
Journal of Algebraic Combinatorics, 22, 259–271, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A New Proof of Bartholdi’s Theorem

HIROBUMI MIZUNO
Department of Electronics and Computer Science, Meisei University, 2-590, Nagabuti, Ome,
Tokyo 198-8655, Japan

IWAO SATO∗,† isato@oyama-ct.ac.jp
Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan

Received September 25, 2002; Revised March 16, 2005; Accepted March 23, 2005

Abstract. We give a new proof of Bartholdi’s theorem for the Bartholdi zeta function of a graph.
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1. Introduction

Zeta functions appear in number theory, algebraic geometry, spectral geometry, dynamical
systems and graph theory. Many generalizations of the Riemann zeta function [5] have been
found to be useful: Dirichlet L-function [13], Dedekind zeta function [13], Artin L-function
[13], Selberg zeta function [17], Ruelle zeta function [16], Ihara zeta function [11]. These
zeta functions have the properties in common: the rationality, the functional equation, the
analogue of the Riemann hypothesis, the analogue of the prime number theorem. They bring
many fruitful results in Mathematics. For example, the non-real zeros of them are useful
to analyze the distribution of “primitive” elements (prime numbers, prime ideals, primitive
closed geodesics, prime cycles etc) in various fields see [4, 10, 13, 17, 20, 21, 23].

Zeta functions of graphs started from p-adic Selberg zeta functions of discrete groups
by Ihara [11]. At the beginning, Serre [18] pointed out that the Ihara zeta function is the
zeta function of a regular graph. In [11], Ihara showed that their reciprocals are explicit
polynomials. A zeta function of a regular graph G associated to a unitary representation
of the fundamental group of G was developed by Sunada [20, 21]. Hashimoto [8] treated
multivariable zeta functions of bipartite graphs. Bass [3] generalized Ihara’s result on zeta
functions of regular graphs to irregular graphs. Various proofs of Bass’ theorem were given
by Stark and Terras [19], Kotani and Sunada [12] and Foata and Zeilberger [6].

Bartholdi [2] extended a result by Grigorchuk [7] relating cogrowth and spectral radius
of random walks, and gave an explicit formula determining the number of bumps on paths
in a graph. Furthermore, he presented the “circuit series” of the free products and the
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direct products of graphs, and obtained a generalized form “Bartholdi zeta function” of the
Ihara(-Selberg) zeta function.

It seems that it is worth considering the Batholdi zeta function version of various zeta
functions in number theory, etc, and the results in tree enumeration. It is for that purpose
that we present another proof of Bartholdi’s theorem. Furthermore, Bartholdi’s theorem is
a general result containing Bass’ theorem, and so giving new proofs of it is important as
some new proofs of Bass’ theorem were given.

All graphs in this paper are assumed to be simple. Let G be a connected graph with
vertex set V (G) and edge set E(G), and let R(G) = {(u, v), (v, u)|uv ∈ E(G)} be the set
of oriented edges (or arcs) (u, v), (v, u) directed oppositely for each edge uv of G. For
e = (u, v) ∈ R(G), u = o(e) and v = t(e) are called the origin and the terminal of e,
respectively. Furthermore, let e−1 = (v, u) be the inverse of e = (u, v).

A path P of length n in G is a sequence P = (e1, . . . , en) of n arcs such that ei ∈ R(G),
t(ei ) = o(ei+1)(1 ≤ i ≤ n − 1). If ei = (vi−1, vi ), 1 ≤ i ≤ n, then we also denote
P by (v0, v1, . . . , vn). Set |P| = n, o(P) = o(e1) and t(P) = t(en). Also, P is called an
(o(P), t(P))-path. A (v, w)-path is called a v-cycle (or v-closed path) if v = w. The inverse
cycle of a cycle C = (e1, . . . , en) is the cycle C−1 = (e−1

n , . . . , e−1
1 ).

We introduce an equivalence relation between cycles. Two cycles C1 = (e1, . . . , em) and
C2 = ( f1, . . . , fm) are called equivalent if there exists an integer k such that f j = e j+k for
all j , where the subscripts are read modulo n. The inverse cycle of C is not equivalent to C
if |C | ≥ 3. Let [C] be the equivalence class which contains a cycle C .

We say that a path P = (e1, . . . , en) has a backtracking or a bump at t(ei ) if e−1
i+1 = ei

for some i(1 ≤ i ≤ n − 1). Let Br be the cycle obtained by going r times around a cycle
B. Such a cycle is called a multiple of B. Multiples of a cycle without bumps may have a
bump. Such a cycle is said to have a tail. If its length is n − 1, then the cycle can be written
as

(
e1, . . . , ek = f1, f2, . . . , fn−2k, e−1

k , . . . , e−1
1

)
,

where ( f1, f2, . . . , fn−2k) is a cycle. A cycle C is reduced if C has no bump. Furthermore, a
cycle C is prime if it is not a multiple of a strictly shorter cycle. Note that each equivalence
class of prime, reduced cycles of a graph G passing through a vertex v of G corresponds to
a unique conjugacy class of the fundamental group π1(G, v) of G at v.

The (Ihara) zeta function of a graph G is a function of a complex variable t with |t |
sufficiently small, defined by

Z(G, t) = ZG(t) =
∏

[C]

(
1 − t |C |)−1

,

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Let G be a connected graph with n verticesv1, . . . , vn . The adjacency matrix A = A(G) =

(ai j ) is the square matrix such that ai j = 1 if vi and v j are adjacent, and ai j = 0 otherwise.
The degree of a vertex vi of G is defined by deg vi = deg Gvi = |{v j |viv j ∈ E(G)}|. If
deg Gv = k (constant) for each v ∈ V (G), then G is called k-regular.
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Ihara [11] showed that the reciprocal of the zeta function of a regular graph is an ex-
plicit polynomial. The zeta function of a regular graph has the above three properties: the
rationality; the functional equations; the analogue of the Riemann hypothesis see [22]. The
analogue of the Riemann hypothesis for the zeta function of a graph is given as follows: Let
G be any connected (q + 1)-regular graph (q > 1) and s = σ + i t (σ, t ∈ R) a complex
number. If ZG(q−s) = 0 and Res ∈ (0, 1), then Res = 1

2 . A connected (q +1)-regular graph
G is called a Ramanujan graph if for all eigenvalues λ of the adjacency matrix A(G) of G
such that λ �= ±(q + 1), we have |λ| ≤ 2

√
q. This definition was introduced by Lubotzky,

Phillips and Sarnak [14]. For a connected (q + 1)-regular graph G, ZG(q−s) satisfies the
Riemann hypothesis if and only if G is a Ramanujan graph.

Hashimoto [8] treated multivariable zeta functions of bipartite graphs. Bass [3] general-
ized Ihara’s result on the zeta function of a regular graph to an irregular graph, and showed
that its reciprocal is a polynomial.

Theorem 1 (Bass) Let G be a connected graph. Then the reciprocal of the zeta function
of G is given by

Z(G, t)−1 = (1 − t2)r−1 det(I − tA(G) + t2(D − I)),

where r is the Betti number of G, and D = (di j ) is the diagonal matrix with dii = deg vi

and di j = 0, i �= j, (V (G) = {v1, . . . , vn}).

Stark and Terras [19] gave an elementary proof of Theorem 1, and discussed three different
zeta functions of any graph. Various proofs of Bass’ theorem were known. Kotani and Sunada
[12] proved Bass’ theorem by using the property of the Perron operator. Foata and Zeilberger
[6] presented a new proof of Bass’ theorem by using the algebra of Lyndon words.

The complexity κ(G)(= the number of spanning trees in G) of a connected graph G is
closely related to the zeta function of G. Hashimoto expressed the complexity of a regular
graph as a limit involving its zeta function in [8]. For an irregular graph G, Hashimoto [9]
and Northshield [15] gave the value of (1−t)−r ZG(t)−1 at t = 1 in term of the complexity of
G, where r is the Betti number of G. Kotani and Sunada [12] presented its elementary proof.
Furthermore, Northshield [15] showed that the complexity of G is given by the derivative
of the zeta function of G.

Cycles, reduced cycles and prime cycles in a digraph are defined in the same manner as
the case of a graph. Let D be a connected digraph. Then the zeta function of D is a function
of a complex variable t with |t | sufficiently small, defined by

Z(D, t) = ZD(t) =
∏

[C]

(
1 − t |C |)−1

,

where [C] runs over all equivalence classes of prime cycles of D. The zeta function of a
digraph is much easier to handle than that of a graph. For example, it is well-known cf, [4]
and easy to check

Z(D, t)−1 = det(I − A(D)t),
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where A = A(D) is the adjacency matrix of D. Kotani and Sunada [12] have shown that the
zeta function of a finite graph is equal to that of its oriented line graph, which is a strongly
connected digraphs, and gave a simple proof of Bass’ theorem.

Let G be a connected graph. Then the bump count bc(P) of a path P is the number of
bumps in P . Furthermore, the cyclic bump count cbc(C) of a cycle C = (e1, . . . , en) is

cbc(C) = ∣∣{i = 1, . . . , n
∣∣ ei = e−1

i+1

}∣∣,

where en+1 = e1. Then the Bartholdi zeta function of G is a function of complex variables
u, t with |u|, |t | sufficiently small, defined by

ζ G(u, t) = ζ (G, u, t) =
∏

[C]

(
1 − ucbc(C)t |C |)−1

,

where [C] runs over all equivalence classes of prime cycles of G. If u = 0, then the Bartholdi
zeta function of G is the (Ihara) zeta function of G.

Let n and m be the number of vertices and unoriented edges of G, respectively. Then two
2 m × 2 m matrices B = (Be, f )e, f ∈R(G) and J = (Je, f )e, f ∈R(G) are defined as follows:

Be, f =
{

1 if t(e) = o( f ),

0 otherwise
, Je, f =

{
1 if f = e−1,

0 otherwise.

Bartholdi [2] presented a determinant expression for the Bartholdi zeta function of a
graph.

Theorem 2 (Bartholdi) Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

ζ (G, u, t)−1 = det(I2m − (B − (1 − u)J)t)

= (1 − (1 − u)2t2)m−n det(I − tA(G) + (1 − u)(D − (1 − u)I)t2).

The proof of Theorem 2 in [2] was long and used two results of Amitsur [1] relating
determinants of many matrices and power series over a matrix ring.

In the case of u = 0, Theorem 2 implies Theorem 1. If u = 1, then Theorem 2 gives
a determinant expression of the zeta function of the digraph obtained from a graph G by
replacing each edge of G by two oppositely oriented edges.

In this paper, we present another proof of Theorem 2. The proof of the second formula in
Theorem 2 is a combinatorial proof which only concentrates on the number of cycles in a
graph. Although Bartholdi [2] considered all paths from x to y for all pairs of vertices x, y
of a graph G in his proof of Theorem 2, we consider all paths of length m for all integer m,
and present extensions of Lemmas 1 and 2 in Stark and Terras [19] to general paths. The
proof of the first formula in Theorem 2 is a simple proof which is purely linear algebraic.
This is a shorter proof of Theorem 2. This result might have profound implications for
number theory and tree enumeration, etc.
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2. A proof of the second formula in Theorem 2

We give a proof of the second formula in Theorem 2. The proof is an analogue of the method
of Stark and Terras [19].

Let G be a connected graph with n vertices and m unoriented edges. Futhermore, let
V (G) = {v1, . . . , vn} and R(G) = {e1, . . . , em, em+1, . . . , e2m} such that em+i = e−1

i (1 ≤
i ≤ m).
Since

log ζ (G, u, t) = −
∑

[C]

log
(
1 − ucbc(C)t |C |)

=
∑

[C]

∞∑

s=1

1

s
ucbc(C)s t |C |s,

we have

∂

∂t
log ζ (G, u, t) = t−1

∑

[C]

∞∑

s=1

|C |ucbc(C)s t |C |s

= t−1
∞∑

s=1

∑

C

ucbc(C)s t |C |s

= t−1
∑

C1

ucbc(C1)t |C1|,

where
∑

C and
∑

C1
denote the sum over all prime cycles C and all cycles C1 of G,

respectively. Note that there exist |C | elements in [C], and cbc(Cs) = cbc(C)s. The third
equality is obtained by the fact that each cycle of G is a multiple of some prime cycle of G.

Let Cs be the set of all cycles in G with length s. Set

Ns =
∑

C∈Cs

ucbc(C).

Then,

∂

∂t
log ζ (G, u, t) = t−1

∑

s≥1

Nsts . (1)

For s ≥ 1, the n × n matrix As = ((As)i, j )1≤i, j≤n is defined as follows:

(As)i, j =
∑

P

ubc(P),

where (As)i, j is the (i, j)-component of As , and P runs over all paths of length s from vi

to v j in G. Note that A1 = A(G). Furthermore, let A0 = In .
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Lemma 1 Put Q = D − I. Then

A2 = (A1)2 − (1 − u)D = (A1)2 − (1 − u)(Q + I)

and

As = As−1A1 − (1 − u)As−2(Q + uI) f or s ≥ 3.

Proof: The first formula is clear. We prove the second formula. The proof is an analogue
of the proof of Lemma 1 in [19].

We count the paths of length s from vi to vk in G. Let s ≥ 3 and A(G) = (Ai, j ). Then
the sum

∑
j (As−1)i, j A j,k counts three types of paths P, Q, R in G as follows:

P = (e1, . . . , es−1, es), es �= e−1
s−1, es = (v j , vk),

Q = (e1, . . . , es−2, es−1, es), es−1 �= e−1
s−2, es = e−1

s−1 = (v j , vk),

R = (e1, . . . , es−2, es−1, es), es−2 = e−1
s−1 = es = (v j , vk).

Let T = (e1, . . . , es−2). Then the term corresponding to P, Q and R in the sum∑
j (As−1)i, j A j,k is ubc(T ), ubc(T ) and ubc(T )+1, respectively. While, the term corresponding

to P, Q and R in (As)i,k is ubc(T ), ubc(T )+1 and ubc(T )+2, respectively. Thus,

(As)i,k =
∑

j

(As−1)i, j A j,k + (u − 1)(As−2)i,kqk + (u2 − u)(As−2)i,k,

where qk = deg vk − 1. Therefore, the result follows.

In (
∑

s≥0 As t s)(I − tA1 + (1 − u)(Q + uI)t2), the coefficient of t s for any s ≥ 3 is 0 by
the second formula of Lemma 1. Furthermore, by the first formula of Lemma 1, we have

(
∑

s≥0

As t s

)

(I − tA1 + (1 − u)(Q + uI)t2) = (1 − (1 − u)2t2)I. (2)

Since (1 − (1 − u)2t2)−1 = ∑
j≥0(1 − u)2 j t2 j ,

I =
(

∑

k≥0

Ak tk

)(
∑

j≥0

(1 − u)2 j t2 j

)

(I − tA1 + (1 − u)(Q + uI)t2)

=
(

∑

s≥0

[s/2]∑

j=0

As−2 j (1 − u)2 j t s

)

(I − tA1 + (1 − u)(Q + uI)t2). (3)



A NEW PROOF OF BARTHOLDI’S THEOREM 265

For s ≥ 1, let C ′
s be the set of all cycles of length s with tails in G, and

as =
∑

C∈C ′
s

ubc(C).

Then a1 = 0 and a2 = 2mu.

Lemma 2

as = Tr[(Q − (1 − 2u)I)As−2] + (1 − u)2as−2 for s ≥ 2.

Proof: We want to count cycles of length s with tails in G. The proof is an analogue of
the proof of Lemma 2 in [19].

Let s ≥ 2. Then we have

as =
n∑

i=1

{
ubc(C)

∣∣ C ⊃ tail, |C | = s, C : vi -cycle
}

=
∑

i, j ;(vi ,v j )∈R(G)

{
ubc(C)

∣∣ C ⊃ tail, |C | = s, C = (vi , v j , . . .)
}

=
n∑

j=1

∑

(vi ,v j )∈R(G)

{
ubc(C)

∣∣ C ⊃ tail, |C | = s, C = (vi , v j , . . .)
}

Let v j be fixed. Furthermore, let C = (vi , v j , vl , . . . , vr , v j , vi ) be any cycle of length s
with tails in G, and let P = (v j , vl , . . . , vr , v j ).

Case 1. P does not have a tail, i.e., vl �= vr .
Then the cycle C is divided into two types:

C1 = (vi , v j , vl , . . . , vr , v j , vi ), vi �= vl and vi �= vr ,

C2 = (vi , v j , vi , . . . , vr , v j , vi )(vl = vi ) or (vi , v j , vl , . . . , vi , v j , vi )(vr = vi ).

Case 2. P has a tail, i.e., vl = vr .
Then the cycle C is divided into two types:

C3 = (vi , v j , vl , . . . , vl , v j , vi ), vi �= vl ,

C4 = (vi , v j , vi , . . . , vi , v j , vi ), vi = vl .

Now, we have

ubc(C1) = ubc(C3) = ubc(P), ubc(C2) = ubc(P)+1, ubc(C4) = ubc(P)+2.
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Thus,

b j =
∑

(vi ,v j )∈R(G)

{
ubc(C)

∣∣ C ⊃ tail, |C | = s, C = (vi , v j , . . .)
}

= (q j − 1)
∑ {

ubc(P)
∣∣ P �⊃ tail, |P| = s − 2, P : v j -cycle

}

+ 2u
∑ {

ubc(P)
∣∣ P �⊃ tail, |P| = s − 2, P : v j -cycle

}

+ q j

∑ {
ubc(P)

∣∣ P ⊃ tail, |P| = s − 2, P : v j -cycle}
+ u2

∑ {
ubc(P)

∣∣ P ⊃ tail, |P| = s − 2, P : v j -cycle
}
.

That is,

b j = (q j − 1)
∑ {

ubc(P)
∣∣ |P| = s − 2, P : v j -cycle

}

+ 2u
∑ {

ubc(P)
∣∣ P �⊃ tail, |P| = s − 2, P : v j -cycle

}

+ (1 + u2)
∑ {

ubc(P)
∣∣ P ⊃ tail, |P| = s − 2, P : v j -cycle

}
.

Therefore, it follows that

as =
n∑

j=1

b j

=
∑

j

(q j − 1)
∑ {

ubc(P)
∣∣ |P| = s − 2, P : v j -cycle

}

+ 2u
∑

j

∑ {
ubc(P)

∣∣ |P| = s − 2, P : v j -cycle
}

+ (1 − 2u + u2)
∑

j

∑ {
ubc(P)

∣∣ P ⊃ tail, |P| = s − 2, P : v j -cycle
}
.

Hence,

as = Tr[(Q − I)As−2] + 2uTr[As−2] + (1 − u)2as−2.

Since cbc(C) = bc(C) + 1 for each cycle C of length s with tails, we have Ns =
Tr(As) − (1 − u)as . Thus,

Ns = Tr

[

As − (1 − u)−1(Q − (1 − 2u)I)
[(s−1)/2]∑

j=1

(1 − u)2 j As−2 j

]

−
{

0 if s is odd,

(1 − u)s−1a2 if s is even.
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for s ≥ 3, and

N1 = TrA1 = 0, N2 = TrA2 − (1 − u)a2 = 2mu − (1 − u) · 2mu = 2mu2.

Next, set

N∗
s = As − (1 − u)−1(Q − (1 − 2u)I)

[s/2]∑

j=1

(1 − u)2 j As−2 j

= As + (1 − u)−1(Q − (1 − 2u)I)As

−(1 − u)−1(Q − (1 − 2u)I)
[s/2]∑

j=0

(1 − u)2 j As−2 j .

Then (2) and (3) imply that

(
∑

s≥0

N∗
s t s

)

(I − tA1 + (1 − u)(Q + uI)t2)

= (I + (1 − u)−1(Q − (1 − 2u)I))(1 − (1 − u)2t2)I − (1 − u)−1(Q − (1 − 2u)I)

= (1 − (1 − u)2t2)I − (1 − u)t2(Q − (1 − 2u)I).

Since N∗
0 = A0 = In ,

(
∑

s≥1

N∗
s t s

)

(I − tA1 + (1 − u)(Q + uI)t2)

= (1 − (1 − u)2t2)I − (1 − u)t2(Q − (1 − 2u)I) − (I − tA1 + (1 − u)(Q + uI)t2)

= tA1 − 2(1 − u)(Q + uI)t2.

Therefore it follows that

∑

s≥1

N∗
s t s = (tA1 − 2(1 − u)(Q + uI)t2)(I − tA1 + (1 − u)(Q + uI)t2)−1.

By [19, Lemma 3], we have

Tr

(
∑

s≥1

N∗
s t s

)

= Tr

(
− t

∂

∂t
log(I − tA1 + (1 − u)(Q + uI)t2)

)
.

For s ≥ 1, we have

Tr
(
N∗

s

) = Ns −
{

0 if s is odd,

(1 − u)sTr(Q − I) if s is even.
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Thus,

Tr

(
∑

s≥1

N∗
s t s

)

=
∑

s≥1

Nsts − Tr(Q − I)

(
∑

j≥1

(1 − u)2 j t2 j

)

=
∑

s≥1

Nsts − Tr(Q − I)
(1 − u)2t2

1 − (1 − u)2t2
,

i.e.,

∑

s≥1

Nsts = Tr

(
∑

s≥1

N∗
s t s

)

+ Tr(Q − I)

(
∑

j≥1

(1 − u)2 j t2 j

)

.

(1) implies that

t
∂

∂t
log ζ (G, u, t) = Tr

(
− t

∂

∂t
log(I − tA1 + (1 − u)(Q + uI)t2)

)

+ Tr(Q − I)
(1 − u)2t2

1 − (1 − u)2t2

= Tr

(
− t

∂

∂t
log

(
I − tA1 + (1 − u)(Q + uI)t2

))

− t
∂

∂t
log(1 − (1 − u)2t2)Tr(Q−I)/2.

Both functions are 0 at t = 0, and so

log ζ (G, u, t) = −Tr(log(I − tA1 + (1 − u)(Q + uI)t2))

− log(1 − (1 − u)2t2)Tr(Q−I)/2.

Hence the equality Tr(log(I − B)) = log det(I − B) implies that

ζ (G, u, t) = (1 − (1 − u)2t2)−(m−n) det(I − tA1 + (1 − u)(Q + uI)t2)−1.

3. A proof of the first formula in Theorem 2

We give a proof of the first formula in Theorem 2. The argument is an analogue of the
method of Bass [3].

Let G be a connected graph with n vertices and m unoriented edges. Futhermore, let
V (G) = {v1, . . . , vn} and R(G) = {e1, . . . , em, em+1, . . . , e2m} such that em+i = e−1

i (1 ≤
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i ≤ m). Let B+ = (B+
i, j )1≤i≤2m;1≤ j≤n be the 2m × n matrix defined as follows:

(B+)i, j :=
{

1 if t(ei ) = v j ,

0 otherwise.

Furthermore, we define the 2m × n matrix B− = (B−
i, j )1≤i≤2m;1≤ j≤n as follows:

(B−)i, j :=
{

1 if o(ei ) = v j ,

0 otherwise.

We denote by t C the transpose of a matrix C. Then we have

B+t B− = B (4)

and

t B−B+ = A(G). (5)

Futhermore,

t B+B+ = D. (6)

Now we set

J =
[

0 Im

Im 0

]

and

T = B − J.

Then we have

B+t B+ = TJ + I2m . (7)

We introduce two (2m + n) × (2m + n) matrices as follows:

L =
[

(1 − (1 − u)2t2)In −t B− + (1 − u)t t B+

0 I2m

]
,

M =
[

In
t B− − (1 − u)t t B+

tB+ (1 − (1 − u)2t2)I2m

]
.
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By (5) and (6), we have

LM =
[

(1 − (1 − u)2t2)In − t t B−B+ + (1 − u)t2t B+B+ 0

tB+ (1 − (1 − u)2t2)I2m

]

=
[

(1 − (1 − u)2t2)In − tA(G) + (1 − u)t2D 0

tB+ (1 − (1 − u)2t2)I2m

]
.

By (4) and (7),

ML =
[

(1 − (1 − u)2t2)In 0

t(1 − (1 − u)2t2)B+ −tB+t B− + (1 − u)t2B+t B+ + (1 − (1 − u)2t2)I2m

]

=
[

(1 − (1 − u)2t2)In 0

t(1 − (1 − u)2t2)B+ (I2m − t(T + uJ))(I2m − (1 − u)tJ)

]
.

Here, note that J2 = I2m and T + uJ = B − (1 − u)J.
Since det(LM) = det(ML), we have

(1 − (1 − u)2t2)2m det
(
In − tA(G) + (1 − u)(D − (1 − u)In)t2

)

= (1 − (1 − u)2t2)n det(I2m − t(B − (1 − u)J)) det(I2m − (1 − u)tJ).

But,

det(I2m − (1 − u)tJ) = det

[
Im (1 − u)tIm

0 Im

]
det

[
Im −(1 − u)tIm

−(1 − u)tIm Im

]

= det

[
(1 − (1 − u)2t2)Im 0

∗ Im

]
= (1 − (1 − u)2t2)m .

Therefore it follows that

(1 − (1 − u)2t2)2m det(In − tA(G) + (1 − u)(D − (1 − u)In)t2)

= (1 − (1 − u)2t2)m+n det(I2m − t(B − (1 − u)J)).

Hence

det(I2m − t(B − (1 − u)J))

= (1 − (1 − u)2t2)m−n det(In − tA(G) + (1 − u)(D − (1 − u)In)t2).
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