The poset of positive roots and its relatives
Dmitri I. Panyushev
Independent University of Moscow Bol'shoi Vlasevskii per. 11 119002 Moscow Russia Bol'shoi Vlasevskii per. 11 119002 Moscow Russia
DOI: 10.1007/s10801-006-6030-9
Abstract
Let Δ be a root system with a subset of positive roots, Δ +. We consider edges of the Hasse diagrams of some posets associated with Δ +. For each edge one naturally defines its type, and we study the partition of the set of edges into types. For Δ +, the type is a simple root, and for the posets of ad-nilpotent and Abelian ideals the type is an affine simple root. We give several descriptions of the set of edges of given type and uniform expressions for the number of edges. By a result of Peterson, the number of Abelian ideals is 2 n, where n is the rank of Δ . We prove that the number of edges of the corresponding Hasse diagram is ( n+1)2 n - 2. For Δ + and the Abelian ideals, we compute the number of edges of each type and prove that the number of edges of type α depends only on the length of the root α .
Pages: 79–101
Keywords: keywords simple Lie algebra; root system; Hasse diagram; ad-nilpotent ideal
Full Text: PDF
References
1. D. Bessis, “The dual braid monoid,” Ann. Sci. École Norm. Sup., Sér. IV. 36 (2003), 647-683.
2. N. Bourbaki, “Groupes et alg`ebres de Lie,” Chapitres 4,5 et 6, Paris: Hermann 1975.
3. R. Brylinski and B. Kostant, “Nilpotent orbits, normality, and Hamiltonian group actions,” J. Amer. Math. Soc. 7 (1994), 269-298.
4. P. Cellini and P. Papi, “ad-nilpotent ideals of a Borel subalgebra,” J. Algebra 225 (2000), 130-141.
5. P. Cellini and P. Papi, “ad-nilpotent ideals of a Borel subalgebra II,” J. Algebra 258 (2002), 112-121.
6. P. Cellini and P. Papi, “Abelian ideals of Borel subalgebras and affine Weyl groups,” Adv. Math. 187 (2004), 320-361.
7. F. Chapoton, S. Fomin, and A. Zelevinsky, “Polytopal realizations of generalized associahedra,” Canad. Math. Bull. 45(4) (2002), 537-566.
8. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, 1992.
9. B. Kostant, “The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations,” Intern. Math. Res. Notices, 5 (1998), 225-252.
10. D. Panyushev, “Abelian ideals of a Borel subalgebra and long positive roots,” Intern. Math. Res. Notices 35 (2003), 1889-1913.
11. D. Panyushev, “Ad-nilpotent ideals of a Borel subalgebra: generators and duality,” J. Algebra 274 (2004), 822-846.
12. D. Panyushev, “Long Abelian ideals,” Adv. Math. 186 (2004), 307-316.
13. D. Panyushev, “Ideals of Heisenberg type and minimax elements of affine Weyl groups,” in Amer. Math. Soc. Transl., Series 2. “Lie Groups and Invariant Theory” E.B.Vinberg, (Ed.), 213 (2005), 191-213. (= Preprint arXiv: math.RT/0311347, 25 pp).
14. D. Panyushev, “Normalizers of ad-nilpotent ideals,” Europ. J. Combinatorics, 27 (2006), 153-178. (= Preprint arXiv: math.RT/0402140).
15. D. Panyushev and G. R\ddot ohrle, “Spherical orbits and Abelian ideals,” Adv. Math. 159 (2001), 229-246. Springer
16. V. Reiner and V. Welker, “On the Charney-Davis and Neggers-Stanley Conjectures,” J. Combin Theory, Ser. A 109 (2005) no. 2, 247-280. http://www.math.umn.edu/ reiner/Papers/papers.html, 2002.
17. E. Sommers, “B-stable ideals in the nilradical of a Borel subalgebra,” Canad. Math. Bull., 48 (2005), no. 3, 460-472. (= Preprint arXiv: math.RT/0303182).
18. R. Suter Coxeter and dual Coxeter numbers, Comm. Alg. 26 (1998), 147-153.
19. R. Suter, “Young's lattice and dihedral symmetries,” Europ. J. Combinatorics 23(2002), 233-238.
20. R. Suter, “Abelian ideals in a Borel subalgebra of a complex simple Lie algebra,” Invent. Math. 156 (2004), 175-221.
21. MOCKBa: “HayKa” 1988 (Russian). English translation in A.L. Onishchik and E.B. Vinberg, “Lie groups and algebraic groups,” Berlin: Springer, 1990.
2. N. Bourbaki, “Groupes et alg`ebres de Lie,” Chapitres 4,5 et 6, Paris: Hermann 1975.
3. R. Brylinski and B. Kostant, “Nilpotent orbits, normality, and Hamiltonian group actions,” J. Amer. Math. Soc. 7 (1994), 269-298.
4. P. Cellini and P. Papi, “ad-nilpotent ideals of a Borel subalgebra,” J. Algebra 225 (2000), 130-141.
5. P. Cellini and P. Papi, “ad-nilpotent ideals of a Borel subalgebra II,” J. Algebra 258 (2002), 112-121.
6. P. Cellini and P. Papi, “Abelian ideals of Borel subalgebras and affine Weyl groups,” Adv. Math. 187 (2004), 320-361.
7. F. Chapoton, S. Fomin, and A. Zelevinsky, “Polytopal realizations of generalized associahedra,” Canad. Math. Bull. 45(4) (2002), 537-566.
8. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, 1992.
9. B. Kostant, “The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations,” Intern. Math. Res. Notices, 5 (1998), 225-252.
10. D. Panyushev, “Abelian ideals of a Borel subalgebra and long positive roots,” Intern. Math. Res. Notices 35 (2003), 1889-1913.
11. D. Panyushev, “Ad-nilpotent ideals of a Borel subalgebra: generators and duality,” J. Algebra 274 (2004), 822-846.
12. D. Panyushev, “Long Abelian ideals,” Adv. Math. 186 (2004), 307-316.
13. D. Panyushev, “Ideals of Heisenberg type and minimax elements of affine Weyl groups,” in Amer. Math. Soc. Transl., Series 2. “Lie Groups and Invariant Theory” E.B.Vinberg, (Ed.), 213 (2005), 191-213. (= Preprint arXiv: math.RT/0311347, 25 pp).
14. D. Panyushev, “Normalizers of ad-nilpotent ideals,” Europ. J. Combinatorics, 27 (2006), 153-178. (= Preprint arXiv: math.RT/0402140).
15. D. Panyushev and G. R\ddot ohrle, “Spherical orbits and Abelian ideals,” Adv. Math. 159 (2001), 229-246. Springer
16. V. Reiner and V. Welker, “On the Charney-Davis and Neggers-Stanley Conjectures,” J. Combin Theory, Ser. A 109 (2005) no. 2, 247-280. http://www.math.umn.edu/ reiner/Papers/papers.html, 2002.
17. E. Sommers, “B-stable ideals in the nilradical of a Borel subalgebra,” Canad. Math. Bull., 48 (2005), no. 3, 460-472. (= Preprint arXiv: math.RT/0303182).
18. R. Suter Coxeter and dual Coxeter numbers, Comm. Alg. 26 (1998), 147-153.
19. R. Suter, “Young's lattice and dihedral symmetries,” Europ. J. Combinatorics 23(2002), 233-238.
20. R. Suter, “Abelian ideals in a Borel subalgebra of a complex simple Lie algebra,” Invent. Math. 156 (2004), 175-221.
21. MOCKBa: “HayKa” 1988 (Russian). English translation in A.L. Onishchik and E.B. Vinberg, “Lie groups and algebraic groups,” Berlin: Springer, 1990.