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Abstract An alternating sign matrix is a square matrix with entries 1, 0 and —1 such that the
sum of the entries in each row and each column is equal to 1 and the nonzero entries alternate
in sign along each row and each column. To some of the symmetry classes of alternating
sign matrices and their variations, G. Kuperberg associate square ice models with appropriate
boundary conditions, and give determinant and Pfaffian formulae for the partition functions.
In this paper, we utilize several determinant and Pfaffian identities to evaluate Kuperberg’s
determinants and Pfaffians, and express the round partition functions in terms of irreducible
characters of classical groups. In particular, we settle a conjecture on the number of vertically
and horizontally symmetric alternating sign matrices (VHSASMs).
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1. Introduction

An alternating sign matrix (or ASM for short) is a square matrix satisfying the following
three conditions:

(a) All entries are 1, —1 or 0.
(b) Every row and column has sum 1.
(c) In every row and column, the nonzero entries alternate in sign.

Let A, be the set of n x n ASMs. This notion of alternating sign matrices was introduced
by Robbins and Rumsey [13] in a study of Dodgson’s condensation formula for evaluating
determinants. Mills, Robbins and Rumsey [9] conjectured a formula of the number of n x n
alternating sign matrices. After more than 10 years, this conjecture was settled by Zeilberger
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[17] and Kuperberg [6] in completely different ways. (See [2] for the history of ASMs and
related topics.)

Theorem 1.1 (Zeilberger [17], Kuperberg [6]). The number of n x n ASMs is given by

=13k 4+ 1)!

#A, = | —.
o (n+k)!

Kuperberg’s proof is based on a bijection between ASMs and square-ice states in the 6-
vertex model with domain wall boundary condition, and on the Izergin-Korepin determinant
formula for the partition function of this model.

The dihedral group Dg of order 8 acts on the set A, of all ASMs as symmetries of the
square. Each subgroup of Dg gives rise to symmetry classes of ASMs. There are 7 conjugacy
classes of nontrivial subgroups of Dg and it is enough to consider the following symmetry
classes of ASMs.

(HTS) Half-turn symmetric ASMs (HTSASMs) that are invariant under a 180° rotation.
(QTS) Quarter-turn symmetric ASMs (QTSASMs) that are invariant under a 90°
rotation.
(VS) Vertically symmetric ASMs (VSASMs) that are invariant under a flip around the
vertical axis.
(VHS) Vertically and horizontally symmetric ASMs (VHSASMs) that are invariant under
flips around both the vertical axis and the horizontal axis.
(DS) Diagonally symmetric ASMs (DSASMs) that are symmetric in the main diagonal.
(DAS) Diagonally and antidiagonally symmetric ASMs (DASASMs) that are symmetric in
both diagonals.
(TS) Totally symmetric ASMs (TSASMs) that are invariant under the full symmetry group
Ds.

For each symmetry class ® = HTS, QTS, .. ., let AS‘) denote the set of n x n ASMs with
symmetry .

Kuperberg [7] extends his argument in [6] to several classes of ASMs (or their variations)
including even-order HTSASMs, even-order QTSASMs, VSASMs and VHSASMs. He finds
determinant and Pfaffian formulae for the partition functions of the square ice models cor-
responding to these classes of ASMs. Also, by g-specialization, he evaluates determinants
and Pfaffians and proves closed product formulae for the number of ASMs in many of these
classes. However, in the enumeration of VHSASMs, he only gives determinant formulae for
the partition functions and does not succeed in proving the product formula conjectured by
Mills.

In this article, we evaluate the Kuperberg’s determinants and Pfaffians by applying deter-
minant and Pfaffian identities involving Vandermonde-type determinants (see Theorems 3.3
and 3.4 in Section 3), some of which appeared in [10] and were used for a study of
rectangular-shaped representations of classical groups. Then we can show that the par-
tition functions corresponding to the round 1-, 2-, and 3-enumerations are expressed
in terms of irreducible characters of classical groups up to simple factors. In partic-
ular, we obtain the following formulae for the number of ASMs in some symmetry
classes.

@ Springer



J Algebr Comb (2006) 23: 43—69 45

Theorem 1.2.
(A1) The number of n x n ASMs is given by
#A, = 37"V dim GL,,(8(n — 1, n — 1)).
(A2) The number of 2n x 2n HTSASMs is given by
#ANTS — 3710 =D/2 dim GLy, (8(n — 1,1 — 1)) - 37"~ D2 dim GL,, (8(n, n — 1)).
(A3) The number of 4n x 4n QTSASM:s is given by
#AYS = (370D dim GLy, (8(n — 1,n — 1)) - 37D/ dim GLo, (8(n, n — 1)).
(A4) The number of (2n + 1) x (2n 4+ 1) VSASMs is given by
#AYS, | =37V dimSp,,(8(n — 1,n — 1)).
(AS5) The number of (4n + 1) x (4n + 1) VHSASMs is given by
#AVIS = 370D dim Sp,, (8(n — 1,n — 1)) - 27237 dim Oy, (3(n + 1/2,n — 1/2)).
(A6) The number of (4n + 3) x (4n + 3) VHSASMs is given by

#AYHS, = 37—V dim Sp,, (8(n — 1,n — 1)) - 37" dim Spy,,,(8(n, n — 1)).

Here dim GLy(}) (resp. dimSpy (%), dim 0o ~ (1)) denotes the dimension of the irreducible
representation of GLy (resp. Spy, Oy) with “highest weight” A (see Section 2 for a precise
definition) and
sm—1l,n—-1)=m—-1,n—-1,n-2,n-2,...,2,2,1,1),
smn—1)=m,n—1,n—1,n-2,...,3,2,2,1, 1),
Sm+1/2,n—-1/2)=m+1/2,n—-1/2,n—1/2,n—-3/2,...,5/2,3/2,3/2,1/2).
Each identity in this theorem, together with Weyl’s dimension formula, gives a closed
product formula for the number of the symmetry class of ASMs. In particular, we settle
Mills’ conjecture on the number of VHSASMs [12, Section 4.2].

Also we obtain the following formulae for other classes of ASMs. (See Section 2 for a
definition of each class.)

Theorem 1.3.
(B1) The number of 2n x 2n OSASMs is given by

#A5) =377V dim Sp,, (3(n — 1,n — 1)).
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(B2) The number of (8n + 1) x (8n + 1) VOSASMs is given by
HAYOS, = (37D dim Sp,, (802 — 1,n — 1)) - 27237 dim O, (8(n + 1/2,n — 1/2)).
(B3) The number of (817 4 3) x (8n + 3) VOSASMs is given by

#AYOS, = (37D dim Sp,,,(8(n — 1, n — 1)))3 37" dim Spy,,2(3(n, n — 1)).

(B4) The number of UASMs of order 2 is given by
#AY =2"370"D dim Sp,, (8(n — 1,n — 1)).
(B5) The number of UUASMs of order 4n is given by
#AVY = 3770=D dimSp, (5(n — 1, n — 1)) - 37"~V dim Oy, (8(n, n — 1)).
(B6) The number of VHPASMs of order 4n + 2 is given by
HAVP = (377D dim Sp,, (5(2 — 1,n — 1))
(B7) The number of UOSASMs of order 8n is given by

#AUOS ( —n(n—1) dim Sp4,,(8(n “1n— 1)))3 . 3*11(;171) dim64n+1(5(l’l, n— 1))

This theorem leads us to closed product formulae for the numbers of these classes of
ASMs. The product formulae in the VOSASM case are new, though the other case are studied
in [7].

This paper is organized as follows. In Section 2, we review results in [7] on the partition
functions of square ice models associated to various classes of ASMs, and state our main
results which relate these partition functions to characters of classical groups. As key tools
in evaluating the determinants and Pfaffians appearing in the partition functions, we use
determinant and Pfaffian identities involving the Vandermonde-type determinants, which are
presented in Section 3. In Section 4, we prove the main results.

2. Partition functions and classical group characters

In this section, we review results on the partition functions in [7] and give formulae which
relate these partition functions to the classical group characters.

In addition to the symmetry classes of square ASMs, we consider the following classes
of square ASMs.

(OS) Off-diagonally symmetric ASMs (OSASMs), that are diagonally symmetric ASMs
with zeros on the main diagonal.
(O0S) Off-diagonally and off-antidiagonally symmetric ASMs (OOSASMs), that are diag-
onally and antidiagonally symmetric ASMs with zeros on the main diagonal and the
antidiagonal.
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(VOS) Vertically and off-diagonally symmetric ASMs (VOSASMs), that are vertically sym-
metric and diagonally symmetric with zeros on the main diagonal except for the
center.

The last class (VOSASMs) is not considered in [7], but this arises naturally from UOSASMs
defined below. It is clear that VOSASMs are TSASMs. And one can show that there are no
VOSASMs of order 8n + 5 or 8n + 7.

A vector a = (ay, - - -, a,) consisting of 1s, Os and —1s is an alternating sign vector if
the sum of the entries is equal to 1 and the nonzero entries alternate in sign. Kuperberg [7]
introduces the following variations of ASMs.

(U) Analternating sign matrix with U-turn boundary (UASM) of order 2n is a2n X n matrix
A = (aij)1 <i <2m,1 < j <n satisfying the following conditions :

(1) Each column vector is an alternating sign vector.
(2) For each k, the vector (az—1.1, @2k—1.25 - - - » Q2k—1.n> Q2keon» - - - » A2k.2, A2k.1) 1S an al-
ternating sign vector.

Let Agn be the set of UASMs of order 2n.

(UU) A alternating sign matrix with U-U-turn boundary (UUASM) of order 4n isa2n x 2n
matrix A = (a;;)1 <i,j <2n satisfying the following conditions :

(1) For each k, the vector (az—1,1, G2k—1,2, - - - » A2k—1,20> A2k 205 - - - » A2k,2, A2k,1) 1S AN
alternating sign vector.
(2) For each k, the vector (aj ox—1, @2,2k—1, - - - » A2p,2k—1» A2n,2k» - - - » A2,2k» A1,2%) 1S an

alternating sign vector.

Let AE,}J be the set of UUASMs of order 4n.

(VHP) A vertically and horizontally perverse alternating sign matrix (VHPASM) of order
4n + 2 is a UUASM A = (a;;)1 <i,j <2, Of order 4n such that Zi"zl axy-—1,; = 0 and
S aig—r = 1for 1 < k < n.Let A}, be the set of VHPASMs of order 4n + 2.

(UOS) An off-diagonally symmetric alternating sign matrix with U-turn boundary
(UOSASM) of order 8n is a UUASM A = (a;;)1<i, j<4n Of order 4n such that A
is symmetric with zeros on the main diagonal. Let Agﬂos be the set of UOSASMs of
order 8n.

For each class ® = HTS, QTS, .. ., UOS, we consider the generating function

AP()= ) x"eW,

AcA®

where ng(A) is the number of the orbits of —1s under symmetry, excluding any — s that are
forced by symmetry. We are interested in the integers A2 (0), A®(1), A®(2), A®(3), which
are called 0-, 1-, 2- and 3-enumeration of the class ® respectively. In [7], more parameters
are introduced for some classes, but here we concentrate on these x-enumerations.

Now we give formulae for the partition functions of the square ice models associated to
various classes of ASMs. We use the following abbreviation:

® =t !
o = —;
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For two vectors of n variables ¥ = (x1,...,X,), ¥ = (J1,..., y,) and parameters a, b, c,
we introduce the following n x n matrices :

1
M@n; X, V5a); = ol(ax;/yyol(ay;/x;)’
1 1
Myr(n; X, 530 = oaxi/y;) + olay;/xi)’
1 1

My(n; X, Vsa),; =

o(ax;/yj)o(ay;/x;) B o(ax;yj)o(a/xiy;)’
o(b/yja(cx)) a(b/yj)alc/xi) a(by;)a(cxi)
o(axi/y;) o(a/x;yj) o(ax;yj)
o(byj)o(c/x;)
o(ay;/xi)

Myy(n; X, Ysa, b, o) =

We put

[T} =i otaxi/y))o(ay;/x:)
[Ticicjcn0j/x)o(i/y)’

F(n; X, 7sa) =

[T: ;=i olaxi/ypo(ay;/xio (axiyj)o(a/xiy;)

Fy(n; X, ¥;a) = ,
v ) = G, e i) e #1550 (13)

and define the partition functions as follows:

Am T, Via)=0@ " Fm X, Via)det M ¥, Y 5 a),
AQCn T, Via) = 0@ Fi; ®, V) det Myr(n; ©, 5 5 a),
AvCn+ 15T, T0) = 0@ T Ry T, T @) det My(n; T, Vs a),
AR T, Tia,b,¢) = 0(a) " "o (b/a) "o (c/a) "o (a®)"
x Fy(n; X, ¥ ;a)det Myy(n; X, ¥ ;a, b, ¢),

AL @n + 1,7, T 1a) = 0(@) 2 Py . T 1a) det Mup(n: ©, 54, a, @),
A (4n +3; 7, T sa) = o(@) " Py X, Via)det Muu(n; X, Via,a b ah,
AD L @n+2: 7. Via) = 0(@) 2 T Fy(n: T, i a)(—1) det Myy(n; X, Via.a.a”t).

We call them the determinant partition functions.

Remark 2.1. The partition functions of the square-ice models associated to UASMs and
UUASMs computed in [7] have extra factors

"o (a2x2) o (b)) 1—[ (a*x?) o(a*/37)

%@ o) %@ o
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which do not affect the x-enumeration. So we omit these factors in the definition of Ay and
2)

AT
uu

For a vector of 2n variables ¥ = (x1, ..., X2,) and parameters a, b, ¢, we introduce the
2n x 2n skew-symmetric matrices :

U()Cf/xlk)
o (ax;/x;)o(ax;/x;)’
o(xj/x;)

o(axix;)o(a/xix;)

MG (n: X 1a); =

Mo(n; X sa); =

c? b?
Moo(n; X3a,b, ¢);; = o(xj/xi)< + )

o(axixj) o(a/xixj)

My X za); = U(Xj/xt')a(xixj)< ! ! )

o(axixj)o(a/xix;) B o(ax;/x;)o(ax;/x;)

o(exi)o(ex;)  alexjole/x))

MG T sa, )i = G(xj/xz')ff(xixj)< o (axir) o(ax;/x;)

B o(c/xj)o(cx;) n J(C/xi)U(C/xj)>

o(ax;j/x;) o(a/xixj)
We put
l_[1<i<‘<2n O-(ax.i/xi)a(axi/x.i)
For(n; @ ;a) = ———=I= ,
QT(n a) H1§i<j§2n U(X.f/xi)
[Ti<ici<on0(axixj)o(a/xix;)
Fo(n; X ;a) = —=== ,
ot “ nl§i<j52n o (x;/x;)
Fuo(n; ©;a) = n15i<j52n U(axi/xi)U(axj/xi)a(axix_i)U(a/xixj),

n1§i<j52n U(xj/xi) n1§i§j52n U(xixj)

and define the Pfaffian partition functions as follows:

Ag%(4n; Xia) = o(a) For(n; ?;a)PfMgT)(n; Xa),
Aon; T 1a) = 0(a) " " Fo(n: X :a)PEMo(n: X a),
Ag())(4n; Xia,b,¢) = ¢ o(a) T Fo(n; ¥ ;a)PfMoo(n; X sa, b, ¢),
Ao X 3a) = 0(@)™" " Fuo(n; X ; a)PEMU(n; X 5 @),
AGYBn: T 1a, ¢) = o(@) "o (c/a)y o (6 Fuo(n: X 1a)PEMEY(n; T 1a, ©),
AVo@8n + 1,7 5a) = o(a) "+ Fyo(n: T 5 )PEMGy(n; T 1 a, a),
A(\%(Sn +3:%5a) = o(a) " Fuon; Y;a)PfMgg)(n; Xia,a ).

We call them the Pfaffian partition functions.
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Kuperberg [7] proves that the x-enumerations are obtained from these partition functions
by specializing all the spectral parameters xi, ..., X, Y1, ..., ¥ (Or X1, ..., Xp,) to 1.

Theorem 2.2 (Kuperberg). Let T = (I, 1,..., D). Ifx =a®>+ 2+ a2, then we have

—

Aux) = A T, T ),
AT () = A(n; T, T’;a)A(ﬁ%(zn; T, T,

A () = Ay +1; T, T;a),

AV (x) = Ay(n + 1;_1’, T:a)AD@n+1; T, T;a),
A ) = Aven + LT, T a)AR@n +3, T, Tsa),

AV () =2"Av@n+ 1; T, T:a),
AV = Av@n+ 1, T, T :a)AZ@n; T, Tia, /=1, v/=1),
AP ) = Aven+ 1T, T:a)A8p@n +2, T, T;a),

Also we have

AZB () = Agy@n; T @) Ay (4n; T a),
AR (x) = Ao(2n; T sa),

A%(x) = Ao@n; T;a)A% (4n; T sa, b, b),
AYOS(x) = A{}g(sn,_f,a)A(z) 8n:; Tia,v/—1),

AYOS (x) = Ay Bn: T1a)AGNBn + 1, T 1),

AYOS,(x) = AU 8n; T 30)AQ (8 +3; T s a).

Remark 2.3. The last two identities for VOSASMs were not treated in [7], but can be proven
in a way similar to the proof for VHSASM:s.

Let ¢, = exp(2m+/—1/n) be the primitive nth root of unity. Then the correspondence
between a and x = a® + 2 + a2 are given as follows:

a |24 \56 |28 \512
x=a*+2+a? |O ‘1 |2 3

To state our results, we introduce the irreducible characters of classical groups. A partition
(resp. half-partition) is a non-increasing sequence A = (A, ..., A,) of non-negative integers
Ai € Z (resp. non-negative half-integers A; € Z 4 1/2). If A and p are both partitions (resp.
both half-partitions), then A U i denote the partition (resp. half-partition) obtained by rear-
ranging the entries of A and w in decreasing order. For a integer (or a half-integer) r, we
define partitions (or half-partitions) 8(r) and 82(r) by putting

sry=mr—1,r—2,r—3,...), 82(r):(r,r—2,r—4,r—6,...).
@Springer
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Also we define

8(r,s) = 8(r)US(s), 8%(r, s) = 82(r) U 8%(s).

For a sequence « = («y,...,a,) of integers or half integers, and a vector x =
(x1,...,x,) of n indeterminates, we define n x n matrices V(a; X ) and Wi(a; X) by
putting

. — (% +/. — (+% —aqj
Vies ) = (x; )lgi,jgn’ Wi T) = (v £ x; })1511,]'5;1'

For a partition A with length < n, we define

det VO + 8(n — 1); %)
detV@(m—1);%)

det W= (A 4 8(n); X)
det W=(8(n); )

GL,(,; X)) =

e))

Sp., (A X) = 2

Then GL,(%; X) (resp. Sp,, (A; X)) is the character of the irreducible representation GL,, ()
(resp. Sp,, (1)) of the general linear group GL, (C) (resp. the symplectic group Sp,,, (C)). If
A is a partition with length < n or a half-partition of length n, we define

det W=(h 4+ 8(n — 1/2); )

detW=(8(n —1/2); %)

detWr(A +8(n —1); %) .
N A2 detWom—17) 70
0,,(A; %) = 4
detWHh+8(n — 1): %) .

if , =0.
det W30 — 1), %)

62n+1()\; 7) =

3)

Then 0o ~(A; X) is the character of the irreducible representation 0o ~ (1) of the double cover
Oy of the orthogonal group Oy. Here we note that the denominators in these character
formulae are expressed in the explicit product form (Weyl’s denominator formulae):

detV@em—1:%)= [] —xp.

I<i<j<n

detW=m: ) = (D" [[s"[[(0 =) ] @j—x00—xixp),
i=1 i=1

= I<i<j<n

det W6 —1/2: %) = ' [ [ " =) [T G =21 =z,
i=1 i=l1

I<i<j<n

det WH@(n — ;%) =2 [ [] & —x) —xix)),
i=1

I<i<j<n

Now we are in position to state our main results. Theorems 1.2 and 1.3 in the Introduction
immediately follow from Theorem 2.2 and the following Theorems 2.4, 2.5. For a vector
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X =(x1,...,x,)and a integer k, we put

First we give formulae for the determinant partition functions.

Theorem 2.4.(1) For the partition function associated to ASMs, we have

n

A X, Vg =27 [ Ly [T 67 +0)) ’perm< : ) :
1<i,j<n

2 2
i=1 ij=1 X7+ y;

AT,V 566) =372 [y Gl (8n — Ln — 1 %2, 32),

i=1

Am T, Fige) =270y [T (242002 +5)).
i=1

I<i<j<n

A X, ®500) = [ [P GL.G(p, p — ;T HGLLG(g, 9); T,
i=1

where perm denotes the permanent of a matrix (see (6)), and p and g are the largest
integers not exceeding n/2 and (n — 1)/2 respectively.
(2) For the partition function associated to HTSASMs of order 2n, we have

n n
A(}?%(Zn;Y, Vi) =211 Hxiinyiin 1_[ (xlz + yle)’
i=1 i,j=1

n
AR T,V 146) = 372 [ [y GLay (8(n, n — 1): %2, 7).

i=1

AD (0, T, T3 8g) = 27" V2HGL, (8% (n, n — 2); T)GL,(8%(n — 1,1 — 1); T).

(3) For the partition function associated to VSASMs, we have

Av(2n + 1;?’ 7;§4) — 2—2;12+2n nxi—2n+2yi—2n+2 1_[ (xlz + y?)(l +x,~2yJ2~)

i=1 ij=1

1
x perm< > ’
DD s

AVCn+ 1,7, V3 8) = 37" DSp,, (80 — 1,n — 1, X2, 77),

n
AV(2n + 1’ 7, 7’ §8) — 2—}’[(11—1) Hx;2n+2y;2n+2
i=1

x [T 7 +x)) (1 +2723) (67 + 1) (1 +375)),

1<i<j<n

@ Springer



J Algebr Comb (2006) 23: 43—-69 53

1 -
AvCn+ 1R, ®iln) = —————— 00,11 (8(/2,n/2 = 1); ®*
v(2n + {12) o (24 2n1(8(n/2, n/ ) X))

x 00,1 1(8((n — 1)/2, (n — 1)/2); 7).

(4) For the partition function associated to VHSASMs of order 4n + 1, we have

n

A(\gl){(4n + LT,V ) = g2’ l_[ _2”yl_2" l_[ (x,2 + yjz«)(l + xizy/z),

i=1 ij=1
1
Ty (i +x7Y) (v + 57
xO0u((n + 1/2,n — 1/2); T2 7,
1
x00,(82(n + 1/2,n — 3/2): %)
xO0a, (82(n — 1/2,n — 1/2); X2).

AP Gn+ 1,7, Vit =37

AGh@dn + 1%, X 15g) = 270D

(5) For the partition function associated to VHSASMs of order 4n + 3, we have

AQy@En +3:%, Fig) =27 ]_[x—2" T 7+ 0D (1 +27y3).

ij=1
AL (n + 3,7, T 1) = 37 SPa a6 n — 1 2 V1)
AD@n 43,7, F:105) = 277 05,(8%(n. n — 2); TH00,(8%(n — 1,n — 1); T2).

(6) For the partition function associated to UUASMs of order 4n, we have

Ag{l(4n T,V 0L, L) =27 +2"1_[x_2” —2n 1_[ (xf—l—y?)(l —|—xi2yj2-),
ij=I1

AD (4 R, T 586, Lo Ca) = 37 01 (B(n,n — 1), 2, 72,

AD 4 T, T 5880 Lan Ga) = 27001 (8% (0, n — 2); )

x 05,1820 — 1,0 — 1; T2,

(7) For the partition function associated to VHPASMs, we have

A(\fl)ﬂ,(4n +2.%, V) = o 1_[ _Z"yl 1_[ (x,2 + yjz»)(l + x,-zyjz-),

i=1 ij=1

n

AQp@n + 27, T80 =37 [ (07 + 145728y, (0 — 1L,n — 1; 72, 77,

i=1

AD @n + 2,7, T 18s) = 27 GLy, (6220 — 2,20 — 2); T2, T ).
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Next theorem gives formulae for the Pfaffian partition functions.

Theorem 2.5.(1) For the partition functions associated to QTSASMs, we have

2n

) 1
Agin: Tign =272 [T 2 [T (o + X?)Hf<ﬁ) ’
'xi +'xj 1<i,j<2n

i=1 1<i<j<2n

2n
A T 586) = 37 [P GLay(8(n — 1n — 1, T2,

i=1

2n
Agr@n: T ige) = 27 [ [ 6Ly (820 — 2,20 = 2 %2),

i=1

2n
Ag%(4n; X)) = Q=2 +2n nxi_z”H 1_[ (x,2 + sz»),

i=1 1<i<j<2n

2n
A T 156) = 37 [ a7 GLoy(5(n — 1, — 1): THGLyy (8, n — 1), T7),

i=1

2n

Ag%(4n; X)) = g—n+n Hxi_2"+1 1_[ (xl2 + x?),

i=1 1<i<j<2n

where Hf denotes the Hafnian of a symmetric matrix (see (8)).
(2) For the partition function associated to OSASMs, we have

n 1
Ao(n; T5¢q) = 2727+ H%ﬂnﬂ 1_[ (1+ xizsz')Hf((l i x2x2)) ’
i7j) ) 1<i,j<2n

i=1 1<i<j<2n
Ao(n; ®326) = 37 HSp,, (8(n — 1,n — 1); 7).

(3) For the partition function associated to OOSASMs, we have

2n
Ag())(4n; X, b, b) = Q=2 +2n l_[xi_z'”rl 1_[ (1 —|—x,-2x12-).
i=1

1<i<j<2n

(4) For the partition functions associated to UOSASMs, we have

n
AUY @8Ry T3 4y) = 274 an []x*+

i
i=1

1
X (xz- + x-z) (1 + x-zxz-)Hf ( ) ,
lsil:j[52n jTX i X (x2 +x2) (1 + x2x3) N

AGo8n; T 3¢6) = 37 8p, (8(n — 1,n — 1; TP,
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Agz)(Sn; Xl ) = g—dn’+dn Hxi_4"+2 1_[ (sz + xiz)(l —|—xi2x12-),

i=1 1<i<j<2n

A 8n; X1 L6, £4) = 37272Sp, (5 — 1, n — 1); T 0041 (81, n — 1); %2).

(5) For the partition function associated to VOSASMs of order 8n + 1, we have

2n
Ag())(8n +1;%50) = =4’ +2n fo“"” 1_[ (sz + xl-z)(l + x,-zsz-),

i=1 1<i<j<2n
1
[T (i +x7h)
xSpy, (8(n — 1,n — 1); )04, (8(n + 1/2,n — 1/2); 7).

AQY B + 1,73 4) = 372012

(6) For the partition function associated to VOSASMs of order 8n + 3, we have

2n
A(\%())(Sn + 3; 7; 4,4) — 274112+2n Hxi—4n+2 l—[ (x]2 + x[Z)(l 4 x?x?)7

i=1 1<i<j<2n

AL Bn +3;T526) = 372 Sp, (801 — 1,1 — 1); ®2)SPy,sn(8n,n — 1); T2, 1).

By combining Theorems 2.4 and 2.5 with Theorem 2.2, we obtain formulae for 0-, 1-,
2-, and 3-enumerations in terms of the dimensions of irreducible representations of classical
groups. In particular, we obtain Theorems 1.2 and 1.3 in the Introduction.

Remark 2.6. By using different techniques, Stroganov and Razumov [16, 11] obtained formu-
lac of A(n; X, 7 ;%6), Ay(2n + 1; X, 7 ; &) and Ag(2n; X; £6) in terms of Vandermonde-
type determinants, which immediately imply the corresponding formulae in Theorems 2.4
and 2.5.

3. Determinant and Pfaffian identities
In this section, we collect determinant and Pfaffian identities, which will be used in the

evaluation of the determinants and Pfaffians in the partition functions introduced in Section 2.
The determinant and permanent of a square matrix A = (a;;)1<i,j<n are defined by

detA = Z $gN(0)a15(1yA20(2) * * * Ano(n)s (5)
g€eS,

permA = Z A1e(1HA252) ** * Ano(n)» (6)
g€eS,
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where S, is the symmetric groups of degree n. And the Pfaffian of a skew-symmetric matrix
A = (a;j)1<i, j<2n and the Hafnian of a symmetric matrix B = (b;;)1<;, j<2n are given by

PIA = ) sgn(0)do(10 )o@ ** * do@n-Don: )
oeF,

HfB = Z bo(1)o@)bo3)0@) * * * Do@n—1)o2n), (¥
oeFo,

where J, is the set of all permutations o satisfying 6(1) < 0(3) <--- <o(2n — 1) and
0i —1)<oQi)forl <i <n.

First we recall Cauchy’s determinant identity [3], Schur’s Pfaffian identity [14] and its
variant ([8], [15]).

Lemma 3.1.
1 cicienX = X)(; — ¥i)
e (i55) iz =200 2 ©)
Xi +Yi /) i<ij<n l_[i,j:l(xi +y;)
Xi— X; X; — X;
Pf(’—) 1 (10)
Xj+Xi)<ij<om izizjeon Xi T
Pf<u> = (1
1 — xix; 1<ij<2n  1<i<j<2n 1 —xix;

The identities in the next lemma will be used to evaluate some of the determinants and
Pfaffians appearing in the 0-enumerations. The first identity (12) goes back to C. Borchardt
[1], and its Pfaffian-Hafnian analogues (13) and (14) are given in [4].

Lemma 3.2.

1 <[<‘<n(x' _xi)( i — i) 1

det (72> = [ =) Y -perm( ) (12)
(i + )7 ) 1< jen [T o +yp) Xi+ Vi 1<ij<n
Xj— X X — X 1
Pf<7’ , ) _ [kl .Hf< ) , (13)
(xj +x;)? 1<i,j<2n lsil:j[§2n Xj+x Xj+Xi Ji<ij<om
Cx oy 1

Pf(—x’ i 2) - -Hf< ) . (14)

1 - xixj) 1<i,j<2n I<i<j<2n 1— XiXj 1- XiXj J 1<i,j<on

The following two theorems are the key to evaluate the determinants and Pfaffians appearing
in the round 1-, 2-, and 3-enumerations. The identities (15), (16), (18) and (19) already
appeared in [10] and their specializations are [7, Theorems 16 and 17].

For X =(xi,...,x,) and @ =(ai,...,a,), let VP9(X;d) (p+qg=n) and
W"(X ;@) be the n x n matrices with ith row

2 p—1 q-1
(1,x,—,x,-,...,x,- ) iy Ai Xy ooy Qi X; )’

-1 -2 -1
(I+ax!"" xi+ax!, . 3 + @)
respectively.
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Theorem 3.3. For X = (X1, ..., %0) F = V1seresya), @ =(ay,...,a,) and b =
(b1, ..., by), we have

b — ; -1 nn—1)/2
det (J_“) - GV v, via, B,
1<i,j<n

yj — Xi l_[:l]=1(y] _xi)
(15)
t(det Wz(xiij;ai»bj)) . 1

A =iy =x) )i jen Tl =i =Xy )(j = x)

x det W, 5.3, D), (16)
“ (detW3(xi,yj,z;ai,bj,c)) _ (1+coy!

(I = xiy)(y; — xi) 1<i,j<n l_[?.,j=1(1 =Xy = Xi)

xdet W (%, ¥, @, D o). a7

Theorem 3.4. For X = (x1,...,%xm), @ =(ai, ..., ay) and b = (by, ..., by), wehave

c—a)b; — b 1
Pf<w> _ det V'""(%; @) det V(%1 B,
Xj — Xi 1<i,j<2n n1§i<_f§2n(xj - X;)
(18)
Pt <det WZ(X,‘, Xjsai, aj)det Wz(x,‘, Xj;b,‘, bJ)>
(I —x;x)(x; — x;) I<i,j<on
1 2n 2n e
= det W?'(%; @) det W?'(X; b ), (19)
[Ti<icjcon(j — xi)(1 — xix;j)
Pf(detW3(xi,XjaZ;ai,aj7C)deth(xi,xj;bivbj)>
(1 = xjx;)(x; — x;) I<i,j<2n
1 n—1
d+o) det W, 2@, o) det W(7 D). (20)

 icicjen (1 = xix)(x; — x7)

We note that the (7, j) entries of the determinant in (16) and the Pfaffian in (19) can be
written in the form
deth(xi,yj;ai,bj) . 1—aibj bj—a,-
A —xy)y;—x)  l—xy;  yj—x
det Wz(xl-,xj;a,-, aj)det W2(x;, Xj3bi, b))
(I =xixj)(x; — x;)

\—aa; aj—a\ (1 —bib; b;—b;
:(1—Xixj)(xj_.xi)< 4 Y a,)( L4 l).

I—X,‘Xj Xj —Xi l—Xin bj—xi

)
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Remark 3.5. As a generalization of (15), we can show that

det (det Vrrlatl (g, v, 275 ai, by, ?)>
Yj —Xi 1<i,j<n

(_ l)n(nfl)/Z

= detVPI(Z; ) det VP (R Y. 2@, D, ).

]_[:',_,«Zl(yj = X;)

The identity (15) is the special case where p = g = 0. Also, we can prove

det (det Wp”(xi, Yis 7;611‘, bjs ?)>
(I =X yj)(y; — xi) I<i,j<n
_ 1
N [T o (= xiy (v — x:)

detWP(Z: @) ' det WP (3,7, 2.2, B, ),

which generalizes (16) and (17). We also have Pfaffian identities, which are generalizations

of (18), (19), and (20). See [5] for generalized identities, proofs and applications.

Proof of Theorem 3.3. The identities (15) and (16) are proven in [10, Theorems 4.2 and

4.3]. Here we give a proof of (17).

Let I and J be subsets of [n] = {1,2,...,n}, and let L(I, J) (resp. R(I, J)) denote the

coefficient of a’b? = [1;.; a; [,

the automorphisms o and o ; by setting

N xtifiel,
Al T

yi'ifjel,

Vv —
o0 {y,» ifj ¢,

then it follows from the definition of determinants that

det W3(x;, y;,2;0,0, ¢)
(I =xiy)(y; —x) )lsi,an’
(14 ¢!

[T o (= xiy (v — xi)

ool (LU, ) = det(

det W (%, 5,2, 0,0, 0),

U;CO"} (R(1,J)) =

where ﬁ = (0, ..., 0). Hence it is enough to show

q t(det W3(x;, y;,2;0,0, C))
(I =xiy)(y; —xi) Jisij=n
(1 +C)n—l

_ 2n+1 .
= l_[?,jzl(l_xiyj)(yj 0 det W (7,7,1,6,6,@.

b; on the left (resp. right) hand side of (17). If we define

@2y

Regard the both sides of (21) as polynomials in ¢ and denote by f(c) and g(c) the left and

right hand side of (21) respectively. Since f(c) and g(c) have degree at most » in c,

enough to prove the following three claims:
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Claim 1. f(c) is divisible by (1 4 ¢)"~'.
Claim 2. f(0) = g(0).
Claim 3. The coefficient of ¢ in f(c) is equal to that in g(c).

First we prove Claim 1. Let A and B be the n x n matrices with (i, j) entry z> — 1 and
(I = zx;)(1 — zy;)/(1 — x;y;) respectively. Then we have

<detW3(x,-,yj,Z;0, 0,0)

=A+(c+ 1)B.
(1 _xin)(yj _xi) >]Si,j5n

Here we use the following lemma. (This lemma easily follows from the definition of deter-
minants, so we omit its proof.)

Lemma 3.6. Forn x n matrices X and Y, we have

det(X +¥) =Y (=DPDTE) det Xy g det Yiye e,
H,K

where the sum is taken over all pairs of subsets H and K C [n] with #H = #K. And Xy k
(resp. Yye k<) denotes the submatrix of X (resp. Y ) obtained by choosing entries with row
indices in H (resp. H¢) and column indices K (resp. K¢), and S(H) =), ., h, Z(K) =
Zkel( k.

Applying this lemma and using the fact that rankA = 1, we see that

fO=(c+1)"det B+ (c+ 1" Y (=1 (" = 1) det Bin— . in)- 13-
h,k=1

Therefore f(c) is divisible by (c 4+ 1)"~!.
Next we prove Claim 2. It follows from the definition of determinants that

£(0) = det (—(Z e yf'))
1 —xy; 1<i,j<n ’

1

2n+1 .
nlr'l,jzl(l_xi)’j)()’j —x,-)detW (7’7»2’6,6,0).

g0) =

By using Cauchy’s determinant identity (9) and the Vandermonde determinant, we see that

[Toi Gz = x)@ = y) [Ti<icjen () — XD — ¥i)

0)=¢g0) =
£(0) = g(0) T

Claim 3 can be proven similarly.
Proof of Theorem 3.4. The identities (18) and (19) are verified in [10, Theorems 4.7 and
4.4]. Here we give a proof of (20).

Let I and J be subsets of [n] = {1,2,...,n}, and let L(I, J) (resp. R(I, J)) denote the
coefficient of a’b? =[T,_; a; [, b, on the left (resp. right) hand side of (20). Let o; be
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the automorphism defined by

x7'ifiel,
U’(xi):!x- ifi g1

Then, by the same argument as in the proof of [10, Theorem 4.4], we can compute o, (L(I, J))
and o;(R(I, J)). Weput K = (I N J°)U (N J)and define Z(K) to be the 2n x 2n skew-
symmetric matrix with (7, j) entry

1
—————det W*(x;, x;,2,0,0,¢) ifi € K and j € K,
1—x,-xj

det W3(x;, x;,2;0,0,¢) ifi € K and j € K°,

XJ'—X,'
Z(K)ij =
det W(x;,x;,2;0,0,¢)  ifi € K°and j € K,
xj—x,-
1
————det W(x;, x;,2;0,0,¢)  ifi € K°and j € K°.
1—)6in

Then we have

or(L(L, ) =[] - PEZ(K),

iel

and

_ (c+1)y!
RU,J) = (=D©[]x"
a1(R( ) =D ll:][xz l_[(k,l)(l — XxX7) l_[(kr’lr)()fl’ — Xp)

det W (%, 2,0, ¢),
where

s(K)=#{(i, j) e K x[2n] :i < j},

and the products are taken over all pairs k < [ and k" < I’ such that

(k,]) e (K x K)U(Kx K, (,1")e (K x K)YU(K® x K). (22)
Now the proof is reduced to showing the following identity:

(c+ 1!
n(k,[)(l - xk'xl)]_[(qul;)()(l/ —_ xk’)

PfZ(K) = (—1)& det W(%, 230, ¢), (23)

where the products are taken over all pairs k < [ and k¥’ < [’ satisfying (22).

Regard the both sides of (23) as polynomials in ¢ and denote by f(c) and g(c) the left
and right hand side respectively. Since f(c) and g(c) have degree n, it is enough to show the
following three claims:
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Claim 1. f(c) is divisible by (¢ + 1)"~'.
Claim 2. f(0) = g(0).
Claim 3. The coefficient of ¢ in f(c) is equal to that of g(c).

First we prove Claim 1. Let A(K) and B(K) be 2n x 2n skew-symmetric matrices with
(i, j) entry

—(2—=D(x;—x) ifieKandjeKk,
AK) —(2— 1D —xx;) ifieKandj¢K,
YTl @ -0 —xxj)  ifi¢gKandj €K,
(22— D(x; —x) ifi¢ Kandj & K,
—(1 —zx;)(1 —zxj)u ifieKandj e K,
1—xixj
—(I —zxp)(1 — zx;) ifie Kand j ¢ K,
B(K),j = (1 = zx;)(1 — zx;) ifigKandjeKk,
(l—Z)Ci)(l—Z)C;)u ifi¢Kand j ¢ K.
’ l—x,-x_,-

Then we have
Z(K) = A(K) + (c + DB(K).
Here we use the following lemma.

Lemma 3.7. ([15, Lemma 4.2 (a)]) If X and Y are 2n x 2n skew-symmetric matrices, then
we have

PE(X +Y) = (—)EI=*RPE (X )P (V)
H

where H runs over all subsets H C [2n] with #H even, and Xy (resp. Yg<) denotes the
skew-symmetric submatrix obtained from X (resp. Y ) by picking the entries with row-indices
and column-indices in H (resp. H).
If H is a subset with #H even, then we have
Pf(xj — x,-),-qjeﬂ =0 if #H >4,
and, by applying the automorphism oyng, we see that
Pf(A(K)y) =0. if #H >4.

Hence, by using the above lemma, we have

PfZ(K) = (c + 1)"PfB(K)
+ Z (= 1@ tD2=k==N e 1y IPEA(K ) )PE(B(K D an)— k)

1<k<I<2n
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Therefore Pf(Z(K)) is divisible by (¢ 4 1)"~!.
To prove Claims 2 and 3, we introduce the 2n x 2n skew-symmetric matrix Y (K) by
putting

_NTN ifiecKandj € K,
1 —xx;
—1 ifieKandj &K,
Y(K);; = 1 ifigKandj e K,
LN figKandj¢K.
I —xix;

Then we have (see [10, Lemma 4.5])

PEY(K) = (—1)'®) A T 24
(K)= (=" T] . I1 —— (24)
k<l k<l
k,leK k,leK

The constant term and the leading coefficient of f(c) = PfZ(K) are given by

["IPfZ(K) = Pf((z — xi)(z — X))V (K)ij)1<i. j<an»

[¢"IPf Z(K) = Pf((1 — zx;)(1 — 2x;)Y(K)ij)1<i,j<2n-
On the other hand, the constant term and the leading coefficient of det W' (%, z; ﬁ c) are
[°]det W(%, 2: 0, ¢) = det W(%, 2 0, 0),
[c'1det W(%,2; 0. ¢) = 2 det W (%, 2", 0, 0).

Hence, by using (24) and the Vandermonde determinant, we see that

0 0 _ S(K) _ X; — X X — Xk
[1£(0) = ["g(e) = (~1) 1'[<z D [ = [ =
ek Kick

2n

["1£(c) = [e ]g(c)-(—l)“’“]"[(l—zx,) 1= l—xkxl [T+ _xj)’;
1

k<l k<
k,leK k,leK

This completes the proof of Theorem 3.4.

The “round” determinants appearing the 2- and 3-enumerations can be evaluated by ap-
plying Theorem 3.3, but we need the substitution Y = X in the resulting determinants to
obtain simple expressions, except for the 2-enumeration of ASMs and VSASM:s. The follow-
ing lemma will be used in this second step. The proof is done by elementary transformations
and left to the reader.

@ Springer



J Algebr Comb (2006) 23: 43—-69 63

Lemma 3.8. Leta = (a, . .., an,) be a sequence of half-integers, and let X = (x1, ..., X,)
and ¥ = (y1, ..., yn) be two vectors of n variables.

(1) Let V'(a; X, Y) be the 2n x 2n matrix with (i, j) entry

o . .
x;’ ifl <i <n,

(=YY ifn+1<i<2nandl <j<n,
(=1)/™yY ifn+1<i<2nandn+1<j<2n
Then we have
det V/(a; T, ) = (= 1)"" V22" det V(B; T ) det V(B ),
where
B = (1, @2, 03, sy o), Bl = (Cngr, @2, Q3,0 ).

(2) Let Wi(a; X, Y ) be the 2n x 2n matrix with (i, j) entry

X+ x Y ifl<i=<n,
(=D Ny, £y, 5) ifn+1<i<2n,

Then we have
det Wi(a; %, ) = (= 1)""V22" det W (y; T ) det WE(y'; T),
where
y = (05,05, ..., 00,1), ¥ = (a2, 04,0, ..., 0).
(3) Let U(a; X, V) be the 2n x 2n matrix with (i, j) entry

x4 x ifl<i<n,
(=D Ny, =y ) ifn+1<i<2n.

Then we have

detU(o; ¥, %) =2"det V@, ¥, ),
where

a=(—ay,0, —03,04, ..., —Qy_1, Aay).
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4. Proof

In this section, we prove Theorems 2.4 and 2.5 stated in Section 2. Since the arguments are
the same, we illustrate how to compute the partition functions A(Vzl){(4n +1;%, 7; Le) and
A%)_[(4n +3; %, ¥; ), which correspond to the 1-enumerations of VHSASMs. (For other
cases, see the end of this section and the tables there.)

First we consider the case of VHSASMs of order4n + 1 and compute the partition function
A§ﬁ(4n +1; %, ¥ L6). A simple computation shows

Muyy(n; X, ¥sa,a,a);

xiz—i—yjz l—i-x22 )

4 4 a+122 4.4 Ll+122
xi—i-yj = XY x,'yj"'l XY

=o(@)(1 —x)(1 - yf-)(

If a = ¢, then we have
det Myy(n; X, ;5 6. L6 L6)

4_ 4
n i —X; l—xy
=a(§6)"l_[(1—x)(l—yl)det<yg =+ ]>1 N

J <i,j<n

i=1 X 1 _xi yj

Now, by applying the identity (16) in Theorem 3.3 with

6 6 4 4
Xi—=> X, Yi—>y, a—>x;, b —y,

we have

4
T — X 1 — x
det(yf6 5+ & )
Yi =X l_xiyj 1<i,j<n
1
— det W, 37674 7.
17,2108 = xDH(d = xPy9)

By applying elementary transformations and by using the definition of orthogonal char-
acters (4), we have

det W%, 7o w4, 7Y
=[xy det WHS(n +1/2,n — 1/2) + 820 — 1: X%, 57

_ l—lxzn+1 2n+1 1_[ (sz — X )(1 - x,zsz)(yjz» - yiz)(l - yizyjz‘)

1<i<j<n

X ]_[ )(1 = x233) 04 (8 + 1/2,n — 1/2;, X7, F7).
i,j=1
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Then, after some computation, we obtain
A + 17 T 5 46)

1 ,,)64,1@(” +1/2,n = 1/2:%% 5.

2
= 3_n n -_—
l_[i:](‘xi + x; ])(yi +

Next we consider the cases of VHSASMs of order 4n + 3. A simple computation shows
that

-1 —1
Myy(n; X, Yia,a” ' a ')

4 2
_ g@(xf‘yf- 49}ty f - S g+ 24003

4+
x;‘—}—y;‘—‘“’

2,2
2 i Y

4 2
B xiyi v adyt +af - GGy + D+ 2x,»2y/2'>

xfyi 1 - Ty
If a = ¢, then (a* + a® + 1)/a®> = 0 and we have

detMUU(n;7, 7;§6a {t;]’ {(;])

=o0(g)" 1_[ (1 — x?)(l — y?) det (
i=1

x;‘yjz« + yjz- + x,-zy;-1 + xi2 + 2xi2y/2 25)
(5 +ot ) i+ 14 x2y7) )

Here we note that the numerator of the (i, j) entry is equal to
X} V7 x]y) 2075+ x + v) = a7 y; - Spe((1,0, 07, ¥ 1),

Instead of evaluating directly the determinant on the right hand side of (25), we consider the
determinant

et ( x2y328pg (1,0, 0): 62, v2, %) )
4 4 2.2\ (4.4 ) .
O ) V) (v + L+ yg) L<i,j<n

Comparing the definitions of the symplectic character Spy((1, 0, 0)) and the matrix W3, we
have

det W3(x®, y°, 2% —x*, —y*, —z%)

= —x%y828 - Spe((1,0,0); %2, %, 22) det W((3, 2, 1); x%, y2, 22).

Hence we see that

dot [ 25207 SPe((1, 0. 0, 37, 2%)
et
(5 + ]+ X7y (v + 1+ x7y7) <t jn
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1
=TT (=) (=) (U= 722) (1= 5722) (2 = 7) (22 = 7)

det W3(x$8, y8, 2% —x}, —y%, —z%)
x det d 16 ; 6l 6] .
(1 —X yj)(yj _xi) 1<i,j<n

Now we can apply the identity (17) in Theorem 3.3 with
xi = X, yf'_>y16" 2= 2% a4 — —xf, bj_>_Y;‘17 c— —7*

By applying elementary transformations and by using the definition (2) of symplectic char-
acters, we have

det W (®6, 36, 6 — =4, — 34, —2Y)
= (=1 T a2y det W (80 n — 1)+ 82n + 1: 2, 52, 2)
i=1
=20 =M [ [T = xha = y) (& =) = 37) (1 = 2) (1 = ¥72)
i=1 i=1
n

x< T 6F =) (0 =x223) (67 = 32) (0 = 925)) [T (7 =62 (1 = x57)

I<i<j<n ij=1

X SPypa (8, n — 1), T2, 57, 2.

After canceling the common factors, we can substitute z = 1 and obtain

xty? 4 x2yt 4222y x2 4+ y?

det iV T Y T& T
(1 +x2yf + oy (o + 297 +30) )

1 - 2n 2n 2 2

= — x"y; x5 — x?

Mo w i+ o L 1L 6=

i,j=1 I<i<j<n

X (1 — xlzsz)(yjz — yiz)(l — yizyjz-) - Spy,428(n, n — 1);72, 72, 1).

Then, by some computation, we have
AUhn +3: %,V 166) =37 8Py, p (6, n — ;X7 52 1),

This completes the proof of Theorem 2.4 (4) and (5) at a = &.

The determinants and Pfaffians in the O-enumerations (or in the case of a = ¢4) are eval-
uated by families of Cauchy’s identity and Borchardt’s identity. The determinant/Pfaffian
identities used in the evaluation are listed in Table 1.

When we compute the partition functions in the 1-enumerations, we apply the identities
in Theorems 3.3 and 3.4 to evaluate the determinants or Pfaffians, and compare the resulting
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determinants with definitions (1)—(4) of classical group characters. The variations of the
arguments are summarized in Table 2.

For the 2-enumerations, the determinant appearing in A(n; X, ¥ ; {g) (resp. Ay(2n +
1;X, 7 ¢s)) can be evaluated by applying the Cauchy’s determinant identity with x; — x?
and y; — y,.2 (resp. x; by xi2 +x; 2 and y; — yi2 + yfz). The other determinants in the
determinant partition functions are computed by using the identities (15) and (16), and then
by applying Lemma 3.8 to the resulting determinants, where we have to put ¥ = ¥ . Also

Table 1 0-enumeration

Partition functions Identities ~ Specialization
A X,V 3 8) (12) xXi = X}y = ¥}
AT, T8 © xi = X2, yi = ¥}
Av@n+ 1%, 5 8a) (12) xi > x2+x7 >y
AQs@n + LT, 718 9) X = x2 x>y
AQs@n +3: 3. F:8) ) 5= xF a7y =y
ARG T, Tttt ) X = x>y
AQp@n + 2%, F38) ) X =P +x7 v =7
AQH@n: T 184) 13) xi = x?

AGY@n; T3 84) (10) xi = x?
Ao(2n L) (14) xp = /= 1x?
AR (4n; 75 00) an xi = /—1x?
A(8n; F 584, ¢) (13) xi = xP a7’

A 8n; X584, Ca) (10) xi = x2 4+ x7?

(2) oBn +1;X504) (10) X — x? +xl.72

<2> 081+ 3T 4a) (10) xi— xP a7

Table 2 1-enumeration

Partition functions Identities ~ Specialization
A(n; X, ;5 L6) (15) xi —> x5, a; > x2, yi = y8, b — ¥}
A(z)(ﬂ .Y %) (15) xi = x8a; > x}, yi > 8, b —> v}
Avn+ 1T, Vig)  (16) X = X0 ap = —x7,yi = ¥ bi = =y}
AQlstn + L%, T3¢ (16) xi = xf ap = x, yi = 38 b >y}
A(\g]).]s(“n +3;%,7:%) (A7) xi —> x84 > —x}yi > 0. b > —yhz > 80— =24
AQpln + 2%, ¥4 (16) x;p = x8,a; > —x2, y; = 38, bi > =y}
AQ1(@n: 1) (18) xi = x8,a; — x2, b — x?
(2) (4n; X5 26) (18) xi = x8, a; — x2, by — x}
AO(Zn,7,§6) (19) xi —> x8,a; > —x}, b > 0
A([jg)(Sn;?;{ﬁ, $a) 19 xi = xf,a; > —x}. by > —x?
AGY 8 + 1,5 46) (19) xi— x0a; — —x2, by — x}
AVHBn +3,75¢6) (20) xi— x0a; — —xt b — —x2z— 0 ¢ — —z*
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Table 3 2-enumeration

Partition functions Identities ~ Specialization Lemma 3.8
AT, V3 88) ©) xi = xF yi > ¥}

AR T, T 508) (15) xi—xta = xty > —yh b= =2 (1)
AvQn+ 1%, Vi) ©) xi > xP+ x>y 4y

AVhs@n + 1,7, Fi5)  (16) xi—xtap =y > —yhbi > -y} @
AQs@n +3:%, Vg (16) xi—xtai > =2ty > —yhbi >y Q)

AT @n T, T 188, &an ) (16) xi—xtap > —x2 oy —> —yhbi >y} (@)
AVp@n +2: 7. Vi) (16) xi—>axba -ty - —yhbi >y Q)
AS{.(4n;7;{8) (18) xi = x5, a; = x2, by — x}

AG@n: T 1 5y) (10) X — x}

Table 4 3-enumeration

Partition functions Identities  Specialization Lemma 3.8
A X, Y 5612) (15) xi = xS ai > xF yi > —yS b > =y} (D)
Av@n+1;%, Y5802 (16) xi = x4 > —xt v > =8, b > ¥} ()
Ag%(“n;?;ilz) (18) x> xj% ap > xf b — xf

the “round” Pfaffian partition functions for a = ¢g are computed by using the identities (10)
and (18). Similarly, we can deal with the round 3-enumerations. See Tables 3 and 4 for the
details.
5. Discussion
In this paper, we settled a conjecture on the number of VHSASMs. However, the enumeration
problems of odd-order HTSASMs, odd-order QTSASMs, and odd-order DSASMs are still
open. In our point of view, the remaining conjectures (see [12]) on HTSASMs and DSASMs
are reformulated as follows:
Conjecture 5.1.
(1) The number of (2n 4+ 1) x (2n + 1) HTSASMs is given by

#ANTS = 377 (dim GLy, 11 (3(n, n — 1)))?.
(2) The number of the (2n + 1) x (2n 4+ 1) DSASMs is given by

#ADS, | = 37" dim GLyy 41 (8(n, n — 1).

Our result (Theorem 1.2) suggests, for example, that there should be a bijection between
the set of n x n ASMs and the set of all pairs (T, M) of semistandard tableaux 7" of shape
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8(n — 1,n — 1) with entries 1, 2, ..., 2n, and triangular array M of 1s, Os and —1s of order
n. It would be interesting to find bijections proving the formulae in Theorem 1.2. Also
it is important to clarify the intrinsic reason why classical group characters appear in the
enumeration of symmetry classes of ASMs.

Note Added in Proof. Razumov and Stroganov have recently proven the conjectures
for odd-order HTSASMs and odd-order QTSASMs. See their papers “Enumerations of
half-turn symmetric alternating-sign matrices of odd order” (arXiv:math-ph/0504022) and
“Enumeration of quarter-turn symmetric alternating-sign matrices of odd order” (arXiv:math-
ph/0507003).
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