ∈ S.

Moreover, since K is union of (t − 1)-dimensional subspaces of PG+(S∗), K ∗ is
union of (t − 1)m-dimensional subspaces of PG(2n, q) and, if B̄∗ = K ∗ ∩ �∗, we
get

K ∗ =
⋃

P̄∈B̄∗
〈�, P̄〉.

The last equality proves that B̄∗ is an F-blocking set in �∗, where F = F(�,S) and
B is the blocking set of PG(2n, q) associated with � and B̄∗ by Construction 2.

The above remark shows how and why Construction 2 always works when n is
not a prime and the vertex � of the cone is an S∗−subspace of PG(2n − 1, q) : the
central point is the existence of the F-blocking set B̄∗ in �∗. In this case, of course,
we do not obtain new examples, since we simply construct the same blocking set in
different André, Bruck-Bose representations of the plane PG(2, qn). So, to try to get
some new examples of blocking sets by Construction 2, � should not be chosen as
an S∗−subspace of � and, under such assumption, the problem reduces to finding a
minimal F(�,S)-blocking set of �′.

For example, we can apply our considerations to state the following characterization
of Buekenhout-Metz unitals in PG(2, q4).

Proposition 4.5. Let U be a unital in the representation of � = PG(2, q4) in �′ =
PG(8, q) obtained by Construction 2 using:

- a line � of an element Y of the regular 3-spread S of � = PG(7, q);
- a 6-dimensional subspace �′ of �′ not contained in � and meeting Y in a line

� ∈ S∗(Y ) disjoint from �, where S∗ is the 1−spread induced on � by S;
- the family F = F(�,S) of 4−dimensional subspaces of �′ associated with � and
S;

- a minimal F−blocking set B̄ of �′ of size q4 + q + 1 intersecting Y in the line �.
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Then U is a Buekenhout-Metz unital if, and only if, � is a spread element of S∗.

Proof: If � is a spread element of S∗, we can get U also by Construction 1, using
the representation of � in PG+(S∗) = PG(4, q2). In this way U is associated with a
cone K in PG+(S∗) of vertex � ∈ S∗(Y ) ⊂ PG(S∗) and having as base a minimal
blocking set B̄∗ of size q4 + 1 of �′; here �′ is considered as a 3−dimensional subspace
PG(3, q2) of PG+(S∗). Then, by Result 1.2, B̄∗ is an ovoid of �′ and U turns out to
be a Buekenhout-Metz unital.

Now note that to every plane π of �′, with π ∩ � a line � contained in a spread
element X of S, there corresponds a set Xπ of q2 + 1 collinear points in the represen-
tation of � in �′. Actually, Xπ is a Baer subline if, and only if, � is an element of the
induced spread S∗ [4, 24]. It turns out that Xπ is not a Baer subline of � when � is
not an element of the induced spread S∗. So, assuming that � is not a spread element
of S∗, there exists no line of � through the point corresponding to � and meeting U
in a Baer subline. This proves that U is not a Buekenhout-Metz unital, since it is well
known that through every point of such a unital there exists at least one line meeting
the unital in a Baer subline. �

Remark 4.6. Last proposition shows how the existence of a non Buekenhout-Metz
unital in PG(2, q4) depends on that of a minimal F(�,S)− blocking set B̄ of �′

of size q4 + q + 1 and intersecting Y in the line �, when the line � is not a spread
element of S∗. �

We note that the proof of Proposition 4.5 can be suitably modified to obtain the
following more general result.

Proposition 4.7. Let k be a positive integer. Let U be a unital in the representation of
� = PG(2, q2k) in �′ = PG(4k, q) obtained by Construction 2 using:

- a (k − 1)−dimensional subspace � of an element Y of the regular (2k − 1)-spread
S of � = PG(4k − 1, q);

- a 3k-dimensional subspace �′ of �′ not contained in � and meeting Y in
a (k − 1)−dimensional subspace � ∈ S∗(Y ) disjoint from �, where S∗ is the
(k − 1)−spread induced on � by S;

- the family F = F(�,S) of (2k + 1)−dimensional subspaces of �′ associated with
� and S;

- a minimal F−blocking set B̄ of �′ of size q2k + qk−1 + qk−2 + · · · + q + 1 inter-
secting Y in the subspace �.

Then U is a Buekenhout-Metz unital if, and only if, � is a spread element of S∗.

Finally, we explicitly remark that Proposition 4.5 is a slight variation of the result
contained in Sect.3.4 of [4] and Proposition 4.7 is a generalization of Theorem 3.4 of
[4].
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5. Construction 3

The present section deals with a second variation of Construction 1a, which essentially
is a way of looking at Construction 2.7 of [30] in the André, Bruck-Bose representation
of PG(2, qn) in PG(2n, q). As usual, we start from a fixed spread element Y of S and
a subspace � of Y ; let n − s be the dimension of �, 2 ≤ s ≤ n + 1. Now let �′

s be
an s-dimensional subspace of �′ not contained in �, such that �′

s ∩ Y is an (s − 2)-
dimensional subspace disjoint from �, and denote by �s−2 and �s−1 the subspaces
�′

s ∩ Y and �′
s ∩ �, respectively. Moreover, let B̄ be a blocking set with respect to

the set of all lines of �′
s and define K and B by (1) and (2), respectively. Since

dim(〈Y, �s−1 ∩ X〉) = −1, 0, for every element X of S, the size of B is given by

|B| = |K \ �| + 1 = qn−s+1|B̄ \ �s−2| + 1

and, using the same arguments as in Propositions 3.2 and 3.4, the following can be
proved.

Proposition 5.1. B is a blocking set of �. Moreover, denoted by Sn a line of � other
than S, we have :

- if Y /∈ Sn and Sn ∩ � ∩ K = ∅, then

|B ∩ Sn| = |B̄ ∩ �|,

where � is the line 〈Sn, �〉 ∩ �′
s ;

- if Y /∈ Sn and Sn ∩ � ∩ K �= ∅, then

|B ∩ Sn| = |(B̄ ∩ �) \ �| + 1,

where � is the line 〈Sn, �〉 ∩ �′
s ;

- if Y ∈ Sn, then

|B ∩ Sn| = qn−s+1|(Sn ∩ �′
s ∩ B̄) \ �| + 1.

As in the case of Construction 1b, the minimality of B does not automatically follow
from that of B̄. Next proposition and its two corollaries correspond to Proposition 2.8
and Theorem 2.9 of [30]; for sake of completeness we give here a proof of them in
our context.

Proposition 5.2. Let P be an affine point of B, i.e. P ∈ B \ �, and let P̄ be the
unique point of B̄ ∩ 〈P̄, �〉. Then P is an essential point of B if, and only if, there
exists a line � of �′

s through P̄ which is tangent to B̄ and disjoint from �s−2.

Proof: From the line intersection numbers we get that there exists in � a tangent line
Sn to B through P if, and only if, � = 〈Sn, �〉 ∩ �′

s is a tangent line of B̄ through P̄
and � ∩ �s−2 = ∅; this concludes the proof. �
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The next corollaries point out two special cases in which the minimality of B̄ gives
some strong information about B.

Corollary 5.3. If B̄ ∩ � = �s−2, then

|B| = qn−s+1(|B̄| − (qs−2 + qs−3 + · · · + q + 1)) + 1

and B is a minimal blocking set of �.

Proof: It is enough to remark that, under our assumption, the condition of Proposition
5.2 is satisfied for all affine points of B and B ∩ S = {Y }. �

Corollary 5.4. If |B̄| < 2qs−1, then all the affine points of B are essential.

Proof: Firstly remark that, if for each P̄ ∈ B̄ the number τP̄ of tangent lines of B̄ in �′
s

through P̄ is greater than qs−2 + qs−3 + · · · + q + 1, then the condition of Proposition
5.2 is satisfied by the affine points of B that all turn out essential. On the other hand, by
Lemma 2.11 of [30], if |B̄| < 2qs−1, then τP̄ > qs−2 + qs−3 + · · · + q + 1 for each
point of B̄; so our assertion follows. �

Proposition 5.5. Let X be a point of B ∩ S. If X �= Y, then a unique point P̄ ∈ B̄ ∩ �

exists such that X ∩ 〈P̄, �〉 �= ∅. Moreover, X is an essential point of B if, and only
if, either X = Y or X �= Y and there exists in �′

s a tangent line of B̄ through P̄ and
not contained in �.

Proof: If X ∈ B ∩ S, with X �= Y, then X ∩ K �= ∅ and a point P̄ ∈ B̄ ∩ � exists
such that X ∩ 〈P̄, �〉 �= ∅. Moreover, as X and Y are disjoint, P̄ is unique and |X ∩
〈P̄, �〉| = 1.

If Sn is a line through X other than S, then � = 〈Sn, �〉 ∩ �′
s is a line through P̄

not contained in � and |Sn ∩ B| = |(� \ {P̄}) ∩ B̄| + 1.

Finally, if Sn is a line through Y , then |B ∩ Sn| = qn−s+1|(Sn ∩ �′
s ∩ B̄) \ �| + 1

and, by an easy counting argument, one can see that there exists a line Sn through Y
such that Sn ∩ �′

s = �s−2. It follows that |B ∩ Sn| = 1, i.e. Y is an essential point of
B. This finishes the proof. �

Corollary 5.6. The blocking set B is minimal if, and only if, all points of B̄ verify the
conditions of Propositions 5.2 and 5.5. If B verifies the conditions of Proposition 5.2,
then B contains a minimal blocking set B ′ of � such that

qn−s+1|B̄ \ �| + 1 ≤ |B ′| ≤ qn−s+1|B̄ \ �s−2| + 1.

Final remark. We plan to show in a forthcoming paper how some of our constructions
can be generalized in order to achieve new minimal blocking sets in PG(m, qn),
m > 2. �
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