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Abstract A short new proof of the fact that all shifted complexes are fixed by reverse

lexicographic shifting is given. A notion of lexicographic shifting, �lex—an operation that

transforms a monomial ideal of S = k[xi : i ∈ N] that is finitely generated in each degree into

a squarefree strongly stable ideal—is defined and studied. It is proved that (in contrast to the

reverse lexicographic case) a squarefree strongly stable ideal I ⊂ S is fixed by lexicographic

shifting if and only if I is a universal squarefree lexsegment ideal (abbreviated USLI) of S.

Moreover, in the case when I is finitely generated and is not a USLI, it is verified that all

the ideals in the sequence {�i
lex

(I )}∞i=0 are distinct. The limit ideal �̄(I ) = limi→∞ �i
lex

(I ) is

well defined and is a USLI that depends only on a certain analog of the Hilbert function of I .

Keywords Shifting . Reverse lexicographic

1. Introduction

This paper deals with two problems related to algebraic shifting that were raised by Gil Kalai

in [15].

Algebraic shifting is an algebraic operation introduced by Kalai [6, 14] that transforms a

simplicial complex � into a simpler (shifted) complex �(�), while preserving important com-

binatorial, topological and algebraic invariants such as face numbers, reduced Betti numbers

and extremal algebraic Betti numbers. There are two versions of algebraic shifting—exterior

and symmetric: the first one amounts to computing the (degree) reverse lexicographic generic

initial ideal (Ginrl) of the Stanley-Reisner ideal of � in the exterior algebra, while the sec-

ond one amounts to computing Ginrl in the symmetric algebra and then applying a certain

“squarefree” operation �. In this paper we consider only the symmetric version of algebraic

shifting. We refer to this operation as revlex shifting and denote it by �rl.
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Clearly �rl(�) �= � if � is not shifted. Among the many beautiful properties of revlex

shifting is the fact that the converse statement holds as well, namely that

�rl(�) = � if � is shifted, (1)

and hence that �rl(�rl(�)) = �rl(�) for an arbitrary complex �. This result was stated in

[14] and a somewhat hard proof was given in [3]. Equation (1) along with the two problems

on algebraic shifting posed by Gil Kalai [15, Problems 16 & 5] is the starting point of our

paper.

In [15, Problem 16] Kalai asks if algebraic shifting can be axiomatized. In that direction

we prove the following result. (We denote by [n] the set {1, 2, . . . , n}, and by f (�) and βi (�),

i ≥ 0, the f -vector and the reduced simplicial Betti numbers of � computed with coefficients

in a field k, respectively.)

Theorem 1.1. Let � be an operation that associates with every n ≥ 0 and every simplicial
complex � on the vertex set V = [n] a shifted simplicial complex �(�) on the same vertex
set. Assume further that � satisfies the following properties:

(1) f (�(�)) = f (�);

(2) �(� ∗ {n + 1}) = �(�) ∗ {n + 1};
(3) if �′ ⊆ �, then �(�′) ⊆ �(�);

(4)
∑dim �

i=0 βi (�) ≤ ∑dim �(�)
i=0 βi (�(�)).

Then for every shifted complex �, �(�) = �.

As a corollary we obtain a new and much simpler proof of Eq. (1). (Here � ∗ {n + 1} is

the cone over �, that is, a simplicial complex on the vertex set [n + 1] whose set of faces

consists of faces of � together with {F ∪ {n + 1} : F ∈ �}.)
Problem 5 in [15] asks whether the property given by Eq. (1) holds if one considers

symmetric shiftings with respect to arbitrary term orders. Since in the case of exterior shiftings

the answer is positive (as was shown by Kalai [13, Prop. 4.2]), one may expect to have the

same result in the symmetric case as well. Here we consider (degree) lexicographic order,

and denote the corresponding shifting operation by �lex. To our surprise we discover that only

very few shifted complexes are fixed by lex shifting. Our results are summarized in Theorem

1.2 below.

Denote by N the set of all positive integers. We say that an ideal I ⊂ S = k[xi : i ∈ N]

is a universal squarefree lexsegment ideal (abbreviated USLI) if it is finitely generated in

each degree and is a squarefree lexsegment ideal of S. (Equivalently, an ideal I of S that

is finitely generated in each degree is a USLI if I ∩ S[n] is a squarefree lexsegment ideal

of S[n] := k[x1, . . . , xn] for every n.) Thus, for example, the ideal 〈x1x2, x1x3, x1x4x5x6x7〉
is a USLI, while the ideal 〈x1x2, x1x3, x2x3〉 is a squarefree lexsegment of S[3] but is not a

squarefree lexsegment of S, and hence is not a USLI. A simplicial complex � is a USLI
complex if its Stanley-Reisner ideal, I� , is a USLI.

Recall that for a monomial ideal J ⊂ S[n] the (bi-graded) Betti numbers of J are the

invariants βi, j (J ) that appear in the minimal free resolution of J as an S[n]-module.

. . .
⊕

j

S[n](− j)βi, j (J ) → · · · →
⊕

j

S[n](− j)β1, j (J ) →
⊕

j

S[n](− j)β0, j (J ) → J → 0 (2)
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Here S[n](− j) denotes S[n] with grading shifted by j . Following [9], we define the B-sequence
of J , B(J ) := {B j (J ) : j ≥ 1}, where B j (J ) := ∑ j

i=0(−1)iβi, j (J ). (The B-sequence of an

ideal contains the same information as its Hilbert series—see Section 5 for more details as

well as for the definition of the B-sequence for a monomial ideal of S that is finitely generated

in each degree.)

Theorem 1.2.

(1) (finite) shifted simplicial complex � satisfies �lex(�) = � if and only if � is a USLI
complex. Moreover, if � is not a USLI complex, then all the complexes in the sequence
{�i

lex
(�)}∞i=0 are distinct. (Here �i

lex
(�) denotes the complex obtained from � by i con-

secutive applications of �lex.)
(2) The limit complex �̄lex(�) := limi→∞ �i

lex
(�) is well defined and is a (usually infinite)

USLI complex. Moreover, �̄lex(�) is the unique USLI complex whose Stanley-Reisner
ideal has the same B-sequence as I� .

The last part of the theorem implies that if two simplicial complexes �1 and �2 that have the

same h-vector (up to possibly several zeros appended at the end), then �̄lex(�1) = �̄lex(�2).

Thus, in contrast to revlex shifting, the operation �̄lex forgets all the information that � carries

(including the dimension of �) except its h-numbers.

Our theorems establish for simplicial complexes, results similar in spirit to those in

commutative algebra due to Bigatti-Conca-Robbiano [5] and Pardue [17]. Theorem 4.3

in [5] asserts that if I is a strongly stable ideal in S[n] and L is a distraction matrix, then

Ginrl(DL(I )) = I , while Proposition 30 in [17] asserts that sufficiently (but finitely) many

applications of the operation Ginlex ◦ DL to a monomial ideal I ⊂ S[n] results in the unique

lexsegment ideal of S[n] having the same Hilbert function as I .

The structure of the paper is as follows. Section 2 is devoted to the proof of Theorem 1.1. In

Section 3 after recalling basic facts and definitions related to generic initial ideals and revlex

shifting we provide a short new proof of Eq. (1). In Section 4 we introduce and study the

class of universal squarefree lexsegment ideals (USLIs) and the class of almost USLIs—the

notions that play a crucial role in the proof of Theorem 1.2. Finally in Section 5 we prove

Theorem 1.2. We close with a brief discussion of arbitrary term orders.

2. Axiomatizing algebraic shifting

This section is devoted to the proof of Theorem 1.1. We start by reviewing several notions

pertaining to simplicial complexes.

Denote the collection of all subsets of [n] := {1, 2, . . . , n} by 2[n]. Recall that a simplicial

complex � on the vertex set [n] is a collection � ⊆ 2[n] that is closed under inclusion. (We do

not require that every singleton {i} ⊆ [n] is an element of �.) The elements of � are called

faces and the maximal faces (under inclusion) are called facets. F ∈ � is an i -dimensional
face (or an i-face) if |F | = i + 1. The dimension of �, dim �, is the maximal dimension of

its faces. The number of i-dimensional faces of � is denoted by fi (�), and the sequence

f (�) := ( f−1(�), f0(�), f1(�), . . . fdim �(�)) is called the f -vector of �. Another set of

invariants associated with � is the set of its reduced Betti numbers βi (�) := dimk H̃i (�; k),

where H̃i (�; k) is the i-th reduced simplicial homology of � with coefficients in a field k.

A simplicial complex � on the vertex set [n] is called shifted if for every F ∈ �, i ∈ F ,

and i < j ≤ n, the set (F \ {i}) ∪ { j} is a face of � as well. The Betti numbers of a shifted
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complex � are combinatorial invariants and can be computed via the following well-known

formula [6, Thm. 4.3]:

Lemma 2.1. If � is a shifted complex on the vertex set [n], then

βi (�) = |{F ∈ max(�) : |F | = i + 1, n /∈ �}|,

where max(�) denotes the set of facets of �.

For a simplicial complex � and a vertex v of � define the antistar of v in � as ast �(v) =
{F ∈ � : v /∈ F}. Define also the link of v in � by lk �(v) := {F ∈ ast �(v) : F ∪ {v} ∈ �}.
Note that if � is a shifted complex on the vertex set [n], then lk �(n) and ast �(n) are shifted

complexes on [n − 1].

If � is a simplicial complex on V and u �∈ V , then the cone over � with apex u is a simplicial

complex, denoted � ∗ {u}, on the vertex set V ∪ {u} whose faces are all sets of the form

F ∪ A, where F ∈ � and A ⊆ {u}. Thus for any vertex v of �, � = lk �(v) ∗ {v} ∪ ast �(v)

and lk �(v) ∗ {v} ⊆ � ⊆ ast �(v) ∗ {v}.
Now we are ready to verify Theorem 1.1 asserting that if � is an operation that associates

with every n ≥ 0 and every simplicial complex � on the vertex set V = [n] a shifted simplicial

complex �(�) on the same vertex set, and if � satisfies the following properties:

1. f (�(�)) = f (�);

2. �(� ∗ {n + 1}) = �(�) ∗ {n + 1};
3. if �′ ⊆ �, then �(�′) ⊆ �(�);

4.
∑dim �

i=0 βi (�) ≤ ∑dim �(�)
i=0 βi (�(�)),

then for every shifted complex �, �(�) = �.

Proof of Theorem 1.1: Fix a shifted complex � on n vertices. If n = 0 or n = 1 then

�(�) = � by property (1). We proceed by induction on n. Since the link and the antistar of

the vertex n in �, �′ = lk �(n) and �′′ = ast �(n), respectively, are shifted complexes on the

vertex set [n − 1] and since �′ ∗ {n} ⊆ � ⊆ �′′ ∗ {n}, the induction hypothesis together with

properties (2) and (3) yield

�′ ∗ {n} ⊆ �(�) ⊆ �′′ ∗ {n}.

Therefore,

A := {F ∈ max(�(�)) : n /∈ F} = {F ∈ max(�(�)) : F ∈ �′′}
⊆ �′′ \ �′ (�)= {F ∈ max(�) : n /∈ F} =: B,

where (�) follows from the shiftedness of �:

F ∈ max(�) ∩ 2[n−1] ⇐⇒ F ∈ � but F ∪ {n} /∈ � ⇐⇒ F ∈ ast �(n) \ lk �(n) = �′′ \ �′.

On the other hand, Lemma 2.1 and property (4) imply that

|A| =
dim �(�)∑

i=0

βi (�(�)) ≥
dim �∑
i=0

βi (�) = |B|,
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and thus that A = B. Hence �(�) ⊇ A = �′′ \ �′, and we infer that

�(�) ⊇ (�′ ∗ {n}) ∪ (�′′ \ �′) = �.

Since f (�) = f (�(�)) by property (1), it follows that �(�) = �. �

3. Generic initial ideals and revlex shifting

In this section we review basic facts and definitions related to generic initial ideals and

revlex shifting. We also provide a new short proof of Eq. (1) asserting that �rl(�) = � for a

shifted �. Let S[n] = k[x1, . . . , xn] be the ring of polynomials in n variables over a field k of

characteristic zero, and let � be a simplicial complex on the vertex set [n]. We recall that the

Stanley-Reisner ideal of � [18] is the squarefree monomial ideal I� ⊂ S[n] whose generators

correspond to nonfaces of �:

I� :=
〈

k∏
j=1

xi j ∈ S[n] : {i1 < i2 < · · · < ik} /∈ �

〉
.

The Stanley-Reisner ideal of a shifted complex is called a squarefree strongly stable ideal.
(Equivalently, a squarefree monomial ideal I is squarefree strongly stable, if for every minimal

generator m of I and for every 1 ≤ i < j such that x j | m but xi � | m, the monomial mxi/x j

lies in I .)

Let � be a term order on S[n] that refines the partial order by degree where lower degree

monomials are more expensive than higher degree monomials, and satisfies x1 � · · · � xn .

Let I ⊂ S[n] be a homogeneous ideal such as the Stanley-Reisner ideal of �. Consider a

generic n × n matrix g. Then g acts on the set of linear forms of S[n] by gx j = ∑n
i=1 gi j xi

and this action can be extended uniquely to a ring automorphism on S[n] that we also denote

by g. Following [8, Thm. 15.18] define the generic initial ideal of I with respect to � as

Gin�(I ) := in�(gI ),

where in�(gI ) is the initial ideal of gI with respect to � in the sense of Gröbner basis theory.

The same theorem in [8] asserts that we can choose g to be upper triangular and hence we

assume from now on that gx j = ∑ j
i=1 gi j xi .

We briefly outline how to compute Gin�(I ) (for a detailed description the reader is referred

to [8, Thm. 15.18]).

Definition 3.1. An exterior monomial in
∧l (S[n])d is an element of the form m1 ∧ · · · ∧ ml

where each mi is a monomial of S[n] of degree d and m1 � · · · � ml . The extension of �
to an order on monomials of

∧l (S[n])d is the order in which m1 ∧ · · · ∧ ml � n1 ∧ · · · ∧ nl

if for some s we have that ms � ns and mi = ni for i < s. For a non-zero element f of∧l (S[n])d , define the initial term of f , in�( f ), to be the �-largest monomial appearing in f
with nonzero coefficient when f is written as a linear combination of (distinct) monomials.

Consider a generic n × n upper-triangular matrix g and its action on S[n]. Let Id be

the d-th homogeneous component of a homogeneous ideal I , and let f1, . . . , ft be a basis
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of Id . Then g( f1) ∧ · · · ∧ g( ft ) ∈ ∧t (S[n])d . Denote by Md = m1 ∧ · · · ∧ mt the monomial

in�(g( f1) ∧ · · · ∧ g( ft )) and by Vd the subspace of (S[n])d spanned by m1, . . . , mt .

Proposition 3.2. Gin�(I ) = ⊕
Vd.

Several basic properties of Gins are summarized in the following lemma.

Lemma 3.3. Let I ⊂ S[n] be a homogeneous ideal. Then

(1) Gin�(I ) is a strongly stable monomial ideal (that is, if m ∈ Gin�(I ), x j | m and 1 ≤ i < j ,
then xi m/x j ∈ Gin�(I ) as well).

(2) Gin�(I ) and I have the same Hilbert function (that is, dimk(Gin�(I )d ) = dimk(Id ) for
all d).

(3) If J ⊆ I is a homogeneous ideal of S[n], then Gin�(J ) ⊆ Gin�(I ).
(4) Let �′ be an extension of � to a term order on S[n+1] satisfying xn �′ xn+1. Then

Gin�′ (I S[n+1]) = (Gin� I )S[n+1]. In particular, for a simplicial complex � on [n],
Gin�′ (I�∗{n+1}) = (Gin� I�)S[n+1].

Proof: Part (1) is [8, Thm. 15.18 and Thm. 15.23]. Part (2) follows from [8, Thm 15.3]. Part

(3) is obvious from the definitions. To prove part (4), consider a generic upper-triangular

(n + 1) × (n + 1) matrix g̃ and its left-upper n × n submatrix g. Then g acts on S[n], g̃ acts

on S[n+1], and g̃xi = gxi for all 1 ≤ i ≤ n. Therefore for every (homogeneous) element h
of I ⊂ S[n] ⊂ S[n+1], g̃h = gh. Thus for h ∈ I , in�′ (g̃h) = in�(gh), implying that Gin� I ⊆
Gin�′ (I S[n+1]), and hence that (Gin� I )S[n+1] ⊆ Gin�′ (I S[n+1]). The lemma follows, since

both the ideals (Gin� I )S[n+1] and Gin�′ (I S[n+1]) have the same Hilbert function. �

In the later sections we compare Gins of the same ideal I computed with respect to

different term orders. For that we need the following definition.

Definition 3.4. Let I1 �= I2 be two monomial ideals of S[n] and let � be a term order. We

say that I1 � I2 if the largest monomial in the symmetric difference of I1 and I2 is in I1.

Equivalently, I1 � I2 if the largest monomial in the symmetric difference of G(I1) and G(I2)

is in G(I1), where G(I1) and G(I2) are the sets of minimal generators of I1 and I2 respectively.

One immediate observation is

Lemma 3.5. Let σ and τ be two term orders on S[n]. Then Ginσ (I ) ≥σ Ginτ (I ) for any
homogeneous ideal I ⊂ S[n].

Proof: Let f1, . . . , ft be a basis of Id , and let g be a generic n × n upper-triangular matrix.

Since M ′
d := in>τ

(g( f1) ∧ · · · ∧ g( ft )) appears in g( f1) ∧ · · · ∧ g( ft ) with a non-zero coef-

ficient, it follows that Md := inσ (g( f1) ∧ · · · ∧ g( ft )) ≥σ M ′
d (for every d ≥ 0). Proposition

3.2 implies the lemma. �

We remark that a stronger version of Lemma 3.5 was proved in [7, Cor. 1.6].

Another ingredient needed for defining revlex shifting is the notion of the squarefree

operation. This is a bijection � between the set of all monomials in {xi : i ∈ N} and the set
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of all squarefree monomials in {xi : i ∈ N}, defined by

�

(
k∏

j=1

xi j

)
=

k∏
j=1

xi j + j−1, where i1 ≤ i2 ≤ · · · ≤ ik .

Note that for a monomial m ∈ S[n], �(m) may not belong to S[n]. However the graded reverse

lexicographic order has the following remarkable property [14, Lemma 6.3(ii)], [3, Lemma

1.1]: if m is a minimal generator of Ginrl I� (where � is a simplicial complex on [n]), then

�(m) is an element of S[n]. This leads to the following definition (due to Kalai).

Definition 3.6. Let � be a simplicial complex on the vertex set [n]. The reverse lexicographic

shifting of �, �rl(�), is a simplicial complex on [n] whose Stanley-Reisner ideal is given by

I�rl(�) = 〈�(m) : m ∈ G(Ginrl I�)〉,

where G(I ) denotes the set of the minimal generators of a monomial ideal I .

We now provide a new and simple proof of Eq. (1) (due originally to Aramova, Herzog,

and Hibi [3]).

Theorem 3.7. The revlex shifting �rl satisfies all the conditions of Theorem 1.1. Thus
�rl(�) = � for every shifted complex �.

Proof: It is well-known that (symmetric) revlex shifting satisfies all the conditions of Theo-

rem 1.1, except possibly for property (2) whose proof appears to be missing in the literature

(for the exterior version of algebraic shifting it was recently verified by Nevo [16]): the fact

that �(�) is a shifted simplicial complex follows from Lemma 3.3(1); property (1) is [14,

Lemma 6.3(i)]; property (3) is a consequence of Lemma 3.3(3); property (4) follows from

[11, Cor. 8.25] asserting that βi (�) = βi (�(�)) for all i . To prove property (2) it suffices to

check that �(�) and �(� � {n + 1}) have the same set of minimal nonfaces (equivalently,

I�(�) ⊂ S[n] and I�(��{n+1}) ⊂ S[n+1] have the same set of minimal generators). This follows

from Definition 3.6 and Lemma 3.3(4). �

Remarks

(1) We note that to verify the inequality
∑

βi (�) ≤ ∑
βi (�rl(�)) one does not need to use

the fact that βi (�) = βi (�rl(�)) for all i , which is a consequence of the deep result

due to Bayer–Charalambous–Popescu [4] and Aramova–Herzog [1] that revlex shifting

preserves extremal (algebraic) Betti numbers. Instead one can use the standard flatness

argument (see [11, Thm. 3.1]) to show that βi, j (I�) ≤ βi, j (Ginrl(I�)) = βi, j (I�(�)) for all

i , j , where the equality comes from the fact that � applied to (minimal generators of) a

strongly stable ideal Ginrl(I�) preserves algebraic Betti numbers (see [3, Lemma 2.2]).

The Hochster formula [12] then asserts that the reduced Betti numbers of a simplicial

complex are equal to certain algebraic graded Betti numbers of its Stanley-Reisner ideal.

(2) In algebraic terms, the statement of Theorem 3.7 translates to the fact that if I ⊂ S[n] is

a squarefree strongly stable ideal, then �(Ginrl(I )) = I , where �(Ginrl(I )) := 〈�(m) :

m ∈ G(Ginrl(I ))〉. Hence Ginrl(I ) = 〈�−1(μ) : μ ∈ G(I )〉, that is, computing the revlex
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Gin of a squarefree strongly stable ideal I simply amounts to applying �−1 to the minimal

generators of I .

(3) Our proof (as well as the original proof in [3]) of the equation �(Ginrl(I )) = I for

a squarefree strongly stable ideal I works only over a field k of characteristic zero.

We however do not know of any counterexamples in the case of a field of positive

characteristic.

4. Combinatorics of USLIs, almost USLIs, and lex Gins

In this section we introduce and study the class of universal squarefree lexsegment ideals

(USLIs) and the class of almost USLIs. These notions turn out to be crucial in the proof of

Theorem 1.2. To allow for infinitely generated ideals (as we need in the following section)

we consider the system of rings S[n], n ∈ N, endowed with natural embeddings S[n] ⊆ S[m]

for m ≥ n, and provide definitions suitable for the direct limit ring S = limn→∞ S[n] = k[xi :

i ∈ N].

Recall that a squarefree monomial ideal I ⊂ S (I ⊂ S[n], respectively) is a squarefree
lexsegment ideal of S (S[n], respectively) if for every monomial m ∈ I and every squarefree

monomial m ′ ∈ S (m ′ ∈ S[n], respectively) such that deg(m ′) = deg(m) and m ′ >lex m, m ′ is

an element of I as well.

Definition 4.1. An ideal L of S (or of S[n]) is a universal squarefree lexsegment ideal (ab-

breviated USLI) if it is finitely generated in each degree and L S is a squarefree lexsegment

ideal of S. Equivalently, an ideal L = L(k•) (here k• = {ki }i∈N is a sequence of nonnegative

integers) is a USLI with ki minimal generators of degree i (for i ∈ N) if and only if the set

of minimal generators of L , G(L), is given by

G(L) =
∞⋃

r=1

{(
r−1∏
j=1

xR j

)
· xl : Rr−1 + 1 ≤ l ≤ Rr − 1

}
, where R j = j +

j∑
i=1

ki .

The easiest way to verify the description of the set G(L) = {m1 >lex m2 >lex · · · >lex

ms >lex · · ·} of a USLI L is by induction on s. Indeed, if m1, . . . , ms satisfy the above

description and ms = (
∏r−1

j=1 xR j ) · xl , then there are two possibilities for ms+1: either

deg(ms+1) = deg(ms) = r (equivalently, l < Rr − 1) or deg(ms+1) = r ′ > r (equivalently,

l = Rr − 1 and ki = 0 for all r < i < r ′). In the former case, since ms >lex ms+1 and since ms

is the immediate lex-predecessor of m ′ := (
∏r−1

j=1 xR j ) · xl+1, it follows that m ′ ≥lex ms+1 ∈ L
which together with L being a USLI implies that m ′ ∈ L . Since m ′ is not divisible

by any of m1, . . . , ms , this yields ms+1 = m ′. The treatment of the latter case is sim-

ilar: just observe that every squarefree monomial of degree r ′ that is lex-smaller than

m ′ := (
∏r−1

j=1 xR j ) · (
∏r ′−r+1

j=1 xl+ j ) = (
∏r ′−1

j=1 xR j ) · xRr ′−1+1 is divisible by at least one of

m1, . . . , ms and hence is in L − G(L), while m ′ is not divisible by any of m1, . . . , ms .

Example 4.2.

(1) The ideal 〈x1x2, x1x3, x2x3〉 (the Stanley-Reisner ideal of three isolated points) is a lexseg-

ment in S[3], but is not a lexsegment in S, and hence is not a USLI.
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(2) The ideal I = 〈x1x2, x1x3, x1x4x5x6x7〉 is the USLI with k1 = 0, k2 = 2, k3 = k4 =
0, k5 = 1 and ki = 0 for all i > 5. In this example, check that R1 = 1, R2 = 4, R3 =
5, R4 = 6 and R5 = 8.

Note that every USLI is a squarefree strongly stable ideal, and hence is the Stanley-

Reisner ideal of a shifted (possibly infinite) simplicial complex (we refer to such com-

plex as a USLI complex). All complexes considered in this section are assumed to be

finite.

The following lemma describes certain combinatorial properties of USLI complexes.

This lemma together with Lemmas 4.5 and 4.6 below provides a key step in the proof of

Theorem 1.2.

Lemma 4.3. Let � be a USLI complex on the vertex set [n] with I� = L(k•).

(1) If I� �= 0 and kd is the last nonzero entry in the sequence k•, then � has exactly d facets.
They are given by

Fi =
{ {R j : 1 ≤ j ≤ i − 1} ∪ [Ri + 1, n] if 1 ≤ i ≤ d − 1,

{R1, . . . , Rd−1} ∪ [Rd , n] if i = d.

(2) If �′ is a shifted complex on [n] such that f (�) = f (�′), then � = �′. (In other words
every USLI complex is the only shifted complex in its f -class).

Proof: We verify part (1) by induction on n + d + ∑
ki . The assertion clearly holds if

d = 1 or if
∑

ki = 1. For instance, if d = 1 and k1 = n (equivalently, R1 = n + 1), then

F1 = [n + 1, n] = ∅ is the only facet of �.

Note that Rd is the index of the first variable that does not divide any of the minimal gen-

erators of I� . Thus if Rd ≤ n, then � = lk �(n) � {n}, and we are done by applying induction

hypothesis to the USLI complex lk �(n). So assume that Rd = n + 1. Then lk �(n) and ast �(n)

are easily seen to be the USLI complexes on the vertex set [n − 1] whose Stanley-Reisner

ideals are given by L1 = L(k1, . . . , kd−2, kd−1 + 1) and L2 = L(k1, . . . , kd−1, kd − 1), re-

spectively. Hence by induction hypothesis the complex lk �(n) � {n} has exactly d − 1

facets, namely the sets F1, . . . , Fd−1 from the list above. Now if kd > 1, then by in-

duction hypothesis the facets of ast �(n) are the sets F1 − {n}, . . . , Fd−1 − {n}, Fd . Since

� = (lk �(n) � {n}) ∪ ast �(n), it follows that max(�) = {F1, . . . , Fd}. Similarly, if kd =
1 and k j is the last nonzero entry in the sequence (k1, . . . , kd−1), then the facets of

ast �(n) are the sets F1 − {n}, . . . , Fj−1 − {n}, Fd , and the result follows in this case as

well.

To prove part (2) we induct on n. The assertion is obvious for n = 1. For n > 1 we consider

two cases.

Case 1: Rd ≤ n. In this case � = lk �(n) � {n}, so βi (�) = 0 for all i . Since among all

squarefree strongly stable ideals with the same Hilbert function the squarefree lexsegment

ideal has the largest algebraic Betti numbers [2, Thm. 4.4], and since by Hochster’s formula

[12],βn−i−1(	) = βi−1,n(I	) for any simplicial complex	on the vertex set [n], it follows that

βi (�
′) ≤ βi (�) = 0, and so βi (�

′) = 0 for all i . Since �′ is shifted, Lemma 2.1 implies that

all facets of �′ contain n. Thus �′ = lk �′ (n) � {n}, and the assertion follows from induction

hypothesis applied to lk �(n) and lk �′ (n).
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Case 2: Rd = n + 1. In this case all facets of � but Fd contain vertex n (this follows from

part (1) of the Lemma), and we infer from Lemma 2.1 that

βi (�) =
{

0, if i �= d − 2

1, if i = d − 2.

Recall the Euler-Poincaré formula asserting that for any simplicial complex 	,∑
j≥−1

(−1) j f j (	) =
∑
j≥−1

(−1) jβ j (	) =: χ̃ (	).

Therefore, χ̃ (�′) = ∑
j≥−1(−1) j f j (�

′) = ∑
j≥−1(−1) j f j (�) = χ̃ (�) = (−1)d−2, and

hence not all Betti numbers of �′ vanish. The same reasoning as in Case 1 then

shows that βi (�
′) = βi (�) for all i . Applying Lemma 2.1 once again, we obtain that

�′ = (lk �′ (n) � {n}) ∪ {F ′}, where |F ′| = d − 1 and F ′ is the only facet of �′ that

does not contain n. Thus f (lk �(n)) = f (lk �′ (n)) and f (ast �(n)) = f (ast �′ (n)), and so

lk �(n) = lk �′ (n) and ast �(n) = ast �′ (n) (by induction hypothesis), yielding that � = �′.
�

We now turn to the class of almost USLIs. (Recall our convention that lower degree

monomials are lex-larger than higher degree monomials.)

Definition 4.4. Let I ⊂ S (or I ⊂ S[n]) be a squarefree strongly stable monomial ideal with

G(I ) = {m1 >lex · · · >lex ml >lex ml+1}. We say that I is an almost USLI if I is not a USLI,

but L = 〈m1, . . . , ml〉 is a USLI. We say that a simplicial complex � is an almost USLI
complex if I� is an almost USLI.

As we will see in the next section (see also Lemma 4.6 below), what makes almost

USLI complexes noninvariant under lex shifting is the following combinatorial property.

(We recall that the regularity of a finitely generated stable monomial ideal I , reg(I ), is the

maximal degree of its minimal generators.)

Lemma 4.5. Let � be an almost USLI complex. Then | max(�)| > reg(I�).

Proof: Assume � is a simplicial complex on [n] with G(I�) = {m1 >lex · · · >lex ml >lex

ml+1}. We have to show that | max(�)| > deg(ml+1) =: d . We verify this by induction on d .

To simplify the notation assume without loss of generality that every singleton {i} ⊂ [n] is a

vertex of � (equivalently, I� has no generators of degree 1). If there are generators of degree

1 then the proof given below can be modified by letting the index R1 play the role of the

index 1. As I� is an almost USLI, and so 〈m1, . . . , ml〉 is a USLI, this leaves two possible

cases:

Case 1: m1, . . . , ml are divisible by x1, but ml+1 is not divisible by x1. Since I� is squarefree

strongly stable, it follows that ml+1 = ∏d+1
j=2 x j . In this case each set Fi = [n] − {1, i}, i =

2, . . . , d + 1, is a facet of �. (Indeed the product
∏{x j : j ∈ Fi } is not divisible by ml+1, and

it is also not divisible by x1, and hence by m1, . . . , ml , implying that Fi is a face. To show

that Fi is a maximal face observe that Fi ∪ {i} contains the support of ml+1, and hence is not

a face, but then shiftedness of � implies that neither is Fi ∪ {1}.) Since there also should be
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a facet containing 1, we conclude that max(�) ≥ d + 1 > deg(ml+1), completing the proof

of this case.

Case 2: All minimal generators of I are divisible by x1. In this case consider

an almost USLI I ′
� := 〈x1, m1/x1, . . . , ml+1/x1〉. By induction hypothesis �′ has s >

deg(ml+1) − 1 facets which we denote by F1, . . . , Fs . One easily verifies that max(�) =
{{1} ∪ F1, . . . , {1} ∪ Fs, [2, n]} , and so | max(�)| = s + 1 > deg(ml+1). �

We close this section with an algebraic lemma that relates regularity of Ginlex(I�) to the

number of facets of � (for an arbitrary complex �).

Lemma 4.6. For a (finite) simplicial complex �, reg(Ginlex(I�)) ≥ | max(�)|.

Proof: This fact is a corollary of [17, Lemma 23] applied to squarefree (and hence radical)

ideal I� ∈ S[n]. For σ ⊆ [n], we denote by Pσ the (prime) ideal in S[n] generated by {x j :

j /∈ σ }. It is well known that I� has the following prime decomposition: I� = ∩σ∈max(�) Pσ .

Thus the variety of I� , V(I�), is the union (over σ ∈ max(�)) of the irreducible subvarieties

V(Pσ ). Each such subvariety is a linear subspace of kn of codimension n − |σ |. [17, Lemma

23] then implies that the monomial m := ∏
xri

i , where ri = |{σ ∈ max(�) : |σ | = n − i}|,
is a minimal generator of Ginlex(I�). Hence reg(Ginlex(I�)) ≥ deg(m) = | max(�)|. �

5. Lex shifting, B-numbers and the limit complex

In this section after defining the notion of lexicographic shifting and the notion of B-numbers

(a certain analog of the Hilbert function) we prove Theorem 1.2. We remark that extending

the notion of algebraic shifting to an arbitrary term order � is not entirely automatic since

the �-image of the set of minimal generators of Gin�(I�) ⊂ S[n], G(Gin�(I�)), may not be

a subset of S[n]. This however can be easily corrected if one considers the system of rings

S[n], n ∈ N, endowed with natural embeddings S[n] ⊆ S[m] for m ≥ n, and makes all the

computations in the direct limit ring S = limn→∞ S[n] = k[xi : i ∈ N]. This is the approach

we adopt here. We work with the class of monomial ideals I ⊂ S finitely generated in each

degree. Throughout this section we use the graded lexicographic term order on S.

Definition 5.1. Let I be a monomial ideal of S that is finitely generated in each degree. Define

Ginlex(I ) := lim
n→∞

(
Ginlex(I ∩ S[n])

)
S,

where we consider I ∩ S[n] as an ideal of S[n].

Since the d-th component of Ginlex(I ∩ S[n]) depends only on the d-th component of I ∩
S[n], or equivalently on the minimal generators of I ∩ S[n] of degree ≤ d , Lemma 3.3(4)

implies that Ginlex(I ) is well-defined and that for every d there is n(d) such that (Ginlex I )d =
((Ginlex(I ∩ S[n]))S)d for all n ≥ n(d). Thus Ginlex(I ) is a monomial ideal finitely generated

in each degree. (It is finitely generated if I is.) Moreover, it follows from Lemma 3.3(1) that

Ginlex(I ) is a strongly stable ideal.

Recall that the squarefree operation � takes monomials of S to squarefree monomials of

S. If I ⊂ S is a monomial ideal finitely generated in each degree, we define �(I ) := 〈�(m) :

m ∈ G(I )〉, where G(I ) is the set of minimal generators of I .
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Definition 5.2. Let I be a homogeneous ideal of S that is finitely generated in each de-

gree. The lexicographic shifting of I is the squarefree strongly stable ideal �lex(I ) =
�(Ginlex(I )). The i -th lexicographic shifting of I is the ideal �i

lex
(I ), where �i

lex

stands for i successive applications of �lex. We also define the limit ideal �̄(I ) :

= limk→∞ �k
lex

(I ).

The rest of the section is devoted to the proof of Theorem 1.2. First however we digress

and review several facts on algebraic Betti numbers (defined by Eq. (2)).

Lemma 5.3. Let I and J be monomial ideals of S[n].

(1) If I j = Jj for all 0 ≤ j ≤ j0, then βi, j (I ) = βi, j (J ) for all i and all j ≤ j0.
(2) The Betti numbers of I ⊂ S[n] coincide with those of I S[n+1] ⊂ S[n+1], that is, βi, j (I ) =

βi, j (I S[n+1]) for all i, j .

Proof: Part (1) follows from the standard facts that

βi, j (I ) = dimk Tor
S[n]

i (k, I ) j = dimk Tor
S[n]

i (I, k) j ,

where we identify k with the S[n]-module S[n]/〈x1, . . . , xn〉. For part (2) note that if F is the

free minimal resolution of I over S[n], then F ⊗S[n]
S[n+1] is the free minimal resolution of

I S[n+1] over S[n+1], yielding the lemma. �

The above properties allow to extend the definition of the Betti numbers to the class of

monomial ideals of S that are finitely generated in each degree.

Definition 5.4. Let I ⊂ S be a monomial ideal finitely generated in each degree. Define

βi, j (I ) := lim
n→∞ βi, j (I ∩ S[n]) for all i, j ≥ 0,

where we consider I ∩ S[n] as an ideal of S[n].

We remark that since I is finitely generated in each degree, for a fixed j0 there exists n0

such that (I ∩ S[n+1]) j = ((I ∩ S[n])S[n+1]) j for all 0 ≤ j ≤ j0 and n ≥ n0. Hence it follows

from Lemma 5.3 that (for a fixed i) the sequence {βi, j0 (I ∩ S[n])}n∈N is a constant for indices

starting with n0, and thus βi, j0 (I ) is well-defined.

The Betti numbers of strongly stable ideals (of S[n]) were computed by Eliahou and

Kervaire [10], and the analog of this formula for squarefree strongly stable ideals (of S[n])

was established by Aramova et al. [2]. Definition 5.4 allows to state these results as follows.

(For a monomial u define m(u) := max{i : xi |u}.)

Lemma 5.5. Let I ⊂ S be a monomial ideal finitely generated in each degree, let G(I )

denote its set of minimal generators, and let G(I ) j = {u ∈ G(I ) : deg u = j}.
(1) If I is strongly stable, then βi,i+ j (I ) = ∑

u∈G(I ) j

(
m(u)−1

i

)
;

(2) If I is squarefree strongly stable, then βi,i+ j (I ) = ∑
u∈G(I ) j

(
m(u)− j

i

)
. In particular, if

I = L(k•) is a USLI, then βi,i+ j (I ) = ∑k j

l=1

( k1+...+k j−1+l−1

i

)
.
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Using the notion of the Betti numbers, one can define a certain analog of the Hilbert

function—the B-numbers—of a monomial ideal I of S that is finitely generated in each

degree.

Definition 5.6. Let I ⊂ S (or I ⊂ S[n]) be a monomial ideal finitely generated in each degree,

and let βi, j (I ) be its graded Betti numbers. Define

B j (I ) :=
j∑

i=0

(−1)iβi, j (I ) for all j ≥ 0 (e.g., B0 = 0 and B1(I ) = |G(I )1|).

The sequence B(I ) := {B j (I ) : j ≥ 1} is called the B-sequence of I .

Remark 5.7. It is well known and is easy to prove (see [9, Section 1B.3]) that for every n ∈ N
the polynomial

∑
j B j (I ∩ S[n])x j equals (1 − x)nHilb(I ∩ Sn, x), where Hilb(I ∩ Sn, x) is

the Hilbert series of I ∩ S[n]. In particular, if � is a (d − 1)-dimensional simplicial complex

on [n] and I� ⊂ S[n] is its Stanley-Reisner ideal then

1 − ∑
j B j (I�)x j

(1 − x)n
= Hilb(S[n]/I�, x) =

d∑
i=0

fi−1(�)xi

(1 − x)i
=

∑d
i=0 hi (�)xi

(1 − x)d
,

where {hi (�)}d
i=0 is the h-vector of � [18]. (Recall that h j = ∑ j

i=0(−1) j−i
(d−i

j−i

)
fi−1 for

0 ≤ j ≤ d . In particular, h1 = f0 − d .) Thus
∑

j B j (I�)x j = 1 − (1 − x)h1
∑

i hi x i (if one

assumes that {i} ∈ � for every i ∈ [n]), and so the h-vector of � defines the B-sequence of

I� .

The following lemma provides the analog of the “ f (�) = f (�rl(�))-property”.

Lemma 5.8. If I ⊂ S is a monomial ideal that is finitely generated in each degree, then the
ideals I and �lex(I ) have the same B-sequence. In particular, if I is finitely generated, then
for a sufficiently large n, the ideals I ∩ S[n] and �lex(I ) ∩ S[n] have the same Hilbert function
(in S[n]).

Proof: Since for every n ∈ N the ideals I ∩ S[n] and Ginlex(I ∩ S[n]) have the same Hilbert

function (in S[n]) (see Lemma 3.3), and since Bi (I ) = limn→∞ Bi (I ∩ S[n]), the above re-

mark implies that B(I ) = B(Ginlex(I )). Finally, since Ginlex(I ) is a strongly stable ideal

(Lemma 3.3), we infer (by comparing the two formulas of Lemma 5.5) that βi, j (Ginlex(I )) =
βi, j (�Ginlex(I )) = βi, j (�lex(I )) for all i, j , and so B(Ginlex(I )) = B(�lex(I )). The result fol-

lows. �

Now we are ready to verify the first part of Theorem 1.2. In fact we prove the following

slightly more general result.

Theorem 5.9. Let I be a squarefree strongly stable ideal of S finitely generated in each
degree. Then �lex(I ) >lex I unless I is a USLI in which case �lex(I ) = I . Moreover if I
is finitely generated and is not a USLI, then all ideals in the sequence {�i

lex
(I )}i≥0 are

distinct.
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Proof: There are several possible cases.

Case 1. I = L(k•) is a USLI. To prove that �lex(I ) = I , it suffices to show that for every d ≥
1, �lex(L(k(d)) = L(k(d)), where k(d) := {k1, . . . , kd , 0, 0, . . .} is the sequence k• truncated at

kd . But this is immediate from Lemmas 4.3(2) and 5.8. Indeed, for n = n(d) sufficiently large

the simplicial complexes on the vertex set [n] whose Stanley-Reisner ideals are given by

�lex(L(k(d)) ∩ S[n] and L(k(d)) ∩ S[n], respectively, are shifted and have the same f -numbers.

Since the second complex is a USLI complex, it follows that those complexes, and hence

their ideals, coincide.

Case 2. I = 〈m1, . . . , ml , ml+1〉 is an almost USLI. Let n be the largest index of a variable

appearing in
∏l+1

i=1 mi , and let � be a simplicial complex on [n] with I� = I ∩ S[n]. Then

reg(�lex(I )) = reg(Ginlex(I�))
Lemma 4.6≥ | max(�)| Lemma 4.5

> reg(I�) = reg(I ),

yielding that �lex(I ) �= I in this case. Moreover, since by Eq. (1), �(Ginrl(I�)) = I� and

since � is a lex-order preserving map, we infer from Lemma 3.5 that �(Ginlex(I�)) ≥lex

�(Ginrl(I�)) = I� , and hence that �lex(I ) >lex I .

Case 3. I is squarefree strongly stable, but is not a USLI. In this case we sort G(I ) =
{m1, . . . , ml , ml+1, · · ·} by graded lex-order and assume that ml+1 is the first non-USLI

generator of I . Let I1 = 〈m1, . . . , ml〉 and let I2 = 〈m1, . . . , ml+1〉. Then I1 is a USLI, I2 is

an almost USLI, and I1 ⊂ I2 ⊆ I . Hence by the previous two cases I1 = �lex(I1) ⊂ �lex(I2)

and �lex(I2) >lex I2, and so there exists a monomial m, ml >lex m >lex ml+1, such that m ∈
G(�lex(I2)) ⊆ G(�lex(I )). Thus �lex(I ) >lex I .

Finally to show that for a finitely generated ideal I , all ideals in the sequence {�i
lex

(I )}i≥0

are distinct, it suffices to check that none of those ideals is a USLI. This is an immediate

corollary of Lemmas 4.3(2) and 5.8. �

Our next goal is to prove the second part of Theorem 1.2. To do that we fix a sequence of

integers B = {B j : j ≥ 1} and study the class M(B) of all monomial ideals I ⊂ S that are

finitely generated in each degree and satisfy B(I ) = B.

Lemma 5.10. There is at most one USLI in the class M(B).

Proof: Recall that a USLI L = L(k•) is uniquely defined by its k-sequence k• = {ki : i ≥ 1},
where ki = β0,i (L) = |G(L)i |. Recall also that B(L) is a function of k• (see Lemma

5.5(2)), and so to complete the proof it suffices to show that this function is one-

to-one, or more precisely that k j is determined by k1, . . . , k j−1, B j (for every j ≥ 1).

And indeed,

k j = β0, j (L) = B j −
j∑

i=1

(−1)iβi, j (L) (by definition of B j )

= B j −
j∑

i=1

(−1)i
k j−i∑
l=1

(
k1 + . . . + k j−i−1 + l − 1

i

)
(by Lemma 5.5(2)).

�

Now we are ready to prove (the slightly more general version of) the second part of

Theorem 1.2.
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Theorem 5.11. For every ideal I ∈ M(B), the limit ideal �̄lex(I ) is well defined and is the
unique USLI of M(B).

Proof: Fix I ∈ M(B). To show that �̄lex(I ) is well defined, it suffices to check that for every

d ≥ 0, there exists s = s(d) such that

G
(
�s

lex
(I )

)
≤d

= G
(
�s+1

lex
(I )

)
≤d

(3)

(where G(J )≤d := ∪ j≤d G(J ) j ), and hence that all ideals �i
lex

(I ), i ≥ s, have the same d-th

homogeneous component. We verify this fact by showing that the collection of all possible

sets of minimal generators

G≤d := {G(J )≤d : J ∈ M(B), J is squarefree strongly stable} is finite. (4)

(This yields (3), since all ideals �i
lex

(I ), i ≥ 1, are squarefree strongly stable, and since

�i
lex

(I ) ≤lex �i+1
lex

(I ) by Theorem 5.9.) Eq. (4) can be easily proved by induction. It clearly

holds for d = 0. Now if J ∈ M(B) is squarefree strongly stable, then by Lemma 5.5(2) and

Definition 5.6,

|G(J )d | = β0,d (J ) = Bd −
d∑

i=1

(−1)i
∑

u∈G(J )d−i

(
m(u) − (d − i)

i

)
,

so assuming that the collection G≤d−1 is finite, or equivalently that the set of integers {m(u) :

u ∈ G(J )≤d−1 ∈ G≤d−1} is bounded (say by n(d)), we obtain that there exists a constant

g(d) such that |G(J )d | ≤ g(d) for all squarefree strongly stable ideals J ∈ M(B). But then

the squarefree strongly stable property implies that m(u) < n(d) + g(d) + d for every u ∈
G(J )≤d ∈ G≤d , and (4) follows.

The second part of the statement is now immediate: indeed if G(�s(I ))≤d =
G(�s+1(I ))≤d , then by Theorem 5.9, G(�s(I ))≤d = G(�̄(I ))≤d is the set of minimal gen-

erators of a USLI. �

6. Remarks on other term orders

We close the paper by discussing several results and conjectures related to algebraic shifting

with respect to arbitrary term orders. To this end, we say that an order � on monomials of S is

a term order if xi � xi+1 for i ≥ 1, m � m ′ as long as deg(m) < deg(m ′), and the restriction

of � to S[n] is a term order on S[n] for all n ≥ 1. In addition, we restrict our discussion

only to those term orders on S that are compatible with the squarefree operation �, that is,

�(m) � �(m ′) if m � m ′.
Similarly to Definition 5.1, for a term order � on S and a homogeneous ideal I ⊂ S

that is finitely generated in each degree, we define ��(I ) := �(Gin�(I )). Thus ��(I ) is

a squarefree strongly stable ideal that has the same B-sequence as I . (Indeed, the proof of

Lemma 5.8 carries over to this more general case.)

We say that a squarefree monomial ideal I ⊂ S is a US� I if for every monomial m ∈ I
and every squarefree monomial m ′ such that deg(m) = deg(m ′) and m ′ � m, m ′ is an element

of I as well. Being US� I implies being squarefree strongly stable.

In view of Theorems 1.2 and 3.7 it is natural to ask the following:
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(1) Does ��(I ) = I hold for every US�I I?

(2) Is there a term order�other than the lexicographic order for which the equality��(I ) = I
implies that I is a US�I?

(3) Is there a term order � other than the reverse lexicographic order such that the equation

��(I ) = I holds for all squarefree strongly stable ideals I ?

The next proposition answers the first question in the affirmative.

Proposition 6.1. If I is a US� I , then��(I ) = I for every term order on S that is compatible
with �.

Proof: Exactly as in the proof of Theorem 5.9 (see the last three lines of Case 2), one can

show that ��(I ) � I . Hence either ��(I ) = I , in which case we are done, or the �-largest

monomial, m, in the symmetric difference of G(��(I )) and G(I ) is an element of G(��(I )).

Since I is a US�I, we obtain in the latter case that G(��(I ))i = G(I )i for all i < deg(m)

and

G(I )i0
= {m ′ ∈ G(��(I ))i0

: m ′ � m} for i0 = deg(m),

that is, G(I )i0
is a strict subset of G(��(I ))i0

. This is however impossible, since it contradicts

the fact that the ideals I and ��(I ) have the same B-sequence. �

The answer to the second question is negative as follows from the following result.

Proposition 6.2. If I is a USLI, then ��(I ) = I for all term orders �.

We omit the proof as it is completely analogous to that of Theorem 5.9, Case 1.

While we do not know the answer to the third question, we believe that it is negative. In

fact it is tempting to conjecture that the following holds. Let � be a term order on S other

than the (graded) reverse lexicographic order, and let k ≥ 2 be the smallest degree on which

� and revlex disagree. Write mi to denote the i th squarefree monomial of S of degree k
with respect to the revlex order. (It is a fundamental property of the revlex order that every

squarefree monomial of S of degree k is of the form mi for some finite i .)

Conjecture 6.1. Let i0 ≥ 1 be the smallest index for which Ii0
:= 〈m1, . . . , mi0

〉 is not a

US� I . Then ��(Ii0
) �= Ii0

.
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