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Abstract. Let � be a G-symmetric graph admitting a nontrivial G-invariant partition B. Let �B be the quotient

graph of � with respect to B. For each block B ∈ B, the setwise stabiliser G B of B in G induces natural actions

on B and on the neighbourhood �B(B) of B in �B . Let G(B) and G[B] be respectively the kernels of these actions.

In this paper we study certain “local actions” induced by G(B) and G[B], such as the action of G[B] on B and the

action of G(B) on �B(B), and their influence on the structure of �.
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1. Introduction

Let G be a finite group acting on a finite set �. A partition B of � is G-invariant if Bg ∈ B
for B ∈ B and g ∈ G, where Bg := {αg : α ∈ B}; and B is nontrivial if 1 < |B| < |�|. If
� admits a nontrivial G-invariant partition, then G is said to be imprimitive on �; otherwise
G is said to be primitive on �. The group G is regular on � if G is transitive on � and the
only element of G that fixes a point of � is the identity. The kernel of the action of G on �

is defined to be the subgroup of all elements of G which fix each point of �. If this kernel
is equal to the identity subgroup of G, then G is said to be faithful on �.

Let � = (V (�), E(�)) be a finite graph and G a finite group. If G acts on the vertex
set V (�) of � such that G preserves the adjacency of �, then � is said to admit G as a
group of automorphisms. If such a group G is transitive on V (�) and, in its induced action,
transitive on the set Arc(�) of arcs of �, then � is said to be a G-symmetric graph, where
an arc of � is an ordered pair of adjacent vertices of �. In the following we will assume
without mentioning explicitly that � is nontrivial, that is, Arc(�) �= ∅. Then � contains no
isolated vertices since it is required to be G-vertex-transitive. Roughly speaking, in most
cases G acts imprimitively on the vertex set of a G-symmetric graph �, that is, V (�) admits
a nontrivial G-invariant partition B; in this case � is called an imprimitive G-symmetric
graph. From permutation group theory [2, Corollary 1.5A], this happens precisely when
the stabiliser Gα := {g ∈ G : αg = α} of α in G is not a maximal subgroup of G,
where α ∈ V (�). A standard approach to studying imprimitive G-symmetric graphs � is to
analyse the quotient graph �B of � with respect to B, which is defined to be the graph with
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vertex set B in which B, C ∈ B are adjacent if and only if there exist α ∈ B and β ∈ C
such that {α, β} is an edge of �. In the following we assume that �B contains at least one
edge, so that each block of B is an independent set of � (see [1, Proposition 22.1] or [8]).
Also, without loss of generality we assume that �B is connected for otherwise � must be
disconnected and we may deal with its connected components individually. (However, the
connectedness of � is not required in this paper. Note that �B can be connected when � is
disconnected. For example, if � is a matching with at least two edges, then it is disconnected
but the quotient graph with respect to the natural bipartition is connected.) This quotient
graph �B conveys a lot of information about the graph � and inherits some properties of
�. For example, �B is G-symmetric under the induced action (possibly unfaithful) of G
on B [8, Lemma 1.1(a)]. Nevertheless, �B does not determine � completely since it does
not tell us how adjacent blocks of B are joined by edges of �. To compensate for this
shortage, we need [3] the “inter-block” subgraph induced by two adjacent blocks of B. Let
�(α) := {β ∈ V (�) : {α, β} ∈ E(�)}, the neighbourhood of α in �. For each B ∈ B, let

�(B) :=
⋃
α∈B

�(α).

For adjacent blocks B, C of B, define �[B, C] to be the subgraph of � induced by (�(C) ∩
B) ∪ (�(B) ∩ C). Then �[B, C] is a bipartite graph with bipartition {�(C) ∩ B, �(B) ∩ C}
as B and C are both independent sets of �. Since �B is G-symmetric, up to isomorphism,
�[B, C] is independent of the choice of adjacent blocks B, C of B. Let

�B(B) := {C ∈ B : {B, C} ∈ E(�B)}

be the neighbourhood of B in �B. To depict genuinely the structure of � we also need a
“cross-sectional” geometry [3], namely the incidence structure

D(B) := (B, �B(B), I)

in which αIC for α ∈ B and C ∈ �B(B) if and only if α ∈ �(C). Clearly, the set of points
of D(B) incident with a block C ∈ �B(B) is �(C) ∩ B. We denote by �B(α) the set of
blocks of D(B) incident with a point α ∈ B, that is,

�B(α) := {C ∈ �B(B) : α ∈ �(C)}.

Denote

v := |B|, r := |�B(α)|, b := |�B(B)|, k := |�(C) ∩ B|, s := |�(α) ∩ C |. (1)

Since � and �B are G-symmetric, these parameters are all independent of the choice of
adjacent blocks B, C of B and the flag (α, C) of D(B). One can check that D(B) is a
1-(v, k, r ) design with b blocks and, up to isomorphism, is independent of the choice of
B. Also, the setwise stabiliser G B := {g ∈ G : Bg = B} of B in G induces a group of
automorphisms of D(B), and G B is transitive on the points, the blocks and the flags of
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D(B) [3]. Thus, the number of times a block C of D(B) is repeated is independent of the
choice of B and C . We denote this number by m and call it the multiplicity of D(B). In
the following we will view D(B) as the 1-(v, k, r ) design with point set B and blocks the
subsets �(C) ∩ B of B, for C ∈ �B(B), each repeated m times. We will reserve the letters
v, r, b, k, s for the above-defined parameters with respect to B. Then the valency of � is
equal to rs, and the valencies of �B and �[B, C] are b and s, respectively. If k = v, s = 1,
then �[B, C] is a perfect matching between B and C , and in this case � is a cover of �B.
In general, if k = v, then following [6], � is called a multicover of �B.

Thus, with any imprimitive G-symmetric graph � and nontrivial G-invariant partition B
of V (�) we have associated three configurations, namely the quotient graph �B, the bipartite
graph �[B, C], and the 1-design D(B). Gardiner and Praeger [3] suggested that we may
analyse the triple (�B, �[B, C],D(B)) in order to study �. This approach is a geometric
one in the sense that it involves the “cross-sectional” geometry D(B). It has been proved
to be very useful in studying imprimitive symmetric graphs, see [3–5, 7, 12–15]. Clearly,
G B induces natural actions on B and �B(B). These “local actions” may have significant
influence on the structure of �, and the analysis of them is fundamental to make effective use
of the approach. For example, it was proved in [12] that, if the actions of G B on B and �B(B)
are permutationally equivalent, then � can be reconstructed from �B and the action of G on
B via a simple construction, called the 3-arc graph construction, which was first introduced
in [7] in the case where k = v − 1 ≥ 2 and D(B) contains no repeated blocks. (For a group
G acting on two sets � and �, the actions of G on � and � are said to be permutationally
equivalent if there exists a bijection ψ : � → � such that ψ(αg) = (ψ(α))g for all α ∈ �

and g ∈ G.)
The purpose of this paper is to study actions induced by the kernels G(B), G[B] of the

actions of G B on B, �B(B), where by definition

G(B) := {g ∈ G B : αg = α for each α ∈ B}
G[B] := {g ∈ G B : Cg = C for each C ∈ �B(B)}.

In particular, we will investigate the action of G[B] on B and the actions of G(B) on �B(B),
�(α) and �B(α) (where α ∈ B), and the influence of these “local actions” on the structure of
�. For our purpose it seems natural to distinguish whether one of G(B), G[B] is a subgroup of
the other. With respect to this we have the following (not necessarily exclusive) possibilities:
(i) G[B] ≤ G(B); (ii) G[B] �≤ G(B); (iii) G(B) ≤ G[B]; (iv) G(B) �≤ G[B]; (v) G[B] �≤ G(B)

and G(B) �≤ G[B]. Setting M = G(B)G[B], M is a normal subgroup of G B and we have
Figure 1 in the lattice of subgroups of G B .

We will put our discussion in a general setting and consider the following subgroups of
G B . Let d be the diameter of �B, that is, the longest distance between two vertices of �B.
For each i with 0 ≤ i ≤ d , let �B(i, B) denote the set of blocks of B with distance in �B
no more than i from B. Then G B leaves �B(i, B) invariant, that is, C ∈ �B(i, B) implies
Cg ∈ �B(i, B) for any g ∈ G B , and hence G B induces a natural action on �B(i, B). The
kernel of this action is

G[i,B] := {g ∈ G B : Cg = C for each C ∈ �B(i, B)}.
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Figure 1. G(B) and G[B].

In particular, G[0,B] = G B , G[1,B] = G[B], and G[d,B] coincides with the kernel of the
induced action of G on B. Figure 2 illustrates the relationships among these groups G[i,B],
0 ≤ i ≤ d .

The results obtained in this paper are generic in nature. In Section 2, we will show
(Theorem 2.5) that each G[i,B] induces a G-invariant partition Bi of V (�) such that the
sequence

B = B0,B1,B2, . . . ,Bd

is a tower possessing some nice “level structure” properties, where as in [8] a sequence
of G-invariant partitions is called a tower if each partition is a refinement of the previous
partition. We will show (Theorem 2.7) further that, if G[i,B] ≤ G(B) for some i ≥ 1 then G
is faithful onB; whilst if G[i,B] �≤ G(B) for some i ≥ 1 then eitherBi is a genuine refinement
of B, or � is a multicover of �B. (For two partitions P1,P2 of a set �, we say that P1 is a
refinement of P2 if each block of P2 is a union of some blocks of P1; and P1 is a genuine
refinement of P2 if in addition P1 �= {{α} : α ∈ �} and P1 �= P2.) In Section 3 we will
study an extreme case where any two blocks of D(B) are either repeated or disjoint, that
is, for any C, D ∈ �B(B), either �(C) ∩ B = �(D) ∩ B, or �(C) ∩ �(D) ∩ B = ∅. Based
on these results, we then study in Section 4 the case where � is G-locally quasiprimitive.
(A G-symmetric graph � is said to be G-locally quasiprimitive if Gα is quasiprimitive
on �(α), that is, every non-identity normal subgroup of Gα is transitive on �(α).) In this
case we will show (Theorem 4.2) amongst other things that, if B is a minimal G-invariant
partition, then either G[B] = G(B), or k = 1 and G[B] < G(B), or � is a multicover of
�B. For α ∈ V (�), we use G[α] to denote the subgroup of Gα fixing setwise each block of
�B(α), that is, G[α] := {g ∈ Gα : Cg = C for each C ∈ �B(α)}. Then G[α] induces a
natural action on �(α) ∩C . In Section 4 we will also study G-locally quasiprimitive graphs
� such that G[α] is transitive on �(α) ∩ C , and prove that in this case either � is a bipartite
graph or �[B, C] is a matching.
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Figure 2. Relationships among G[i,B]’s.

2. Tower induced by G[i,B]

We will follow standard terminology and notation for permutation groups, see e.g. [2]. For
a G-invariant partition B of a finite set �, each block B of B is a block of imprimitivity
for G in � in the sense that, for each g ∈ G, either Bg = B or Bg ∩ B = ∅. Conversely,
for a transitive group G acting on �, any block B of imprimitivity for G in � induces a
G-invariant partition of �, namely {Bg : g ∈ G}. As usual write N � G if N is a normal
subgroup of G, and N � G if N � G and N �= G.

Lemma 2.1 (see e.g. [10, Lemma 10.1]) Let a group G act on a finite set �, and let N �G.
Then the set of N-orbits on � is a G-invariant partition of �.

We will denote this partition by BN and, following [11], call it the G-normal partition of
� induced by N . Clearly, for G transitive on �, the trivial partitions {�} and {{α} : α ∈ �}
of � are G-normal partitions. If these are the only G-normal partitions of �, then G is said
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to be quasiprimitive on �. Thus, G is quasiprimitive on � if and only if every non-indentity
normal subgroup of G is transitive on �.

Applying Lemma 2.1 to imprimitive symmetric graphs, we get the following result.

Lemma 2.2 Suppose � is a G-symmetric graph admitting a nontrivial G-invariant parti-
tionB, and let B ∈ B. Then each normal subgroup N of G B induces a G-invariant partition
B∗

N of V (�). Moreover, B∗
N is a refinement of B and the following (a)–(c) hold.

(a) B∗
N is the trivial partition {{α} : α ∈ V (�)} if and only if N ≤ G(B).

(b) B∗
N coincides with B if and only if N is transitive on B.

(c) If N � G, then B∗
N coincides with the G-normal partition BN of V (�) induced by N.

Proof: Since N � G B and G B is transitive on B, Lemma 2.1 implies that B∗ := αN is
a block of imprimitivity for G B in B, where α ∈ B. Since B is a G-invariant partition of
V (�), this implies that B∗ is a block of imprimitivity for G in V (�). Hence B∗ induces a
G-invariant partition of V (�), namely,

B∗
N := {(B∗)g : g ∈ G}. (2)

The validity of (a)–(c) follows from the definition of B∗
N immediately. �

Remark 2.3

(a) For distinct blocks B, C ∈ B, there exists g ∈ G such that Bg = C . So (G B)g :=
g−1G B g = GC , and hence N � G B if and only if N g := g−1 Ng � GC . It is easy to
see that B∗

N g = B∗
N . So, in studying the G-invariant partition B∗

N , we can start with any
chosen block B ∈ B.

(b) The results in Lemma 2.2 are valid for any transitive permutation group G on a finite
set �, any nontrivial G-invariant partition B of � and any normal subgroup N of G B ,
where B ∈ B. For the purpose of this paper, in Lemma 2.2 we stated these results in the
case where � = V (�) and G is a vertex- and arc-transitive group of automorphisms of
�.

For adjacent blocks B, C of B, let G B,C := (G B)C = {g ∈ G : Bg = B, Cg = C}. Then
G B,C is transitive on the set of edges of �[B, C] ( [8, Lemma 1.4(b)]). From this it follows
that

�(C) ∩ B and �(B) ∩ C are two (G B,C )-orbits on V (�). (3)

This will be used in the proof of Theorem 2.5 below. Also, we will need the following
observations, which can be easily verified.

Lemma 2.4 Suppose � is a G-symmetric graph admitting a nontrivial G-invariant par-
tition B. Let B ∈ B and α ∈ B, and let d be the diameter of �B. Then the following (a)–(e)
hold.
(a) G(B) � G B.
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(b) G(B) � Gα .
(c) G[α] � Gα .
(d) G[i,B] � G B for each i with 0 ≤ i ≤ d; in particular, G[B] � G B.
(e) G[i,B] � G[i−1,B] for each i with 1 ≤ i ≤ d.

Let d be the diameter of �B. From Lemma 2.2 and Lemma 2.4(d) it follows that, for each
i with 0 ≤ i ≤ d , G[i,B] induces a G-invariant partition

Bi := {
Bg

i : g ∈ G
}

(4)

of V (�) which is a refinement of B, where Bi := αG[i,B] (for some α ∈ B) is a typical
block of Bi . Let vi , ri , bi , ki , si denote the parameters with respect to Bi , as defined in (1).
Since B0 is precisely the original partition B, we have (v0, r0, b0, k0, s0) = (v, r, b, k, s).
The following theorem gives some “level structure” properties concerning these partitions.
Recall that a tower is a sequence of G-invariant partitions of V (�) such that each partition
in the sequence is a refinement of the previous partition.

Theorem 2.5 Suppose � is a G-symmetric graph admitting a nontrivial G-invariant
partition B. Let B ∈ B and let d be the diameter of �B. Then for each i with 0 ≤ i ≤ d,
G[i,B] induces a G-invariant partition Bi , defined in (4), such that B = B0,B1, . . . ,Bd is
a tower. Moreover, the following (a)–(d) hold.
(a) vi is a common divisor of vi−1 and ki−1, si is a divisor of si−1, and ri−1 is a divisor of

ri (with si−1/si = ri/ri−1).
(b) Each block of the 1-design D(Bi−1) (for Bi−1 ∈ Bi−1) is a disjoint union of some

blocks of Bi . More precisely, for adjacent blocks Bi−1, Ci−1 of �Bi−1
, G[i,B] leaves

�(Ci−1) ∩ Bi−1 invariant and the (G[i,B])-orbits on �(Ci−1) ∩ Bi−1 form a (G Bi−1,Ci−1
)-

invariant partition of �(Ci−1) ∩ Bi−1.
(c) �Bi−1

(α) = �Bi−1
(β) for any vertices α, β in the same block of Bi .

(d) For each integer j with 0 ≤ j < i , the set Bi admits a G-invariant partition Bi j such
that �B j

∼= (�Bi )Bi j and that the parameters vi j , ri j , bi j , ki j , si j with respect to Bi j

satisfy vi j = v j/vi , ki j = k j/vi , bi j = b j , ri j = r j , si j = bi/r j .

Proof: For each i , let α ∈ B and Bi := αG[i,B] , and let Bi be as defined in (4). Then, since
G[i,B] �G B by Lemma 2.4(d), Lemma 2.2 implies that Bi is a G-invariant partition of V (�)
and is a refinement of B. For 1 ≤ i ≤ d, since G[i,B] � G[i−1,B] (Lemma 2.4(e)), it follows
that Bi is a refinement of Bi−1. Consequently, vi is a divisor of vi−1.

Now suppose Ci−1 is a block of Bi−1 adjacent to Bi−1 in �Bi−1
, and let C be the block

of B containing Ci−1. Then there exist β ∈ �(Ci−1) ∩ Bi−1 and γ ∈ �(Bi−1) ∩ Ci−1 such
that β, γ are adjacent in �. By the definition of Bi−1, we have Bi−1 = βG[i−1,B] and Ci−1 =
γ G[i−1,C] , and by (3) we have �(Ci−1) ∩ Bi−1 = βG Bi−1 ,Ci−1 and �(Bi−1) ∩ Ci−1 = γ G Bi−1 ,Ci−1 .
Note that B, C are adjacent blocks of B. So we have �B(i − 1, C) ⊆ �B(i, B) and hence
G[i,B] ≤ G[i−1,C]. This implies that G[i,B] fixes Ci−1 setwise. Since G[i,B] � G[i−1,B], G[i,B]

also fixes Bi−1 setwise. Thus, we have G[i,B] ≤ G Bi−1,Ci−1
. This implies G[i,B] � G Bi−1,Ci−1

since G Bi−1,Ci−1
≤ G B and G[i,B] � G B (Lemma 2.4(d)). So G[i,B] leaves �(Ci−1) ∩ Bi−1
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invariant and, by Lemma 2.1, the (G[i,B])-orbits on �(Ci−1)∩ Bi−1 constitute a (G Bi−1,Ci−1
)-

invariant partition of �(Ci−1) ∩ Bi−1. Thus, each block �(Ci−1) ∩ Bi−1 of the 1-design
D(Bi−1) is a disjoint union of some blocks of Bi . This implies in particular that vi is a
divisor of ki−1, and so vi is a common divisor of vi−1 and ki−1. One can see that each block
Ci−1 of �Bi−1

(β) contains the same number of blocks of �Bi (β). Hence ri−1 is a divisor of
ri . Since ri−1si−1 = ri si (the valency of �), this implies that si is a divisor of si−1.

If δ, ε are in the same block of Bi , without loss of generality we may suppose that
δ, ε ∈ Bi . Then since Bi is a (G[i,B])-orbit there exists x ∈ G[i,B] such that δx = ε, and
hence (�Bi−1

(δ))x = �Bi−1
(ε). On the other hand, the elements of G[i,B] fix setwise each

block Ci−1 in �Bi−1
(Bi−1) since G[i,B] � G Bi−1,Ci−1

, as shown above. In particular, x fixes
setwise each block in �Bi−1

(δ) since �Bi−1
(δ) ⊆ �Bi−1

(Bi−1). Thus, we have �Bi−1
(δ) =

(�Bi−1
(δ))x = �Bi−1

(ε).
Let j be an integer with 0 ≤ j < i . Since for each � with j + 1 ≤ � ≤ i the partition B�

is a refinement of the partition B�−1, as shown above, we know that Bi is a refinement of
B j and hence each block C j of B j is a union of some blocks of Bi . Denote by Ci j = {Bz

i :
Bz

i ⊆ C j , z ∈ G}, the set of blocks of Bi contained in C j . Then Bi j := {Ci j : C j ∈ B j }
is a partition of Bi . We claim further that Bi j is a G-invariant partition of Bi under the
induced action of G on Bi . In fact, if C

g
i j ∩ Ci j �= ∅ for some g ∈ G, say (Bx

i )g = B y
i

for some Bx
i , B y

i ∈ Ci j , then Bx
i , B y

i ⊆ C j and hence (Bx
i )g = B y

i ⊆ C j . Since C j is a
block of imprimitivity for G in V (�), this implies that g fixes C j setwise. Therefore, we
have C

g
i j = {(Bz

i )g : Bz
i ⊆ C j , z ∈ G} = Ci j and hence Bi j is G-invariant indeed. Clearly,

the mapping ψ : C j 
→ Ci j is a bijection from B j to Bi j . By the definition of a quotient
graph, one can see that ψ is an isomorphism from �B j to (�Bi )Bi j , and hence �B j

∼= (�Bi )Bi j .
Clearly, we have vi j = v j/vi , ki j = k j/vi , bi j = b j and ri jsi j = val(�Bi ) = bi . From
vi jri j = bi jki j , we get (v j/vi )ri j = b j (k j/vi ), which in turn implies ri j = r j since
v j r j = b j k j . Finally, we have si j = bi/ri j = bi/r j and the proof is complete. �

Remark 2.6 If G[i,B]�G for B ∈ B, then from Lemma 2.2(c),Bi is the G-normal partition
of V (�) induced by G[i,B]. In this case � is a multicover of �Bi (see [8, Section 1] or [11,
Theorem 4.1]). In particular, if �B is a complete graph, then d = 1 and G[B] � G (since
G[B] is the kernel of the action of G on B in this case), and hence � is a multicover of �B1

.

Theorem 2.7 Suppose � is a G-symmetric graph admitting a nontrivial G-invariant
partition B, where G ≤ Aut(�). Let B ∈ B and let d be the diameter of �B. Then one of
the following (a)–(b) occurs for each i with 1 ≤ i ≤ d.

(a) G[i,B] ≤ G(B); in this case G is faithful on B.
(b) G[i,B] �≤ G(B); in this case either

(i) G[i,B] induces a G-invariant partition Bi of V (�), defined in (4), which is a genuine
refinement of B and is such that vi is a common divisor of v and k, si is a divisor of
s, and r is a divisor of ri ; or

(ii) � is a multicover of �B and G[i,B] is transitive on B.

Proof: Suppose that G[i,B] ≤ G(B). Then, since G is transitive on B and since G[i,Bg] =
(G[i,B])

g and G(Bg) = (G(B))
g for any g ∈ G, we have G[i,C] ≤ G(C) for all blocks C ∈ B.
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Thus, if g is in the kernel of the action of G on B, then g ∈ G[i,C] in particular and hence
g ∈ G(C). In other words, g fixes each vertex in C . Since this holds for all C ∈ B, it follows
that g fixes each vertex of �. Thus, since G ≤ Aut(�) is faithful on V (�), we have g = 1
and hence G is faithful on B as well.

Now suppose G[i,B] �≤ G(B). Then, by Lemma 2.2(a), the partition Bi of V (�) induced
by G[i,B] is a nontrivial G-invariant partition of V (�). So we know from Lemma 2.2(b) and
Theorem 2.5 that, either Bi is a genuine refinement of B, or G[i,B] is transitive on B. In the
former case, it follows from Theorem 2.5(a) that vi is a common divisor of v and k, si is a
divisor of s and r is a divisor of ri , and hence (i) in (b) occurs. Since G[i,B] fixes setwise
the block B and each block C ∈ �B(B), it also fixes setwise �(C) ∩ B. So in the latter case
where G[i,B] is transitive on B, we must have �(C) ∩ B = B, that is, � is a multicover of
�B and hence (ii) in (b) occurs. �

Note that, if case (b)(i) in Theorem 2.7(b) occurs, then at least one of the Bi j given in
Theorem 2.5(d), say Bi0, is a nontrivial partition of Bi . If case (b)(ii) in Theorem 2.7(b)
occurs, then from Lemma 2.2(b), the partition Bi induced by G[i,B] coincides with B.
Applying Theorem 2.7 to G[B], we get the following consequence.

Corollary 2.8 Suppose (�, G,B) is as in Theorem 2. Then one of the following (a)–(b)
occurs.

(a) G[B] ≤ G(B); in this case G is faithful on B.
(b) G[B] �≤ G(B); in this case either

(i) G[B] induces a G-invariant partition of V (�), namely B1 defined in (4) for i = 1,
which is a genuine refinement of B such that v1 is a common divisor of v and k,
s1 is a divisor of s, and r is a divisor of r1; or

(ii) � is a multicover of �B and G[B] is transitive on B.

If the vertices in B are “distinguishable” in the sense that �B(α) �= �B(β) for distinct
α, β ∈ B, then case (a) in Corollary 2.8 occurs. In particular, this happens for G-symmetric
graphs with k = v −1 ≥ 1, see [7, Theorems 4 and 5(d)]. A nontrivial G-invariant partition
B of V (�) is said to be minimal if there is no G-invariant partition of V (�) which is a genuine
refinement of B. For such a partition B, case (b)(i) in Corollary 2.8 does not appear. The
following example shows that case (b)(ii) in Corollary 2.8 occurs if G is not quasiprimitive
on V (�) and if B is a nontrivial G-normal partition of V (�).

Example 2.9 Suppose � is a G-symmetric graph such that G is not quasiprimitive on
V (�), where G ≤ Aut(�). Then there exists a nontrivial normal subgroup N of G which
is intransitive on V (�), so the G-normal partition BN of V (�) induced by N (Lemma 2.1)
is nontrivial. Let �N be the quotient graph of � with respect to BN . Since N is contained
in the kernel of the action of G on BN , G is not faithful on BN . So from Corollary 2.8 we
must have G[B] �≤ G(B) for B ∈ BN . Since N � G[B], we have B = αN ⊆ αG[B] ⊆ B for
α ∈ B, which implies αG[B] = B. Hence G[B] is transitive on B, and consequently we come
to the result (see e.g. [11 Theorem 4.1]) that � is a multicover of �N . Thus, case (b)(ii) in
Corollary 2.8 occurs.
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3. Analysing an extreme case

In Corollary 2.8 we have shown that, if G[B] �≤ G(B), then either � is a multicover of �B,
or we get a genuine refinement of B. Note that G B is transitive on �B(B) and G(B) � G B

by Lemma 2.4(a). So in the opposite case where G(B) �≤ G[B], Lemma 2.1 implies that the
G(B)-orbits on �B(B) form a nontrivial G B-invariant partition of �B(B). Since G(B) fixes
B pointwise, any two blocks in the same G(B)-orbit on �B(B) induce repeated blocks of
D(B). In some cases, blocks in distinct G(B)-orbits on �B(B) may induce disjoint blocks of
D(B). For example, in Remark 3.2 below we will see that this happens in particular when
� is G-locally quasiprimitive and G(B) �≤ G[B]. This motivated us to study the case where,
for any C, D ∈ �B(B), either �(C) ∩ B = �(D) ∩ B, or �(C) ∩ �(D) ∩ B = ∅. In this
case, the multiplicity m of D(B) is equal to r . This seemingly trivial case is by no means
trivial because it contains the following two very difficult but important subcases:

(i) k = 1;
(ii) k = v.

We have studied the first subcase in [14, Section 4], where we gave a construction of
such graphs from certain kinds of G-point- and G-block-transitive 1-designs. In the second
subcase, � is a multicover of �B. Our study in this section shows that (see Remark 3(a)
below), in some sense, the study of G-symmetric graphs with blocks �(C) ∩ B of D(B)
(for C ∈ �B(B)) satisfying the condition above can be reduced to the study of these two
subcases. The results obtained here will be used in the next section. Define (G B)�B(α) :=
{g ∈ G B : (�B(α))g = �B(α)}.

Lemma 3.1 Suppose � is a G-symmetric graph admitting a nontrivial G-invariant parti-
tion B. Let B ∈ B, α ∈ B, and let (a), (b), (c) be the following statements. Then (a) implies
(b), and (b) in turn implies (c).

(a) G(B) �≤ G[B], and either Gα or (G B)�B(α) is quasiprimitive on �B(α);
(b) G(B) is transitive on �B(α);
(c) either �(C) ∩ B = �(D) ∩ B or �(C) ∩ �(D) ∩ B = ∅, for C, D ∈ �B(B).

Proof: (a) ⇒ (b) Suppose G(B) �≤ G[B]. Then there exist x ∈ G(B) and C, D ∈ �B(B)
with C �= D such that Cx = D. Let α ∈ �(C) ∩ B, so that C ∈ �B(α). Since x fixes
each vertex in B and hence fixes α in particular, we have (�(α) ∩ C)x = �(α) ∩ D.
Since �(α) ∩ C �= ∅, we have �(α) ∩ D �= ∅ and hence D ∈ �B(α). Thus the action
of G(B) on �B(α) is nontrivial. On the other hand, since G(B) � G B (Lemma 2.4(a)) and
G(B) ≤ (G B)�B(α) ≤ G B , we have G(B) � (G B)�B(α). So if (G B)�B(α) is quasiprimitive on
�B(α), then G(B) must be transitive on �B(α). Similarly, since G(B) � Gα (Lemma 2.4(b))
and G(B) acts on �B(α) in a nontrivial way, the quasiprimitivity of Gα on �B(α) implies the
transitivity of G(B) on �B(α).

(b) ⇒ (c) The assumption in (b) implies that, for any β ∈ B, G(B) is transitive on
�B(β). In fact, since G B is transitive on B, there exists g ∈ G B such that βg = α. For
any C, D ∈ �B(β), we have Cg, Dg ∈ �B(α) and hence by (b) there exists x ∈ G(B)
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such that (Cg)x = Dg , that is, Cgxg−1 = D. Since G(B) � G B by Lemma 2.4(a), we have

gxg−1 ∈ G(B) and hence G(B) is transitive on �B(β) indeed. Also, since Cgxg−1 = D,

we have (�(C) ∩ B)gxg−1 = �(D) ∩ B. However, gxg−1 ∈ G(B) fixes each vertex in B,

so we have (�(C) ∩ B)gxg−1 = �(C) ∩ B and consequently �(C) ∩ B = �(D) ∩ B. In
other words, if two blocks �(C) ∩ B, �(D) ∩ B of D(B) have a common vertex β, then
�(C) ∩ B = �(D) ∩ B. Hence (c) is true. �

Remark 3.2 Clearly, the quasiprimitivity of Gα on �(α) implies the quasiprimitivity of
Gα on �B(α). So, if � is a G-locally quasiprimitive graph admitting a nontrivial G-invariant
partition B such that G(B) �≤ G[B], then by Lemma 3.1, either �(C) ∩ B = �(D) ∩ B or
�(C) ∩ �(D) ∩ B = ∅, for any C, D ∈ �B(B).

The main result in this section is the following theorem.

Theorem 3.3 Suppose � is a G-symmetric graph admitting a nontrivial G-invariant
partition B. Suppose further that, for any C, D ∈ �B(B), either �(C) ∩ B = �(D) ∩ B or
�(C) ∩ �(D) ∩ B = ∅. Then V (�) admits a second G-invariant partition B∗ := {(B∗)g:
g ∈ G}, where B∗ is a block of D(B). Moreover, the following (a)–(c) hold.
(a) B∗ is a refinement of B, and it is a genuine refinement of B if and only if 2 ≤ k ≤ v − 1.
(b) � is a multicover of �B∗ , k is a divisor of v, and the parameters v∗, r∗, b∗, k∗, s∗ with

respect to B∗ satisfy v∗ = k∗ = k, b∗ = r∗ = r, s∗ = s.
(c) There exists a G-invariant partition B of B∗ such that (�B∗ )B

∼= �B and the parameters
v, r, b, k, s with respect to B satisfy v = v/v∗, k = s = 1, b = b and r = r .

Proof: Our assumption on D(B) implies that the set of subsets of B of the form �(C)∩ B,
for C ∈ �B(B), is a partition of B, which we denote by P(B). Thus the blocks of P(B)
have size k and k divides v. Let B∗ := �(C) ∩ B be a typical block of P(B), where
C ∈ �B(B). Since G B is transitive on �B(B) and since (B∗)g = �(Cg) ∩ B for g ∈ G B ,
we have P(B) = {(B∗)g : g ∈ G B} and hence P(B) is a G B-invariant partition of B. We
claim further that B∗ := {(B∗)g : g ∈ G} defines a G-invariant partition of V (�). In fact,
if (B∗)g ∩ B∗ �= ∅ for some g ∈ G, then Bg ∩ B �= ∅ since B∗ ⊆ B and (B∗)g ⊆ Bg . But
B is a block of imprimitivity for G in V (�), so we have Bg = B and hence g ∈ G B . Thus
(B∗)g ⊆ B and (B∗)g is a block ofP(B) having nonempty intersection with B∗. SinceP(B)
is a G B-invariant partition of B, as shown above, this implies (B∗)g = B∗. Therefore, B∗

is a block of imprimitivity for G in V (�) and so B∗ is a G-invariant partition of V (�). It is
easily checked that B∗ = ⋃

B∈B P(B). Clearly, B∗ is a refinement of B, and it is a genuine
refinement of B if and only if 2 ≤ k ≤ v − 1. Since �B is G-symmetric, there exists h ∈ G
which interchanges B and C . So �(B) ∩ C = (�(C) ∩ B)h = (B∗)h ∈ B∗, and hence each
vertex in B∗ is adjacent to at least one vertex in (B∗)h . Therefore, � is a multicover of �B∗ ,
and hence v∗ = k∗ = k, b∗ = r∗ = r, s∗ = s. Finally, it is straightforward to show that
B := {P(B) : B ∈ B} is a G-invariant partition of B∗ and that (�B∗ )B

∼= �B. Also, it is
clear that the parameters v, r, b, k, s with respect to B are as specified in (c). �
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Remark 3.4

(a) The partition B∗ in Theorem 3.3 is equal to the trivial partition {{α} : α ∈ V (�)} if
and only if k = 1, and is equal to B if and only if k = v. In the general case where
2 ≤ k ≤ v − 1, B∗ is a genuine refinement of B, and as k∗ = v∗, the partition (B∗)∗

resulting from applying Theorem 3.3 toB∗, is equal toB∗. Moreover, the quotient graph
�B∗ admits a G-invariant partition, namely B, for which k = 1 and thus the construction
given in [14, Section 4] applies to �B∗ .

(b) Setting i = 1 in Theorem 2.5(b), we know that the partition B1 (defined in (4) for i = 1)
is a refinement ofB∗. Moreover,B1 admits a G-invariant partition B1 := {P(B∗) : B∗ ∈
B∗}, where P(B∗) := {αG[B] ⊆ B∗ : α ∈ B∗}, such that (�B1

)B1
∼= �B∗ and �B1

is a
multicover of �B∗ , and that the parameters v1, r1, b1, k1, s1 with respect to B1 satisfy
v1 = k1 = k/v1, r1 = b1 = r , s1 = b1/r .

4. Locally quasiprimitive graphs

We now apply the results obtained in the last two sections to G-locally quasiprimitive
graphs. Such graphs were studied initially in [8, 9], and more recent results were obtained
in [6]. The following theorem is a generalization of [3, Lemma 3.4], where � is required to
be G-locally primitive (that is, Gα is primitive on �(α)).

Theorem 4.1 Suppose � is a G-locally quasiprimitive graph admitting a nontrivial G-
invariant partition B. Then one of the following (a)–(c) holds.
(a) G[B] = G(B).
(b) G(B) �≤ G[B]; in this case G(B) is transitive on �(α) for each α ∈ B, and moreover

either

(i) k = 1 and G[B] < G(B); or
(ii) k ≥ 2, k divides v, and V (�) admits a second nontrivial G-invariant partition

B∗ such that B∗ is a refinement of B, � is a multicover of �B∗ and the parameters
v∗, r∗, b∗, k∗, s∗ with respect to B∗ satisfy v∗ = k∗ = k, b∗ = r∗ = r, s∗ = s.

(c) G[B] �≤ G(B); in this case G[B] induces a nontrivial G-invariant partition B1 of V (�)
(defined in (4) for i = 1) such that B1 is a refinement of B, v1 is a common divisor of v

and k, s1 is a divisor of s, and r is a divisor of r1.

Proof: Suppose G(B) �≤ G[B]. Then there exist x ∈ G(B) and distinct blocks C, D of
�B(B) such that Cx = D. Let β ∈ �(C) ∩ B, so that �(β) ∩ C �= ∅. Since x fixes each
vertex in B, it fixes β in particular and hence maps a vertex in �(β) ∩ C to a vertex in
�(β) ∩ D. Since G(B) � Gβ (Lemma 2.4(b)), this implies that G�(β)

(B) is a nontrivial normal
subgroup of G�(β)

β . Therefore, by the G-local quasiprimitivity of �, we conclude that G(B)

is transitive on �(β). Now for any α ∈ B there exists g ∈ G B such that αg = β. For any
γ, δ ∈ �(α), we have γ g, δg ∈ �(β) and hence (γ g)x = δg holds for some x ∈ G(B) by the
transitivity of G(B) on �(β). Since G(B) � G B (Lemma 2.4(a)), we have gxg−1 ∈ G(B), and

hence γ gxg−1 = δ implies that G(B) is transitive on �(α).
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If k = 1, then �B(α) ∩ �B(β) = ∅ for distinct α, β ∈ B. Hence, if g ∈ G B fixes each
block C ∈ �B(B) setwise, then it also fixes each vertex in B. So we have G[B] < G(B) in
this case.

If k ≥ 2, then by Remark 3.2, for any C, D ∈ �B(B), either �(C) ∩ B = �(D) ∩ B or
�(C)∩�(D)∩ B = ∅. Hence Theorem 3.3 applies, and the partition B∗ defined therein is a
nontrivial G-invariant partition of V (�) and is a refinement of B. The truth of the remaining
statements in (b)(ii) follows from Theorem 3.3(b).

Now we suppose G[B] �≤ G(B). Then B1 := αG[B] has cardinality at least two, where
α ∈ B. Hence it follows from Theorem 2.5 that the partition B1 (defined in (4) for i = 1) is
a nontrivial G-invariant partition of V (�) and is a refinement of B, and that the parameters
v1, s1, r1 with respect to B1 have the required properties. �

For minimal nontrivial G-invariant partitions, we have the following result.

Theorem 4.2 Suppose � is a G-locally quasiprimitive graph, where G ≤ Aut(�). Suppose
further that B is a minimal nontrivial G-invariant partition of V (�). Then one of the
following (a)–(c) holds.
(a) G[B] = G(B) and G is faithful on B;

(b) G[B] < G(B) and k = 1;

(c) � is a multicover of �B.

Moreover, if �B is a complete graph, then the occurrence of (a) implies G[B] = G(B) = 1;
if G[B] �≤ G(B), then the occurrence of (c) implies that G[B] is transitive on B.

Proof: In the case where G(B) = G[B], G is faithful on B by Corollary 2.8(a). Suppose
G(B) �= G[B]. Then either G(B) �≤ G[B] or G[B] �≤ G(B). In the former case, Theorem 4.1(b)
applies. If (i) in Theorem 4.1(b) occurs, then we have k = 1 and G[B] < G(B), and hence
(b) above occurs. If (ii) in Theorem 4.1(b) occurs, then by the minimality of B, the partition
B∗ therein must coincide with B; hence � is a multicover of �B and (c) holds. In the latter
case where G[B] �≤ G(B), by Corollary 2.8 and the minimality of B, we know that � is a
multicover of �B (hence (c) above occurs), and moreover G[B] is transitive on B.

Now suppose that �B is a complete graph, and that case (a) occurs. Then G[B] is the
kernel of the action of G on B and hence G[B] = G(B) � G. This implies that G(B) =
g−1G(B)g = G(Bg) for any g ∈ G. Since Bg runs over all blocks of B when g runs over G,
this means that G(B) fixes each vertex of �, and hence by the faithfulness of G on V (�) we
get G[B] = G(B) = 1. �

Recall that G[α] is the subgroup of Gα fixing setwise each block B ∈ �B(α). So G[α]

induces an action on �(α)∩ B. It may happen (see Lemma 4.4 below) that G[α] is transitive
on �(α) ∩ B, that is, �(α) ∩ B is a (G[α])-orbit on �(α). In this case we have the following
theorem, which is a counterpart of [3, Lemma 3.1(b)].

Theorem 4.3 Suppose � is a G-locally quasiprimitive graph admitting a nontrivial G-
invariant partitionB. Suppose further that G[α] is transitive on �(α)∩B, for some α ∈ V (�)
and B ∈ �B(α). Then either
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(a) �[B, C] ∼= k · K2 is a matching of k edges, for adjacent blocks B, C of B; or
(b) � is a bipartite graph with each part of the bipartition of a connected component

contained in some block of B, and r = 1.

Proof: We first show that our assumption on G[α] implies that G[α] is transitive on�(α) ∩ C
for each C ∈ �B(α). In fact, since B, C ∈ �B(α), α is adjacent to a vertex β in B and a
vertex γ in C . So there exists g ∈ Gα such that γ g = β, and hence Cg = B. Now for
any δ, ε ∈ �(α) ∩ C , we have δg, εg ∈ �(α) ∩ B and hence, by our assumption that G[α]

is transitive on �(α) ∩ B, (δg)x = εg holds for some x ∈ G[α]. Since G[α] � Gα (Lemma

2.4(c)), we have gxg−1 ∈ G[α] and so δgxg−1 = ε implies that G[α] is transitive on �(α)∩C .

Thus, if G�(α)
[α] = 1, then we have |�(α) ∩ C | = 1. That is, �[B, C] is a matching for

adjacent blocks B, C of B, and hence the statement in (a) holds.
In the following we suppose that G�(α)

[α] �= 1. Then, since G�(α)
[α] � G�(α)

α by Lemma 2.4(c)
and since � is G-locally quasiprimitive by our assumption, G[α] must be transitive on �(α).
However, G[α] fixes �(α)∩C setwise for each C ∈ �B(α). So we must have r = |�B(α)| = 1
and hence �(α) ⊆ C for some C . Let B be the block of B containing α. Then, since G is
transitive on arcs of �, for any β ∈ �(α) there exists an element of G which interchanges
α and β and hence interchanges B and C . Hence �(α) ⊆ C implies �(β) ⊆ B. Similarly,
�(β) ⊆ B implies �(γ ) ⊆ C for any γ ∈ �(β). Continuing this process, one can see
that �[B, C] consists of connected components of �, and hence each such component
is a bipartite graph with the two parts of the bipartition contained in B, C , respectively.
Therefore, � is a bipartite graph. �

The following lemma shows that G[α] is transitive on �(α) ∩ B for each B ∈ �B(α)
provided that Gα is regular on �B(α). This will be used in the proof of Theorem 4.5 below.

Lemma 4.4 Suppose � is a G-symmetric graph admitting a nontrivial G-invariant par-
tition B. If Gα is regular on �B(α), for some α ∈ V (�), then G[α] is transitive on �(α) ∩ B
for each B ∈ �B(α).

Proof: For any B ∈ �B(α) and β, γ ∈ �(α) ∩ B, by the G-symmetry of � there exists
x ∈ Gα such that βx = γ , and hence x fixes B setwise. Since by our assumption Gα acts
regularly on �B(α), this implies that Cx = C for all C ∈ �B(α), and hence x ∈ G[α]. Thus,
any vertex β in �(α) ∩ B can be mapped to any other vertex γ in �(α) ∩ B by an element
of G[α]. In other words, G[α] is transitive on �(α) ∩ B. �

We conclude this paper by proving the following result. A G-symmetric graph � is said
to be (G, 1)-arc regular if, in its induced action, G is regular on Arc(�).

Theorem 4.5 Suppose � is a connected, non-bipartite, G-locally quasiprimitive graph
admitting a nontrivial G-invariant partition B, where G ≤ Aut(�). Suppose further that
Gα is regular on �B(α) for α ∈ V (�). Then � is (G, 1)-arc regular and �[B, C] ∼= k · K2

for adjacent blocks B, C of B.
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Proof: Since Gα is regular on �B(α), by Lemma 4.4, G[α] is transitive on �(α) ∩ B for
B ∈ �B(α). Thus, since � is non-bipartite, we have �[B, C] ∼= k · K2 by Theorem 4.3.
Consequently, the actions of Gα on �B(α) and �(α) are permutationally equivalent. So Gα

is regular on �(α) as well. This together with the connectedness of � implies that � is
(G, 1)-arc regular, as we show in the following.

Let �(i, α) denote the set of vertices of � with distance no more than i from α. For
any β ∈ �(α), since Gα is regular on �(α), Gαβ fixes each vertex in �(α) ∪ {α, β}.
Similarly, Gβα = Gαβ fixes each vertex in �(β) ∪ {α, β}. So Gαβ fixes each vertex in
�(α)∪�(β)∪{α, β}. Thus, for any vertex γ ∈ �(β)\{α}, we have Gαβ = Gαβγ . Similarly,
Gγβ = Gαβγ and so Gαβ = Gγβ . Repeating the argument above for the adjacent vertices
γ, β, we know that Gαβ (= Gγβ) fixes each vertex in �(γ ). Similarly, Gαβ fixes each
vertex in �(δ) for any δ ∈ �(α)\{β}. Therefore, Gαβ fixes each vertex in �(2, α) ∪�(2, β).
Inductively, one can show that Gαβ fixes each vertex in �(i, α)∪�(i, β) for any i ≥ 1. Since
� is connected, this implies that Gαβ fixes each vertex of �. But G ≤ Aut(�) is faithful on
V (�), so we have Gαβ = 1 and G is regular on the arcs of �. �
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