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Abstract. Consider the coradical filtrations of the Hopf algebras of planar binary trees of Loday and Ronco

and of permutations of Malvenuto and Reutenauer. We give explicit isomorphisms showing that the associated

graded Hopf algebras are dual to the cocommutative Hopf algebras introduced in the late 1980’s by Grossman

and Larson. These Hopf algebras are constructed from ordered trees and heap-ordered trees, respectively. These

results follow from the fact that whenever one starts from a Hopf algebra that is a cofree graded coalgebra, the

associated graded Hopf algebra is a shuffle Hopf algebra.
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Introduction

In the late 1980’s, Grossman and Larson constructed several cocommutative Hopf algebras
from different families of trees (rooted, ordered, heap-ordered), in connection to the sym-
bolic algebra of differential operators [10,11]. Other Hopf algebras of trees have arisen lately
in a variety of contexts, including the Connes-Kreimer Hopf algebra in renormalization the-
ory [5] and the Loday-Ronco Hopf algebra in the theory of associativity breaking [18, 19].
The latter is closely related to other important Hopf algebras in algebraic combinatorics,
including the Malvenuto-Reutenauer Hopf algebra [22] and the Hopf algebra of quasi-
symmetric functions [21, 27, 31].

This universe of Hopf algebras of trees is summarized below.

Family of trees Hopf algebra

Grossman-Larson [10, 11] Rooted trees Non-commutative, cocommutative

Ordered trees

Heap-ordered trees

Loday-Ronco [18] Planar binary trees Non-commutative, non-cocommutative

Connes-Kreimer [5] Rooted trees Commutative, non-cocommutative
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Recent independent work of Foissy [6,7] and Hoffman [14] showed that the Hopf algebra
of Connes-Kreimer is dual to the Hopf algebra of rooted trees of Grossman-Larson. This
Hopf algebra also arises as the universal enveloping algebra of the free pre-Lie algebra on
one generator, viewed as a Lie algebra [4]. Foissy [7] and Holtkamp [15] showed that the
Hopf algebra of Connes-Kreimer is a quotient of the Hopf algebra of Loday-Ronco, see
also [3].

We give explicit isomorphisms which show that the Grossman-Larson Hopf algebras of
ordered trees and of heap-ordered trees are dual to the associated graded Hopf algebras to the
Hopf algebra YSym of planar binary trees of Loday and Ronco and the Hopf algebra SSym
of permutations of Malvenuto and Reutenauer, respectively. This is done in Theorems 2.5
and 3.4. The case of heap-ordered trees requires the assumption that the base field be of
characteristic 0. We establish this case in Section 3 by making use of the first Eulerian
idempotent.

The essential tool we use is the monomial basis of YSym and SSym introduced in our
previous works [2, 3]. The explicit isomorphisms are in terms of the dual bases of ordered
and heap-ordered trees of Grossman-Larson and of the monomial bases of YSym and
SSym, respectively. These results provide unexpected combinatorial descriptions for the
associated graded Hopf algebras to YSym and SSym. On the other hand, together with the
result of Foissy and Hoffman, they connect all Grossman-Larson Hopf algebras of trees to
the mainstream of combinatorial Hopf algebras.

It follows from our results that the associated graded Hopf algebras to the Hopf algebras of
Loday-Ronco and Malvenuto-Reutenauer are commutative, a fact which is not obvious from
the explicit description of the product of these algebras. Greg Warrington noticed this for
the Malvenuto-Reutenauer Hopf algebra and Loı̈c Foissy made us aware that the associated
graded Hopf algebra to any graded connected Hopf algebra is always commutative (private
communications). A related well-known fact is that the associated graded Hopf algebra to a
cofree graded connected Hopf algebra is a shuffle Hopf algebra. We recall these and related
results with their proofs in Section 1. This also implies that the algebras of Grossman and
Larson are tensor Hopf algebras (Corollaries 2.7 and 3.6). It was known from [10] that these
algebras are free.

1. Cofree graded coalgebras and Hopf algebras

A coalgebra (C, �, ε) over a field k is called graded if there is given a decomposition
C = ⊕k≥0Ck of C as a direct sum of k-subspaces Ck such that

�(Ck) ⊆
∑

i+ j=k

Ci ⊗ C j and ε(Ck) = 0 ∀ k �= 0.

The coalgebra is said to be graded connected if in addition C0 ∼= k.

Definition 1.1 A graded coalgebra Q = ⊕k≥0 Qk is said to be cofree if it satisfies the
following universal property. Given a graded coalgebra C = ⊕k≥0Ck and a linear map
ϕ : C → Q1 with ϕ(Ck) = 0 when k �= 1, there is a unique morphism of graded coalgebras
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ϕ̂ : C → Q such that the following diagram commutes

where π : Q → Q1 is the canonical projection.

Let V be a vector space and set

Q(V ) :=
⊕
k≥0

V ⊗k .

We write elementary tensors from V ⊗k as x1\x2\ · · · \xk (xi ∈ V ) and identify V ⊗0 with k.
The space Q(V ), graded by k, becomes a graded connected coalgebra with the deconcate-
nation coproduct

�(x1\x2\ · · · \xk) =
k∑

i=0

(x1\ · · · \xi ) ⊗ (xi+1\ · · · \xk) (1.2)

and counit given by projection onto V ⊗0 = k. Moreover, Q(V ) is a cofree graded coalge-
bra [33, Lemma 12.2.7]. It is in fact graded connected.

By universality, any cofree graded coalgebra Q is isomorphic to Q(V ), where V = Q1.
We refer to Q(V ) as the cofree graded coalgebra cogenerated by V .

Remark 1.3 The functor Q from vector spaces to graded coalgebras is right adjoint to
the forgetful functor C �→ C1 from graded coalgebras to vector spaces. Q(V ) is not cofree
in the category of all coalgebras over k. However, Q(V ) is still cofree in the category
of connected coalgebras in the sense of Quillen [26, Appendix B, Proposition 4.1]. See
also [33, Theorem 12.0.2].

We are interested in Hopf algebra structures on cofree graded coalgebras. There is re-
cent important work of Loday and Ronco in this direction [20], but their results are not
prerequisites for our work.

In the classical Hopf algebra literature usually only one Hopf algebra structure on Q(V )
is considered: the shuffle Hopf algebra. It is well-known that this is the only Hopf algebra
structure on Q(V ) for which the algebra structure preserves the grading; this may be deduced
from [33, Theorem 12.1.4] but we provide a direct proof below (Proposition 1.4). There are,
however, many naturally occurring Hopf algebras that are cofree graded coalgebras and for
which the algebra structure does not preserve the grading; see Examples 1.8.
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The shuffle Hopf algebra. Let V be an arbitrary vector space. There is an algebra structure
on Q(V ) defined recursively by

x · 1 = x = 1 · x

for x ∈ V , and

(x1\ · · · \x j ) · (y1\ · · · \yk) = x1\((x2\ · · · \x j ) · (y1\ · · · \yk))

+ y1\((x1\ · · · \x j ) · (y2\ · · · \yk)).

Together with the graded coalgebra structure (1.2), this gives a Hopf algebra which is
denoted Sh(V ) and called the shuffle Hopf algebra of V .

A Hopf algebra H is called graded if it is a graded coalgebra and the multiplication and
unit preserve the grading:

H j · H k ⊆ H j+k , 1 ∈ H 0.

The shuffle Hopf algebra Sh(V ) is a graded Hopf algebra. As mentioned, it is the only such
structure that a cofree graded coalgebra admits.

Proposition 1.4 Let H = ⊕k≥0 H k be a graded Hopf algebra which is cofree as a graded
coalgebra. Then there is an isomorphism of graded Hopf algebras

H ∼= Sh(H 1).

Proof: We may assume that H = Q(V ), with V = H 1. By hypothesis, the multiplication
map is a morphism of graded Hopf algebras m : H ⊗ H → H , where the component
of degree k of H⊗H is

∑
i+ j=k Hi ⊗H j . By cofreeness, m is uniquely determined by the

composite

H⊗H
m−→ H

π−→ H 1 ,

which in turn reduces to

(H⊗H )1 = H 0⊗H 1 + H 1⊗H 0 m−→ H 1.

Also by hypothesis, H 0 = k · 1 where 1 is the unit element of H . Hence the above map,
and then m, are determined by

1⊗x �→ x and x⊗1 �→ x .

This shows that there is a unique multiplication on H that makes it a graded Hopf algebra.
Since the multiplication of the shuffle Hopf algebra of H 1 is one such map, it is the only
one. Thus, H is the shuffle Hopf algebra of H 1.
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The tensor Hopf algebra. Let V be a vector space and set

T (V ) :=
⊕
k≥0

V ⊗k .

As a vector space, T (V ) = Q(V ). The space T (V ) becomes a graded algebra under the
concatenation product

(x1\ · · · \xi ) · (y1\ · · · \y j ) = x1\ · · · \xi\y1\ · · · \y j

and unit 1 ∈ V ⊗0 = k. Moreover, T (V ) is the free algebra on V .
If V is finite dimensional, the graded dual of Q(V ) is the tensor algebra T (V ∗).
There is a graded Hopf algebra structure on T (V ) uniquely determined by

�(x) = 1⊗x + x⊗1 and ε(x) = 0

for x ∈ V . This is the tensor Hopf algebra. An argument dual to that of Proposition 1.4
shows that it is the only graded Hopf algebra structure that a free algebra admits.

The coradical filtration. Let H = ⊕k≥0 H k be a Hopf algebra that is graded as a coalgebra.
We do not insist that the algebra structure of H preserves this grading. Let F0(H ) := H 0 and
let Fk(H ) consist of those elements h ∈ H such that in the iterated coproduct �(k)(h) every
term has a tensor factor from F0(H ). It follows that Fk(H ) ⊆ Fk+1(H ) and H k ⊆ Fk(H ).

Suppose H is connected, i.e., F0(H ) = H 0 = k. In this case, F0(H ) is the coradical of
H and the subspaces Fk(H ) form the coradical filtration of H [24, Chapter 5]. It is known
that

H =
⋃
k≥0

Fk(H ) , �(Fk(H )) ⊆
∑

i+ j=k

Fi (H ) ⊗ F j (H ) , and

F j (H ) · Fk(H ) ⊆ F j+k(H ).

These results hold in greater generality; see [24, Theorem 5.2.2, Lemma 5.2.8].
Let gr(H ) be the graded Hopf algebra associated to the coradical filtration,

gr(H ) = F0(H ) ⊕ F1(H )/F0(H ) ⊕ · · · ⊕ Fk+1(H )/Fk(H ) ⊕ · · ·

If m and � are the operations of H , then the operations of gr(H ) are induced by the
compositions

F j (H ) ⊗ Fk(H )
m−→ F j+k(H ) −→−→ F j+k(H )/F j+k−1(H ),

Fk(H )
�−→

∑
i+ j=k

Fi (H ) ⊗ F j (H ) −→−→
∑

i+ j=k

Fi (H )/Fi−1(H ) ⊗ F j (H )/F j−1(H ).

The main goal of this paper is to obtain explicit combinatorial descriptions for the associated
graded Hopf algebras to the Hopf algebras YSym and SSym of Examples 1.8. This is done
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in Sections 2 and 3. These Hopf algebras are cofree graded coalgebras, so we discuss the
coradical filtration for such Hopf algebras first.

Let H = Q(V ) be a Hopf algebra that is a cofree graded coalgebra. We have H 0 = k,
H 1 = V = P(H ), the space of primitive elements of H , and H k = V ⊗k . As before, we do
not require that the algebra structure of H preserves this grading. It is easy to see that

Fk(H ) := H 0 ⊕ H 1 ⊕ · · · ⊕ H k .

Therefore, gr(H ) ∼= H as graded coalgebras canonically, and the multiplication has been
altered by removing terms of lower degree from a homogeneous product. More precisely,
if m is the multiplication map on H , then the multiplication on gr(H ) is the composition

H j ⊗ H k m−→F j+k(H ) −→−→ H j+k .

Proposition 1.5 Let H be a Hopf algebra that is a cofree graded coalgebra. Then its
associated graded Hopf algebra gr(H ) is the shuffle Hopf algebra Sh(H 1). In particular,
gr(H ) is commutative.

Proof: Since H ∼= gr(H ) as graded coalgebras, Proposition 1.4 applies to gr(H ).

The commutativity of the associated graded Hopf algebra holds in greater generality. The
following result was pointed out to us by Foissy.

Proposition 1.6 Let H be a graded connected Hopf algebra. Then gr(H ) is commutative.

Proof: We show that [F j (H ), Fk(H )] ⊆ F j+k−1(H ), and hence commutators vanish in
gr(H ).

It follows from the definition of the coradical filtration that for any h ∈ Fa(H ) every
term in �(a+b−1)(h) contains at least b factors from F0(H ) = k.

Let x ∈ F j (H ) and y ∈ Fk(H ). Every term in �( j+k−1)(x) contains at least k factors
from k and every term in �( j+k−1)(y) contains at least j factors from k. Write

�( j+k−1)(x) =
∑

x1 ⊗ · · · ⊗ x j+k and �( j+k−1)(y) =
∑

y1 ⊗ · · · ⊗ y j+k .

Consider those terms in

�( j+k−1)(xy) = �( j+k−1)(x)�( j+k−1)(y) =
∑

x1 y1 ⊗ · · · ⊗ x j+k y j+k

in which none of the j + k factors are from k. By the pigeon-hole principle, these terms
must be such that for each i = 1, . . . , j + k either xi ∈ k or yi ∈ k. Therefore, these terms
satisfy

x1 y1 ⊗ · · · ⊗ x j+k y j+k = y1x1 ⊗ · · · ⊗ y j+k x j+k .
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The right-hand side is a term in �( j+k−1)(yx), and by symmetry this gives all terms in
�( j+k−1)(yx) in which none of the factors are from k. These cancel in �( j+k−1)(xy − yx).
Thus, every term in �( j+k−1)(xy − yx) contains at least one factor from k, which proves
that xy − yx ∈ F j+k−1(H ).

Remark 1.7 Consider the coradical filtration of an arbitrary (not necessarily graded or
connected) Hopf algebra. The same argument as above shows that if the coradical F0(H )
lies in the center of H , then the associated graded Hopf algebra is commutative.

The cofree graded coalgebras we are interested in carry a second grading. With respect
to this second grading, but not with respect to the original one, they are in fact graded Hopf
algebras. The general setup is as follows.

Suppose V = ⊕i≥1Vi is a graded space and each Vi is finite dimensional. Then Q(V )
carries another grading, for which the elements of Vi1

⊗ · · · ⊗Vik have degree i1 +· · ·+ ik . In
this situation, we refer to k as the length and to i1 +· · ·+ ik as the weight. The homogeneous
components of the two gradings on Q(V ) are thus

Q(V )k := V ⊗k and Q(V )n :=
⊕
k≥0

i1+···+ik=n

Vi1
⊗ · · · ⊗Vik .

Note that each Q(V )n is finite dimensional. Let V ∗ := ⊕i≥1V ∗
i denote the graded dual of

V . The graded dual of Q(V ) with respect to the grading by weight is the tensor algebra
T (V ∗), and the graded dual of Sh(V ) with respect to the grading by weight is the tensor
Hopf algebra T (V ∗).

Example 1.8 We give some examples of cofree graded coalgebras.

(1) The Hopf algebra of quasi-symmetric functions. This Hopf algebra, often denoted
QSym, has a linear basis Mα indexed by compositions α = (a1, . . . , ak) (sequences of
positive integers). See [21,27,31] for more details. QSym is a cofree graded coalgebra,
as follows. Let V be the subspace linearly spanned by the elements M(n), n ≥ 1. Then
QSym ∼= Q(V ) via

M(a1,...,ak ) ↔ M(a1)\ · · · \M(ak ).

This isomorphism identifies V ⊗k with the subspace of QSym spanned by the elements
Mα indexed by compositions of length k. QSym is not a shuffle Hopf algebra: the
product does not preserve the grading by length. For instance,

M(n) · M(m) = M(n,m) + M(m,n) + M(n+m).

In this case, V is graded by n, and the grading by weight assigns degree a1 + · · · + ak

to Mα . The Hopf algebra structure of QSym does preserve the grading by weight.
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This is an example of a quasi-shuffle Hopf algebra [12,13]. According to [13, Theorem
3.3], any (commutative) quasi-shuffle Hopf algebra is isomorphic to a shuffle Hopf
algebra. The isomorphism does not however preserve the grading by length, and thus
its structure as a cofree graded coalgebra. For more on the cofreeness of QSym, see [1,
Theorem 4.1].

(2) The Hopf algebra of planar binary trees. This Hopf algebra was introduced by Loday
and Ronco [18, 19]. We denote it by YSym. It is known that YSym is a cofree graded
coalgebra [3, Theorem 7.1, Corollary 7.2]. The product of YSym does not preserve the
grading by length (but it preserves the grading by weight). YSym is not a shuffle Hopf
algebra, not even a quasi-shuffle Hopf algebra. See Section 2 for more details.

(3) The Hopf algebra of permutations. This Hopf algebra was introduced by Malvenuto
and Reutenauer [21,22]. We denote it by SSym. As for YSym, SSym is a cofree graded
coalgebra [2, Theorem 6.1, Corollary 6.3] and is neither a shuffle nor quasi-shuffle Hopf
algebra. See Section 3 for more details.

(4) The Hopf algebra of peaks. This Hopf algebra was introduced by Stembridge [32]
and is often denoted �. It has a linear basis indexed by odd compositions (sequences
of non-negative odd integers). It has been recently shown that � is a cofree graded
coalgebra [16, Theorem 4.3], see also [29, Proposition 3.3].

2. The Hopf algebra of ordered trees

We show that the graded dual to gr(YSym) is isomorphic to the cocommutative Hopf algebra
of ordered trees defined by Grossman and Larson [10].

We first review the definition of the Hopf algebra of ordered trees.
For the definition of ordered trees (also called rooted planar trees), see [30, page 294].

The ordered trees with 1, 2, 3, and 4 nodes are shown below:

Given two ordered trees x and y, we may join them together at their roots to obtain another
ordered tree x\y, where the nodes of x are to the left of those of y:

An ordered tree is planted if its root has a unique child. Every ordered tree x has a unique
decomposition

x = x1\ · · · \xk (2.1)

into planted trees x1, . . . , xk , corresponding to the branches at the root of x . These are the
planted components of x .
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The set of nodes of an ordered tree x is denoted by Nod(x). Let x be an ordered tree and
x1, . . . , xk its planted components, listed from left to right and (possibly) with multiplicities.
Given a function f : [k] → Nod(y) from the set [k] = {1, . . . , k} to the set of nodes of
another ordered tree y, form a new ordered tree x # f y by identifying the root of each
component xi of x with the corresponding node f (i) of y. For this to be an ordered tree,
retain the order of any components of x attached to the same node of y, and place them to the
left of any children of that node in y. Given a subset S ⊆ [k], say S = {i1 < · · · < i p}, let

xS := xi1
\ · · · \xi p .

Equivalently, xS is the tree obtained by erasing the branches at the root of x which are not
indexed by S. Let Sc = [k]\S.

Definition 2.2 The Grossman-Larson Hopf algebra HO of ordered trees is the formal
linear span of all ordered trees with product and coproduct as follows. Given ordered trees
x and y as above, we set

x · y =
∑

f :[k]→Nod(y)

x # f y,

�(x) =
∑
S⊆[k]

xS ⊗ xSc ,

the first sum is over all functions from [k] to the set of nodes of y and the second is over
all subsets of [k]. HO is a graded Hopf algebra, where the degree of an ordered tree is one
less than the number of nodes [10, Theorem 3.2].

We give some examples, using colors to indicate how the operations are performed (they
are not part of the structure of an ordered tree).
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The definition implies that HO is cocommutative and that each planted tree is a primitive
element in HO . (There are other primitive elements. In fact, HO is isomorphic to the tensor
Hopf algebra on the subspace spanned by the set of planted trees. See Corollary 2.7.)

We follow the notation and terminology of [3] for planar binary trees and the Loday-
Ronco Hopf algebra YSym (much of which is based on the constructions of [18, 19]).

Ordered trees are in bijection with planar binary trees. Given a planar binary tree t , draw a
node on each of its leaves, then collapse all edges of the form /. The resulting planar graph,
rooted at the node coming from the right-most leaf of t , is an ordered tree. This defines a
bijection ψ from planar binary trees with n leaves to ordered trees with n nodes.

We will make use of a recursive definition of ψ . Recall the operation s\t between planar
binary trees, which is obtained by identifying the right-most leaf of s with the root of t
(putting s under t). For instance,

This operation is associative and so any planar binary tree t has a unique maximal
decomposition

t = t1\t2\ · · · \tk (2.3)

in which each ti is \-irreducible. Note that a planar binary tree t is \-irreducible precisely
when it is of the form

(2.4)

for some planar binary tree t ′ with one less leaf than t .
The bijection ψ may be computed recursively as follows. First, for t as in (2.3),

ψ(t) = ψ(t1)\ψ(t2)\ · · · \ψ(tk).

Second, for t as in (2.4), ψ(t) is obtained by adding a new root to the ordered tree ψ(t ′):
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Finally, ψ(|) = • is the unique ordered tree with one node. For instance,

Note that ψ identifies \-irreducible planar binary trees with planted ordered trees.
In [3], we introduced a linear basis Mt of YSym, indexed by planar binary trees t , which

is obtained from the original basis of Loday and Ronco by a process of Möbius inversion.
We showed that YSym is a cofree graded coalgebra and the space V of primitive elements
is the linear span of the elements Mt for t a \-irreducible planar binary trees [3, Theorem
7.1, Corollary 7.2]. The isomorphism Q(V ) ∼= YSym is

Mt1\ · · · \Mtk ←→ Mt1\···\tk .

The resulting grading by length onYSym is given by the number of\-irreducible components
in the decomposition of a planar binary tree t (that is, the number of leaves that are directly
attached to the right-most branch). The product of YSym does not preserve the grading by
length. For instance,

Consider the associated graded Hopf algebra, gr(YSym). As coalgebras, gr(YSym) =
YSym but the product has been altered by removing terms of lower length (Section 1).
Thus, in gr(YSym),

YSym admits a Hopf grading, given by the number of internal nodes of a planar binary tree
(one less than the number of leaves). The isomorphismYSym ∼= Q(V ) matches this grading
with the grading by weight. This also yields a grading on gr(YSym), which corresponds to
the grading by weight under the isomorphism gr(YSym) ∼= Sh(V ) of Proposition 1.5.

We relate the graded Hopf algebras gr(YSym) andHO (graded by one less than the number
of leaves and one less than the number of nodes, respectively). The dual of gr(YSym) is
with respect to this grading.
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Theorem 2.5 There is an isomorphism of graded Hopf algebras 	 : gr(YSym)∗ → HO

uniquely determined by

M∗
t �→ ψ(t) (2.6)

for \-irreducible planar binary trees t .

Proof: According to the previous discussion, gr(YSym) is the shuffle Hopf algebra on
the subspace V and the number of internal nodes corresponds to the grading by weight.
Therefore gr(YSym)∗ is the tensor Hopf algebra T (V ∗) on the graded dual space. Thus
(2.6) determines a morphism of algebras 	 : gr(YSym)∗ → HO . Since the number of
nodes of ψ(t) is the number of leaves of t , 	 preserves the Hopf gradings. Moreover, 	

preserves coproducts on a set of algebra generators of gr(YSym)∗: the elements M∗
t indexed

by \-irreducible planar binary trees are primitive generators of the tensor Hopf algebra, and
their images ψ(t) are primitive elements of HO (since they are planted trees). Therefore,
	 is a morphism of Hopf algebras.

We complete the proof by showing that 	 is invertible.
Let t be an arbitrary planar binary tree and t = t1\t2\ · · · \tk the decomposition (2.3).

Then M∗
t = M∗

t1 · M∗
t2 · · · M∗

tn , and so

	(M∗
t ) = ψ(t1) · ψ(t2) · · · ψ(tk).

Since each ti is planted, Definition 2.2 shows that this product is the sum of all ordered trees
obtained by attaching the root of ψ(tk−1) to a node of ψ(tk), and then attaching the root of
ψ(tk−2) to a node of the resulting tree, and etc. The number of children of the root of such a
tree is less than k, except when all the ψ(ti ) are attached to the root, obtaining the ordered
tree ψ(t) = ψ(t1)\ψ(t2)\ · · · \ψ(tk).

Linearly ordering both ordered trees and planar binary trees so that trees with fewer
components precede trees with more components (in the decompositions (2.1) and (2.3)),
this calculation shows that

	(M∗
t ) = ψ(t) + trees of smaller order.

Thus 	 is bijective.

The main result of Grossman and Larson on the structure of HO [10, Theorem 5.1] is
contained in the proof of Theorem 2.5. We state it next.

Corollary 2.7 The set of planted ordered trees freely generates the algebraHO of ordered
trees. Moreover, HO is isomorphic to the tensor Hopf algebra on the linear span of the set
of planted trees.

Proof: As seen in the proof of Theorem 2.5, HO
∼= T (V ∗) as Hopf algebras. The isomor-

phism maps a basis of V ∗ to the set of planted trees, so the result follows.
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Remark 2.8 We point out that one may construct an isomorphism of graded Hopf algebras
gr(YSym)∗ ∼= HO from any bijection between the set of planted trees with n nodes and
the set of \-irreducible planar binary trees with n leaves, instead of the map ψ we used. In
fact, since they are tensor Hopf algebras, any degree-preserving bijection between the sets
of generators determines a unique isomorphism of graded Hopf algebras.

The number of planted trees with n + 2 nodes (or \-irreducible planar binary trees with
n + 2 leaves) is the Catalan number 1

n+1
( 2n

n ).

3. The Hopf algebra of heap-ordered trees

We show that the graded dual to gr(SSym) is isomorphic to the cocommutative Hopf algebra
of heap-ordered trees defined by Grossman and Larson [10].

We first review the definition of the Hopf algebra of heap-ordered trees.
A heap-ordered tree is an ordered tree x together with a labeling of the nodes (a bijection

Nod(x) → {0, 1, . . . , n}) such that:

• The root of x is labeled by 0;
• The labels increase as we move from a node to any of its children;
• The labels decrease as we move from left to right within the children of each node.

The heap-ordered trees with 1, 2, 3, and 4 nodes are shown below:

The constructions for ordered trees described in Section 2 may be adapted to the case of
heap-ordered trees.

Let x and y be heap-ordered trees. Suppose x has k planted components (these are ordered
trees). Given a function f : [k] → Nod(y), the ordered tree x # f y may be turned into a
heap-ordered tree by keeping the labels of y and incrementing the labels of x uniformly by
the highest label of y. Given a subset S = {i1 < · · · < i p} ⊆ [k], the ordered tree xS may
be turned into a heap-ordered tree by standardizing the labels, which is to replace the i th
smallest label by the number i , for each i .

Definition 3.1 The Grossman-Larson Hopf algebra HH O of heap-ordered trees is the
formal linear span of all heap-ordered trees with product and coproduct as follows. Given
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heap-ordered trees x and y as above, we set

x · y =
∑

f :[k]→Nod(y)

x # f y,

�(x) =
∑
S⊆[k]

xS ⊗ xSc .

For instance,

HH O is a graded cocommutative Hopf algebra, where the degree of an ordered tree is
one less than the number of nodes [10, Theorem 3.2].

Heap-ordered trees on n+1 nodes are in bijection with permutations on n letters. We
construct a permutation from such a tree by listing the labels of all non-root nodes in such
way that the label of a node i is listed to the left of the label of a node j precisely when i is
below or to the left of j (that is, when i is a predecessor of j , or i is among the left descendants
of the nearest common predecessor between i and j). For instance, the six heap-ordered
trees on 4 nodes above correspond respectively to 123, 132, 213, 312, 231, and 321.

Let φ be the inverse bijection. Given a permutation u, the heap-ordered tree φ(u) is
computed as follows. Let u(1), . . . , u(n) be the values of u and set u(0) := 0.

• Step 0. Start from a root labeled 0.
• Step 1. Draw a child of the root labeled u(1).
• Step i , i = 2, . . . , n. Draw a new node labeled u(i). Let j ∈ {0, . . . , i−1} be the

maximum index such that u(i) > u( j). The new node is a child of the node drawn in
step j , and it is placed to the right of any previous children of that node.

For instance,
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Given two heap-ordered trees x and y, the ordered tree x\y may be turned into a heap-
ordered tree by incrementing all labels of the nodes in x by the maximum label of a node
in y. For instance,

The operation \ is associative on heap-ordered trees, so each such tree has a unique
irreducible decomposition into \-irreducible ones. As for ordered trees, the heap-ordered
trees that are planted are \-irreducible. There are, however, many other \-irreducible heap-
ordered trees. For instance, while

the heap-ordered tree

is \-irreducible.
The operation u\v between permutations [19] is obtained by first listing the values of

u, incremented by the highest value of v, and then listing the values of v to its right. For
instance,

231\21 = 45321

A permutation w has a global descent at position p if w = u\v with u a permutation of p
letters. Thus, the \-irreducible permutations are the permutations with no global descents
(see [2, Corollary 6.4] for their enumeration).

The definition of φ (or its inverse) makes it clear that

φ(u\v) = φ(u)\φ(v)



466 AGUIAR AND SOTTILE

for any permutations u and v. In particular, \-irreducible heap-ordered trees correspond to
\-irreducible permutations under φ.

In [2], we introduced a linear basis Mw of SSym, indexed by permutations w, which
is obtained from the original basis of Malvenuto and Reutenauer by a process of Möbius
inversion. We showed that SSym is a cofree graded coalgebra and the space V of primitive
elements is the linear span of the elements Mw indexed by \-irreducible permutations
w [2, Theorem 6.1, Corollary 6.3]. The isomorphism Q(V ) ∼= SSym is

Mw1
\ · · · \Mwk ↔ Mw1\···\wk .

The resulting grading by length onSSym is given by the number of\-irreducible components
in the decomposition of a permutation w. The product of SSym does not preserve this
grading by length. For instance, in SSym,

M231 · M1 = M2314 + M2413 + M2341 + 2 · M2431 + M3412 + 2 · M3421 + M4231.

In this product, M231 has length 2, M1 has length 1, and the only elements of length 3 are
M3421 and M4231. Thus, in the associated graded Hopf algebra gr(SSym),

M231 · M1 = 2 · M3421 + M4231.

SSym admits a Hopf grading, in which a permutation on n letters has degree n. The
isomorphism SSym ∼= Q(V ) matches this grading with the grading by weight. This also
yields a grading on gr(SSym), which corresponds to the grading by weight under the
isomorphism gr(SSym) ∼= Sh(V ) of Proposition 1.5.

Theorem 3.4 relates the dual of gr(SSym) with respect to this grading, with HH O , graded
by one less than the number of nodes.

We define the order of a heap-ordered tree x to be the pair (k, l), where k is the number
of planted components of x and l is the number of irreducible components of x . We use the
following version of the lexicographic order to compare trees:

(k, l) < (m, n) if k < m or k = m and l > n.

That is, trees with more planted components have higher order, but among trees with the
same number of planted components, then those with fewer irreducible components have
higher order.

Let x be a heap-ordered tree and α an arbitrary element of HH O . The notation

α = x + t.s.s.o.

indicates that α − x equals a linear combination of heap-ordered trees each of which is of
strictly smaller order than x . Not every α can be written in this form, as several trees of the
same order may appear in α.

Lemma 3.2 If α = x + t.s.s.o. and β = y + t.s.s.o., then α · β = x\y + t.s.s.o.
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Proof: Consider first the product of two heap-ordered trees x ′ and y′ having orders (k, l)
and (m, n) respectively. This is the sum of all heap-ordered trees obtained by attaching the
planted components of x ′ to nodes of y′. Every such tree will have fewer than k +m planted
components, except the tree obtained by attaching all planted components of x ′ to the root
of y′, which will be x ′\y′ and will have k + m planted components.

Therefore, among the trees appearing in α · β, the ones with the maximum number of
planted components are those of the form x ′\y′, with x ′ and y′ having the same numbers
of planted components as x and y respectively. Among these we find the tree x\y. For
any of the remaining trees with the maximum number of planted components, either x ′

has more irreducible components than x or y′ has more irreducible components than y, by
hypothesis. Since the number of irreducible components of x ′\y′ is l + n, the tree x ′\y′ has
more irreducible components than x\y, and hence it is of smaller order.

Applying Lemma 3.2 inductively we deduce that any heap-ordered tree x is the leading
term in the product of its irreducible components. This implies that the set of irreducible
heap-ordered trees freely generates the algebra HH O of ordered trees. This result is due to
Grossman and Larson [10, Theorem 6.3]. Irreducible heap-ordered trees are not necessarily
primitive. We refine this result of Grossman and Larson, giving primitive generators and
relating the structure of HH O explicitly to that of gr(SSym)∗.

We assume from now on that the base field k is of characteristic 0.

We need one more tool: the first Eulerian idempotent [9], [17, Section 4.5.2], [27, Section
8.4]. For any graded connected Hopf algebra H , the identity map id : H → H is locally
unipotent with respect to the convolution product of End(H ). Here 1 denotes the composite

H
ε−→ k u−→ H of the counit and unit maps of H (the unit element for the convolution

product). Therefore,

e := log(id) =
∑
n≥1

(−1)n+1

n
(id − 1)∗n

is a well-defined linear endomorphism of H . The crucial fact is that if H is cocommu-
tative, this operator is a projection onto the space of primitive elements of H : e : H �
P(H ) [25], [28, pp. 314–318].

Lemma 3.3 Let x be a \-irreducible heap-ordered tree. Then

e(x) = x + t.s.s.o.

Proof: In any graded connected Hopf algebra H , the map id − 1 is the projection of
H onto the part of positive degree, and the convolution power (id − 1)∗n equals the map
m(n−1) ◦ (id − 1)⊗n ◦ �(n−1). Let x be a heap-ordered tree with k planted components.
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Iterating the coproduct of HH O (Definition 3.1) gives

�(n−1)(x) =
∑

S1�···�Sn=[k]

xS1
⊗ · · · ⊗ xSn ,

the sum over all ordered decompositions of [k] into n disjoint subsets. Applying (id − 1)⊗n

to this sum has the effect of erasing all terms corresponding to decompositions involving at
least one empty set. Therefore,

(id − 1)∗n(x) =
∑

S1�···�Sn=[k]
Si �=∅

xS1
· · · xSn ,

the sum now over all set-compositions of [k] (ordered decompositions into non-empty
disjoint subsets). In particular, this sum is 0 when n > k. Thus,

e(x) =
k∑

n=1

(−1)n+1

n

∑
S1�···�Sn=[k]

Si �=∅

xS1
· · · xSn .

By Lemma 3.2, xS1
· · · xSn = xS1

\ · · · \xSn + t.s.s.o. Each tree xS1
\ · · · \xSn has k planted

components (as many as x) and at least n irreducible components. Hence, among these
trees, the one of highest order is x , which corresponds to the trivial decomposition of [k]
into n = 1 subset. Thus, among all trees appearing in e(x), there is one of highest order and
it is x .

For example, if

then

The tree x is of order (2, 1), the next two trees are of order (2, 2), and the last two of
order (1, 1).

Theorem 3.4 Assume char(k) = 0. There is an isomorphism of graded Hopf algebras
� : gr(SSym)∗ → HH O uniquely determined by

M∗
w �→ e(φ(w)) (3.5)

for w a \-irreducible permutation.
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Proof: By the discussion preceding Lemma 3.2, gr(SSym)∗ ∼= T (V ∗). Therefore, (3.5)
determines a morphism of graded algebras �. Since HH O is cocommutative, e(φ(w)) is a
primitive element of HH O . Thus � preserves primitive elements and hence it is a morphism
of Hopf algebras.

It remains to verify that � is invertible. Let w = w1\ · · · \wk be the irreducible decompo-
sition of a permutation w. Let x := φ(w). Since φ preserves the operations \, the irreducible
components of x are xi := φ(wi ), i = 1, . . . , k. On the other hand, M∗

w = M∗
w1

· · · M∗
wk

, so

�(M∗
w) = e(x1) · · · e(xk).

From Lemmas 3.2 and 3.3 we deduce

�(M∗
w) = x1\ · · · \xk + t.s.s.o. = φ(w) + t.s.s.o.

As in the proof of Theorem 2.5, this shows that � is invertible, by triangularity.

Let W be the graded space where Wn is spanned by the elements M∗
w, for w an irreducible

permutation of [n]. From the proof of Theorem 3.4, we deduce the following corollary.

Corollary 3.6 The Hopf algebra HH O of ordered trees is isomorphic to the tensor Hopf
algebra on a graded space W = ⊕n≥0Wn with dim Wn equal to the number of irreducible
heap-ordered trees on n + 1 nodes (or the number of irreducible permutations of [n]).

Remark 3.7 As pointed out to us by Holtkamp, the use of the Eulerian idempotent in
Theorem 3.4 is similar to that encountered in a proof of the Milnor-Moore theorem [23,
Theorem 5.18], [26, Theorem 4.5].
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