New results on the peak algebra
Marcelo Aguiar1
, Kathryn Nyman1
and Rosa Orellana3
1Texas A\&M University Department of Mathematics College Station TX 77843 USA College Station TX 77843 USA
3Dartmouth College Department of Mathematics Hanover NH 03755 USA Hanover NH 03755 USA
3Dartmouth College Department of Mathematics Hanover NH 03755 USA Hanover NH 03755 USA
DOI: 10.1007/s10801-006-6922-8
Abstract
The peak algebra \mathfrak P n \mathfrak{P}_{n} is a unital subalgebra of the symmetric group algebra, linearly spanned by sums of permutations with a common set of peaks. By exploiting the combinatorics of sparse subsets of [ n - 1] (and of certain classes of compositions of n called almost-odd and thin), we construct three new linear bases of \mathfrak P n \mathfrak{P}_{n} . We discuss two peak analogs of the first Eulerian idempotent and construct a basis of semi-idempotent elements for the peak algebra. We use these bases to describe the Jacobson radical of \mathfrak P n \mathfrak{P}_{n} and to characterize the elements of \mathfrak P n \mathfrak{P}_{n} in terms of the canonical action of the symmetric groups on the tensor algebra of a vector space. We define a chain of ideals \mathfrak P n j \mathfrak{P}_{n}^{j} of \mathfrak P n \mathfrak{P}_{n} , j = 0,..., ë\frac n2 û {\lfloor \frac{n}{2}\rfloor} , such that \mathfrak P n 0 \mathfrak{P}_{n}^{0} is the linear span of sums of permutations with a common set of interior peaks and \mathfrak P n ë\frac n2 û \smash{\mathfrak{P}_{n}{\lfloor \frac{n}{2}\rfloor}} is the peak algebra. We extend the above results to \mathfrak P n j \mathfrak{P}_{n}^{j} , generalizing results of Schocker (the case j = 0).
Pages: 149–188
Keywords: keywords Solomon's descent algebra; peak algebra; signed permutation; type B; Eulerian idempotent; free Lie algebra; Jacobson radical
Full Text: PDF
References
1. M. Aguiar, N. Bergeron, and K. Nyman, “The peak algebra and the descent algebras of types B and D,” Trans. Amer. Math. Soc. 356 (2004), 2781-2824.
2. F. Bergeron and N. Bergeron, “A decomposition of the descent algebra of the hyperoctahedral group I,” J. Algebra 148(1) (1992), 86-97.
3. F. Bergeron and N. Bergeron, “Orthogonal idempotents in the descent algebra of Bn and applications,” J. Pure Appl. Algebra 79(2) (1992), 109-129.
4. N. Bergeron, “A decomposition of the descent algebra of the hyperoctahedral group, II,” J. Algebra 148(2) (1992), 98-122.
5. N. Bergeron, F. Hivert, and J.-Y. Thibon, “The peak algebra and the Hecke-Clifford algebras at q = 0,” math.CO/0304191 2004.
6. N. Bergeron, S. Mykytiuk, F. Sottile, and S. van Willigenburg, “Shifted quasi-symmetric functions and the Hopf algebra of peak functions,” Discrete Math. 246 (2002), 57-66.
7. A. M. Garsia and C. Reutenauer, “A decomposition of Solomon's descent algebra,” Adv. Math. 77(2) (1989), 189-262.
8. S. K. Hsiao, “Structure of the peak Hopf algebra of quasi-symmetric functions,” 2002.
9. D. Krob, B. Leclerc, and J.-Y. Thibon, “Noncommutative symmetric functions. II. Transformations of alphabets,” Internat. J. Algebra Comput. 7(2) (1997), 181-264.
10. T. Y. Lam, “A first course in non-commutative rings,” Graduate Texts in Mathematics 131, Springer-Verlag, 1991.
11. J.-L. Loday, Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, Berlin, 1998. xx+513 pp.
12. S. Mahajan, “Shuffles on Coxeter groups,” 2001. math.CO/0108094
13. C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra,” J. Algebra 177(3) (1995), 967-982.
14. K. Nyman, “The peak algebra of the symmetric group,” J. Algebraic Combin. 17 (2003), 309-322.
15. C. Reutenauer, Free Lie Algebras, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications.
16. M. Schocker, “The peak algebra of the symmetric group revisited,” Adv. Math. 192(2) (2005), 259-309.
17. M. Schocker, “The descent algebra of the symmetric group,” to appear in Proc. of ICRA X, Fields Institute, Toronto.
18. N. J. A. Sloane, “An on-line version of the encyclopedia of integer sequences,” Electron. J. Combin. 1 (1994), Feature 1, approx. 5 pp. (electronic); http://akpublic.research.att. com/\sim njas/sequences/ol.html.
19. L. Solomon, “A Mackey formula in the group ring of a Coxeter group,” J. Algebra 41(2) (1976), 255-264.
20. R. P. Stanley, Enumerative Combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota.
21. J. R. Stembridge, “Enriched P-partitions,” Trans. Amer. Math. Soc. 349(2) (1997), 763-788.
2. F. Bergeron and N. Bergeron, “A decomposition of the descent algebra of the hyperoctahedral group I,” J. Algebra 148(1) (1992), 86-97.
3. F. Bergeron and N. Bergeron, “Orthogonal idempotents in the descent algebra of Bn and applications,” J. Pure Appl. Algebra 79(2) (1992), 109-129.
4. N. Bergeron, “A decomposition of the descent algebra of the hyperoctahedral group, II,” J. Algebra 148(2) (1992), 98-122.
5. N. Bergeron, F. Hivert, and J.-Y. Thibon, “The peak algebra and the Hecke-Clifford algebras at q = 0,” math.CO/0304191 2004.
6. N. Bergeron, S. Mykytiuk, F. Sottile, and S. van Willigenburg, “Shifted quasi-symmetric functions and the Hopf algebra of peak functions,” Discrete Math. 246 (2002), 57-66.
7. A. M. Garsia and C. Reutenauer, “A decomposition of Solomon's descent algebra,” Adv. Math. 77(2) (1989), 189-262.
8. S. K. Hsiao, “Structure of the peak Hopf algebra of quasi-symmetric functions,” 2002.
9. D. Krob, B. Leclerc, and J.-Y. Thibon, “Noncommutative symmetric functions. II. Transformations of alphabets,” Internat. J. Algebra Comput. 7(2) (1997), 181-264.
10. T. Y. Lam, “A first course in non-commutative rings,” Graduate Texts in Mathematics 131, Springer-Verlag, 1991.
11. J.-L. Loday, Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, Berlin, 1998. xx+513 pp.
12. S. Mahajan, “Shuffles on Coxeter groups,” 2001. math.CO/0108094
13. C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra,” J. Algebra 177(3) (1995), 967-982.
14. K. Nyman, “The peak algebra of the symmetric group,” J. Algebraic Combin. 17 (2003), 309-322.
15. C. Reutenauer, Free Lie Algebras, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications.
16. M. Schocker, “The peak algebra of the symmetric group revisited,” Adv. Math. 192(2) (2005), 259-309.
17. M. Schocker, “The descent algebra of the symmetric group,” to appear in Proc. of ICRA X, Fields Institute, Toronto.
18. N. J. A. Sloane, “An on-line version of the encyclopedia of integer sequences,” Electron. J. Combin. 1 (1994), Feature 1, approx. 5 pp. (electronic); http://akpublic.research.att. com/\sim njas/sequences/ol.html.
19. L. Solomon, “A Mackey formula in the group ring of a Coxeter group,” J. Algebra 41(2) (1976), 255-264.
20. R. P. Stanley, Enumerative Combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota.
21. J. R. Stembridge, “Enriched P-partitions,” Trans. Amer. Math. Soc. 349(2) (1997), 763-788.