ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Determination of generalized quadrangles with distinct elation points

Koen Thas
Ghent University Department of Pure Mathematics and Computer Algebra Krijgslaan 281, S22 B-9000 Ghent Belgium

DOI: 10.1007/s10801-006-9098-3

Abstract

In this paper, we classify the finite generalized quadrangles of order ( s, t), s, t > 1, which have a line L of elation points, with the additional property that there is a line M not meeting L for which { L, M} is regular. This is a first fundamental step towards the classification of those generalized quadrangles having a line of elation points.

Pages: 5–22

Keywords: keywords generalized quadrangle; elation generalized quadrangle; translation generalized quadrangle; Moufang condition; symmetry; regularity; classification

Full Text: PDF

References

1. A. Barlotti, “Sulle possibili configurazioni del sistema delle coppie punto-retta (A, a) per cui un piano grafico risulta (A, a)-transitivo,” Convegno internazionale: Reticoli e geometrie proiettive, Palermo, 25- 29 ottobre 1957, Messina, 30 ottobre 1957, Edito dalla Unione Matematica Italiana con il contributo del Consiglio Nazionale delle Ricerche Edizione Cremonese, Rome (1958), 75-78. Springer
2. I. Bloemen, J.A. Thas and H. Van Maldeghem, “Elation generalized quadrangles of order (p, t), p prime, are classical,” J. Statist. Plann. Inference 56, Special issue on orthogonal arrays and affine designs, Part I (1996), 49-55.
3. A.E. Brouwer, “The complement of a geometric hyperplane in a generalized polygon is usually connected,” Finite Geometry and Combinatorics (Deinze, 1992), London Math. Soc. Lecture Note Ser. 191, Cambridge Univ. Press, Cambridge (1993), 53-57.
4. F. Buekenhout and H. Van Maldeghem, “Finite distance-transitive generalized polygons,” Geom. Dedicata 52 (1994), 41-51.
5. B. De Bruyn, “Generalized quadrangles with a spread of symmetry,” European J. Combin. 20 (1999), 759-771.
6. B. De Bruyn, Recent Results on Near Polygons: A Survey, Generalized Polygons, Proceedings of the Academy Contact Forum `Generalized Polygons', 20 October 2000, Palace of the Academies, Brussels, Edited by F. De Clerck et al. (2001), 39-60.
7. B. De Bruyn and K. Thas, “Generalized quadrangles with a spread of symmetry and near polygons,” Illinois J. Math. 46 Fall (2002), 797-818.
8. X. Chen and D. Frohardt, “Normality in a Kantor family,” J. Combin. Theory A 64 (1993), 130- 136.
9. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Maximal Subgroups and Ordinary Characters for Simple Groups, (With computational assistance from J. G. Thackray), Oxford University Press, Eynsham, 1985.
10. P. Dembowski, Finite Geometries, Berlin/Heidelberg/New York, Springer, 1968.
11. J.D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics 163, Springer-Verlag, New York/Berlin/Heidelberg, 1996.
12. P. Fong and G.M. Seitz, “Groups with a (B,N)-pair of rank 2, I,” Invent. Math. 21 (1973), 1- 57.
13. P. Fong and G.M. Seitz, “Groups with a (B,N)-pair of rank 2, II,” Invent. Math. 24 (1974), 191- 239.
14. D. Frohardt, “Groups which produce generalized quadrangles,” J. Combin. Theory A 48 (1988), 139- 145.
15. D. Gorenstein, Finite Simple Groups. An Introduction to Their Classification, University Series in Mathematics, Plenum Publishing Corp., New York, 1962.
16. D. Hachenberger, “On finite elation generalized quadrangles with symmetries,” J. London Math. Soc. (2) 53 (1996), 397-406.
17. C. Hering and W.M. Kantor, “On the Lenz-Barlotti classification of projective planes,” Arch. Math. (Basel) 22 (1971), 221-224.
18. C. Hering, W.M. Kantor and G.M. Seitz, “Finite groups with a split BN-pair of rank 1, I,” J. Algebra 20 (1972), 435-475.
19. D.R. Hughes and F.C. Piper, Projective Planes, Graduate Texts in Mathematics 6, Springer-Verlag, New York/Berlin, 1973.
20. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
21. W.M. Kantor, “Automorphism groups of some generalized quadrangles,” Adv. Finite Geom. and De- signs, Proceedings Third Isle of Thorns Conference on Finite Geometries and Designs, Brighton 1990, Edited by J. W. P. Hirschfeld et al., Oxford University Press, Oxford (1991), 251-256.
22. W.M. Kantor, “Note on span-symmetric generalized quadrangles,” Adv. Geom. 2 (2002), 197-200.
23. H. Lenz, “Kleiner Desarguesscher Satz und Dualit\ddot at in projektiven Ebenen,” Jberr. Deutsch. Math. Verein. 57 (1954), 20-31.
24. S.E. Payne and J.A Thas, “Generalized quadrangles with symmetry. II,” Simon Stevin 49 (1975/76), 81-103.
25. S.E. Payne and J.A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics 110, Pitman Advanced Publishing Program, Boston/London/Melbourne, 1984.
26. E. Shult, “On a class of doubly transitive groups,” Illinois J. Math. 16 (1972), 434-455.
27. E.E. Shult and A. Yanushka, “Near n-gons and line systems,” Geom. Dedicata 9 (1980), 1-72.
28. K. Tent, “Half-Moufang implies Moufang for generalized quadrangles,” J. Reine Angew. Math. 566 (2004), 231-236.
29. J.A. Thas, “3-Regularity in generalized quadrangles of order (s, s2),” Geom. Dedicata 17 (1984), 33- 36.
30. J.A. Thas, “Characterizations of translation generalized quadrangles,” Des. Codes Cryptogr. 23 (2001), 249-257. Springer J Algebr Comb (2006) 24:5-22
31. J.A. Thas, “Generalized quadrangles and the theorem of Fong and Seitz on (B,N)-pairs,” Preprint.
32. J.A. Thas, S.E. Payne and H. Van Maldeghem, “Half Moufang implies Moufang for finite generalized quadrangles,” Invent. Math. 105 (1991), 153-156.
33. K. Thas, “On symmetries and translation generalized quadrangles,” Developments in Mathematics 3, Proceedings of the Fourth Isle of Thorns Conference `Finite Geometries', 16-21 July 2000, Edited by A. Blokhuis et al., Kluwer Academic Publishers (2001), 333-345.
34. K. Thas, Automorphisms and Characterizations of Finite Generalized Quadrangles, Generalized Polygons, Proceedings of the Academy Contact Forum `Generalized Polygons', 20 October 2000, Palace of the Academies, Brussels, Edited by F. De Clerck et al. (2001), 111-172.
35. K. Thas, “A theorem concerning nets arising from generalized quadrangles with a regular point,” Des. Codes Cryptogr. 25 (2002), 247-253.
36. K. Thas, “Classification of span-symmetric generalized quadrangles of order s,” Adv. Geom. 2 (2002), 189-196.
37. K. Thas, “The classification of generalized quadrangles with two translation points,” Beitr\ddot age Algebra Geom. 43 (2002), 365-398.
38. K. Thas, “Translation generalized quadrangles for which the translation dual arises from a flock,” Glasgow Math. J. 45(3) (2003), 457-474.
39. K. Thas, “Symmetry in generalized quadrangles,” Des. Codes Cryptogr. 29, Proceedings of the Oberwolfach conference “Finite Geometries (2001)” (2003), 227-245.
40. K. Thas, “A characterization of the classical generalized quadrangle Q(5, q) and the nonexistence of certain near polygons,” J. Combin. Theory A 103 (2003), 105-120.
41. K. Thas, Symmetry in Finite Generalized Quadrangles, Frontiers in Mathematics 1, Birk”auser -Verlag, Basel-Boston-Berlin, 2004.
42. K. Thas and H. Van Maldeghem, “Moufang-like conditions for generalized quadrangles and classification of all finite quasi-transitive generalized quadrangles,” Discrete Math. 294 (Proceedings of the 2003 Kloster Irsee Conference) (2005), 203-217.
43. K. Thas and H. Van Maldeghem, “Geometrical characterizations of some Chevalley groups of rank 2,” Trans. Amer. Math. Soc., To appear.
44. J. Tits, “Sur la trialité et certains groupes qui s'en déduisent,” Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 13-60.
45. J. Tits, “Classification of buildings of spherical type and Moufang polygons: a survey,” Coll. Intern. Teorie Combin. Acc. Naz. Lincei, Roma 1973, Atti dei convegni Lincei 17 (1976), 229-246.
46. J. Tits and R. Weiss, Moufang Polygons, Springer Monographs in Mathematics, Springer-Verlag, 2002.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition