ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On regular semiovals in PG(2,q)

András Gács
Eötvös Loránd University Department of Computer Science Pázmány Péter sétány 1/C H-1117 Budapest Hungary Pázmány Péter sétány 1/C H-1117 Budapest Hungary

DOI: 10.1007/s10801-006-6029-2

Abstract

In this paper we prove that a point set in PG(2, q) meeting every line in 0, 1 or r points and having a unique tangent at each of its points is either an oval or a unital. This answers a question of Blokhuis and Szönyi [1].

Pages: 71–77

Keywords: keywords semioval; oval; unital; polynomials

Full Text: PDF

References

1. A. Blokhuis and T. Sz\Acute\Acute onyi, “Note on the structure of semiovals in finite projective planes,” Discrete Mathematics 106/107 (1992), 61-65.
2. J.W.P. Hirschfeld, Projective geometries over finite fields, 2nd edn., Clarendon Press, Oxford, 1979, 1998.
3. Gy. Kiss and J. Ruff, “Note on small semiovals,” Annales Univ. Sci. Budapest 47 (2004), 143-151.
4. Gy. Kiss, Small semiovals in P G(2, q), J. of Geometry, submitted.
5. J.A. Thas, “A combinatorial characterization of Hermitan curves,” Journal of Algebraic Combinatorics 1 (1992), 97-102.
6. A. Blokhuis, Gy. Kiss, I. Kovács, A. Malni\check c, D. Maru\check si\check c, and J. Ruff, Semiovals contained in the union of three concurrent lines, J. Comb. Designs, submitted.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition