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Abstract. Louis Solomon showed that the group algebra of the symmetric group Sn has a subalgebra called the
descent algebra, generated by sums of permutations with a given descent set. In fact, he showed that every Coxeter
group has something that can be called a descent algebra. There is also a commutative, semisimple subalgebra of
Solomon’s descent algebra generated by sums of permutations with the same number of descents: an “Eulerian”
descent algebra. For any Coxeter group that is also a Weyl group, Paola Cellini proved the existence of a different
Eulerian subalgebra based on a modified definition of descent. We derive the existence of Cellini’s subalgebra for
the case of the symmetric group and of the hyperoctahedral group using a variation on Richard Stanley’s theory
of P-partitions.
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1. Introduction

1.1. The symmetric group

The study of permutations by descent sets is a natural generalization of the study of per-
mutations by number of descents: the study of Eulerian numbers. Let Sn be the symmetric
group on n elements. We think of permutations in Sn as bijections

π : [n] → [n],

where [n] denotes the set {1, 2, . . . , n}. For any permutation π ∈ Sn , we say π has a descent
in position i if π (i) > π (i + 1). Define the set Des(π ) = { i | 1 ≤ i ≤ n − 1, π (i) >

π (i + 1) } and let des(π ) denote the number of elements in Des(π ). We call Des(π ) the
descent set of π , and des(π ) the descent number of π . For example, the permutation
π = (π (1), π (2), π (3), π (4)) = (1, 4, 3, 2) has descent set {2, 3} and descent number 2.
The number of permutations of [n] with descent number k is denoted by the Eulerian number
An,k+1, and we recall that the Eulerian polynomial is defined as

An(t) =
∑

π∈Sn

tdes(π )+1 =
n∑

i=1

An,i t
i .

For each subset I of [n − 1], let uI denote the sum, in the group algebra Q[Sn], of all
permutations with descent set I . Louis Solomon [19] showed that the linear span of the
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uI forms a subalgebra of the group algebra, called the descent algebra. More generally, he
showed that one can define a descent algebra for any Coxeter group.

For now consider the descent algebra of the symmetric group. This descent algebra
was studied in great detail by Adriano Garsia and Christophe Reutenauer [12]. Jean-Louis
Loday [15] proved the existence of a commutative, semisimple subalgebra of Solomon’s
descent algebra. Sometimes called the “Eulerian subalgebra,” it is defined as follows. For
1 ≤ i ≤ n, let Ei be the sum of all permutations in Sn with descent number i − 1. Then
the Eulerian descent algebra is the linear span of the Ei . Define

φ(x) =
∑

π∈Sn

(
x + n − 1 − des(π )

n

)
π =

n∑

i=1

(
x + n − i

n

)
Ei ,

which we refer to as the “structure polynomial.” Notice that the structure polynomial is a
polynomial in x , with coefficients in Q[Sn], of degree n and with no constant term. (In other
words, it has exactly as many nonzero terms as there are possible descent numbers.) The
Eulerian subalgebra is described by the following multiplication of structure polynomials:

Theorem 1.1 (Gessel) As polynomials in x and y with coefficients in the group algebra,
we have

φ(x)φ(y) = φ(xy). (1)

Define elements ei in the group algebra by φ(x) = ∑n
i=1 ei xi . By examining the coeffi-

cients of xi y j in (1), it is clear that the ei are orthogonal idempotents: e2
i = ei and ei e j = 0

if i �= j . This formulation is essentially an unsigned version of Loday’s Théorème 1.7
(see [15]). In particular, for 1 ≤ k ≤ n, we have φ(k) = |λk |, where Loday defines

λk =
k−1∑

i=0

(−1)i

(
n + i

i

)
lk−i ,

lk = (−1)k−1
∑

desπ=k−1

sgn(π )π,

and |λk | means that we forget the signs on all the summands.
As an interesting aside, we remark that Theorem 1.1 has connections to the well-known

card shuffling analysis of Dave Bayer and Persi Diaconis [2]. If we define

φ̄(x) =
∑

π∈Sn

(
x + n − 1 − des(π )

n

)
π−1,

then φ̄(2) is the generating function for the probability distribution for one shuffle of a
deck of n cards (as defined in [2]). We use the multiplication rule given by Theorem 1.1
to compute the probability distribution after m (independent) shuffles of the deck (it is not
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hard to show that φ̄(x) obeys the same multiplication rule as φ(x)):

φ̄(2)φ̄(2) . . . φ̄(2)︸ ︷︷ ︸
m times

= φ̄(2m),

which gives Theorem 1 from [2].
Theorem 1.1 can be proved in several ways, but we will focus on one that employs

Richard Stanley’s theory of P-partitions. More specifically, the approach taken in this paper
follows from work of Ira Gessel—Theorem 1.1 is in fact an easy corollary of Theorem 11
from [14]. Later we will give a proof of Theorem 1.1 that derives from Gessel’s work and
then extend this method to prove the main results of this paper. While equivalent results can
be found elsewhere in the literature, the P-partition approach is self-contained and rather
elementary. Further, it often yields q-analogs for formulas like (1) quite naturally.

Now we introduce another descent algebra based on a modified definition of descent. For
a permutation π ∈ Sn we define a cyclic descent at position i if π (i) > π (i + 1), or if i = n
and π (n) > π (1). Define cDes(π ) to be the set of cyclic descent positions of π , called the
cyclic descent set. Let the cyclic descent number, cdes(π ), be the number of cyclic descents.
The number of cyclic descents is between 1 and n−1. One can quickly observe that a permu-
tation π has the same number of cyclic descents as both πωi and ωiπ for i = 0, 1, . . . , n−1,
where ω is the n-cycle (1 2 · · · n). Define the cyclic Eulerian polynomial to be

A(c)
n (t) =

∑

π∈Sn

tcdes(π ) =
n−1∑

i=1

A(c)
n,i t

i ,

where A(c)
n,k is the number of permutations with cyclic descent number k. We can make the

following proposition (observed by Jason Fulman in [10], Corollary 1).

Proposition 1.1 The cyclic Eulerian polynomial is expressible in terms of the ordinary
Eulerian polynomial:

A(c)
n (t) = n An−1(t).

Proof: We will compare the coefficient of td on each side of the equation to show A(c)
n,d =

n An−1,d . Let π ∈ Sn−1 be any permutation of [n−1] such that des(π )+1 = d. Let π̃ ∈ Sn

be the permutation defined by π̃ (i) = π (i) for i = 1, 2, . . . , n − 1 and π̃ (n) = n. Then
we have des(π̃ ) = des(π ) and cdes(π̃ ) = d. Let 〈π̃〉 = { π̃ωi | i = 0, 1, . . . , n − 1 }, the
set consisting of all n cyclic permutations of π̃ . Every permutation in the set has exactly d
cyclic descents. There is a bijection between permutations of Sn−1 and such subsets of Sn

given by the map

π �→ 〈π̃〉,

and so the proposition follows.
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Let E (c)
i be the sum in the group algebra of all those permutations with i cyclic descents.

Then we define the cyclic structure polynomial

ϕ(x) = 1

n

∑

π∈Sn

(
x + n − 1 − cdes(π )

n − 1

)
π = 1

n

n−1∑

i=1

(
x + n − 1 − i

n − 1

)
E (c)

i .

Notice that ϕ(x) is a polynomial of degree n − 1 with no constant term, giving as many
nonzero terms as possible cyclic descent numbers. Paola Cellini studied cyclic descents
more generally in the papers [6–8]. Though her approach is quite different from the one
taken in this paper, from her work and Loday’s we can derive the following theorem.

Theorem 1.2 As polynomials in x and y with coefficients in the group algebra of the
symmetric group, we have

ϕ(x)ϕ(y) = ϕ(xy).

Now if we define elements e(c)
i by ϕ(x) = ∑n−1

i=1 e(c)
i x i , we see that (e(c)

i )2 = e(c)
i and

e(c)
i e(c)

j = 0 if i �= j . Therefore the elements e(c)
i are orthogonal idempotents. Fulman

relates cyclic descents to card shuffling (now we consider cuts as well as shuffles of the
deck); Theorem 2 of [10] is closely related to Theorem 1.2. We will prove Theorem 1.2 in
Section 2.2 using formula (1).

That the multiplication for the cyclic structure polynomials is so similar to that of the
ordinary structure polynomials is no accident. Indeed, it will be clear from the proof of
Theorem 1.2 that the map

π �→
∑

σ∈〈π̃〉
σ,

where 〈π̃〉 is as in the proof of Proposition 1.1, gives an isomorphism of algebras between
the ordinary Eulerian descent algebra of Q[Sn−1] and the cyclic Eulerian descent algebra
of Q[Sn].

1.2. The hyperoctahedral group

Let ±[n] denote the set {−n, −n + 1, . . . , −1, 0, 1, . . . , n − 1, n}. Let Bn denote the
hyperoctahedral group, the group of all bijections π : ±[n] → ±[n] with the property that
π (−s) = −π (s), for s = 0, 1, . . . , n. Since the elements of the hyperoctahedral group
are uniquely determined by where they map 1, 2, . . . , n, we can think of them as signed
permutations. For a signed permutation π ∈ Bn we will write π = (π (1), π (2), . . . , π(n)).

In moving from the symmetric group to the hyperoctahedral group, we define the descent
set Des(π ) of a signed permutation π ∈ Bn to be the set of all i ∈ {0, 1, 2, . . . , n −1} such
that π (i) > π (i + 1), where we always take π (0) = 0. The descent number of π is again
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denoted des(π ) and is equal to the cardinality of Des(π ).1 As a simple example, the signed
permutation (−2, 1) has descent set {0} and descent number 1.

There is an Eulerian subalgebra for the hyperoctahedral group, previously studied by
Cellini [7, 8], Francois and Nantel Bergeron [4, 5], N. Bergeron [3], and Fulman [11]. For
1 ≤ i ≤ n + 1 let Ei be the sum of all permutations in Bn with i − 1 descents. Define the
type B structure polynomial

φ(x) =
∑

π∈Bn

(
x + n − des(π )

n

)
π =

n+1∑

i=1

(
x + n + 1 − i

n

)
Ei .

Chak-On Chow [9] was able to use the theory of P-partitions to prove the following.

Theorem 1.3 (Chow) As polynomials in x and y with coefficients in the group algebra of
Bn, we have

φ(x)φ(y) = φ(2xy + x + y),

or upon substituting

x ← (x − 1)/2,

y ← (y − 1)/2,

then

φ((x − 1)/2)φ((y − 1)/2) = φ((xy − 1)/2).

We therefore have orthogonal idempotents ei defined by φ((x − 1)/2) = ∑n
i=0 ei xi (notice

that shifting the polynomial by 1/2 gives a nontrivial constant term). Just as Theorem 1.1
was equivalent to Théorème 1.7 of [15], Theorem 1.3 is equivalent to Theorem 4.1 from [5].
Further, both Fulman [11] and Bergeron and Bergeron [5] made connections to “signed”
card shuffling (flip a card face up or down to change sign).

For a permutation π ∈ Bn , we define a type B cyclic descent, or augmented descent at
position i if π (i) > π (i + 1) or if i = n and π (n) > 0 = π (0). If we consider that signed
permutations always begin with 0, then augmented descents are the natural generalization
of type A cyclic descents.2 The set of all augmented descent positions is denoted aDes(π ),
the augmented descent set. It is the ordinary descent set of π along with n if π (n) > 0.
The augmented descent number, ades(π ), is the number of augmented descents. With these
definitions, (−2, 1) has augmented descent set {0, 2} and augmented descent number 2.
Note that while aDes(π ) ⊂ {0, 1, . . . , n}, aDes(π ) �= ∅, and aDes(π ) �= {0, 1, . . . , n}.
Denote the number of signed permutations in Bn with k augmented descents by A(a)

n,k and
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define the augmented Eulerian polynomial as

A(a)
n (t) =

∑

π∈Bn

tades(π ) =
n∑

i=1

A(a)
n,i t

i .

In Section 3.1 we prove the following relation using the theory of P-partitions.

Proposition 1.2 The number of signed permutations with i + 1 augmented descents is 2n

times the number of unsigned permutations with i descents, 0 ≤ i ≤ n − 1. In other words,
A(a)

n (t) = 2n An(t).

Define the type B cyclic structure polynomial as

ψ(x) =
∑

π∈Bn

(
x + n − ades(π )

n

)
π =

n∑

i=1

(
x + n − i

n

)
E (a)

i ,

where E (a)
i is the sum of all signed permutations with i augmented descents.

Theorem 1.4 As polynomials in x and y with coefficients in the group algebra of the
hyperoctahedral group we have

ψ(x)ψ(y) = ψ(2xy),

or upon substituting

x ← x/2,

y ← y/2,

then

ψ(x/2)ψ(y/2) = ψ(xy/2).

We get orthogonal idempotents e(a)
i defined by ψ(x/2) = ∑n

i=1 e(a)
i x i . We will prove

Theorem 1.4 in Section 3.2 using modified types of P-partitions called augmented P-
partitions. Also in Section 3.2 we prove the following theorem for which we have no type
A equivalent.

Theorem 1.5 As polynomials in x and y with coefficients in the group algebra of the
hyperoctahedral group we have

ψ(x)φ(y) = ψ(2xy + x),
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or upon substituting

x ← x/2,

y ← (y − 1)/2,

then

ψ(x/2)φ((y − 1)/2) = ψ(xy/2).

This formula tells us that e(a)
i ei = e(a)

i and that e(a)
i e j = 0 if i �= j . In other words, the

augmented Eulerian descent algebra is an ideal in the subalgebra of the group algebra
formed by the span of the ei and the e(a)

i . This relationship shows up again in the case of
peak algebras of type A, and forms the basis of future work as discussed in Section 5. See
the paper of Marcelo Aguiar, N. Bergeron, and Kathryn Nyman [1] for more. We also point
out here that when taken together, Theorems 1.3, 1.4, and 1.5, imply Cellini’s Theorem A
from [7]. Indeed, for positive integers k, Cellini’s elements x2k+1 are equivalent to φ̄(k), and
the x2k+2 are equivalent to ψ̄(k). Here, as in Section 1.1, φ̄ and ψ̄ are the same as φ and ψ

except that we replace the coefficient of π with the coefficient of π−1. See also Lemma 4
of [11].

2. The cyclic descent algebra

2.1. Definitions

Throughout this paper we will use P to denote a partially ordered set, or poset. The partial
order on P is denoted <P , or simply < when the meaning is clear. Our posets will always be
finite and for a poset of n elements, the elements will be distinctly labeled by the numbers
1, 2, . . . , n.

Definition 2.1 Let X = {x1, x2, . . . } be a countable, totally ordered set. For a given poset
P , a P-partition3 is a function f : [n] → X such that:

• f (i) ≤ f ( j) if i <P j
• f (i) < f ( j) if i <P j and i > j in Z

For our purposes we usually think of X as a subset of the positive integers. Let A(P) denote
the set of all P-partitions. When X has finite cardinality k, then the number of P-partitions
is finite. In this case, define the order polynomial, denoted �P (k), to be the number of
P-partitions f : [n] → X .

We will consider any permutation π ∈ Sn to be a poset with the total order π (s) <π

π (s + 1). For example, the permutation π = (3, 2, 1, 4) has 3 <π 2 <π 1 <π 4 as a poset.
With this convention, the set of all π -partitions is easily characterized. The set A(π ) is the
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Figure 1. Linear extensions of a poset P .

set of all functions f : [n] → X such that (if we take X to be the positive integers)

1 ≤ f (π1) ≤ f (π2) ≤ · · · ≤ f (πn),

and whenever π (s) > π (s + 1), then f (π (s)) < f (π (s + 1)), s = 1, 2, . . . , n − 1. The
set of all π -partitions where π = (3, 2, 1, 4) is all maps f such that 1 ≤ f (3) < f (2) <

f (1) ≤ f (4).
For a poset P of order n, let L(P) denote the set of all permutations of [n] which extend

P to a total order. This set is sometimes called the set of “linear extensions” of P . For
example let P be the poset defined by 1 >P 3 <P 2. In “linearizing” P we form a total
order by retaining all the relations of P but introducing new relations so that any element
is comparable to any other. See Figure 1. In this case, 1 and 2 are not comparable, so we
have exactly two ways of linearizing P: 3 < 2 < 1 and 3 < 1 < 2. These correspond to
the permutations (3, 2, 1) and (3, 1, 2). Let us make the following observation.

Observation 2.1 A permutation π is in L(P) if and only if i <P j implies π−1(i) <

π−1( j).

In other words, if i is “below” j in the Hasse diagram of the poset P , it had better be
below j in any linear extension of the poset. We also now prove what is sometimes called
the fundamental theorem (or lemma) of P-partitions.

Theorem 2.1 (FTPP) The set of all P-partitions of a poset P is the disjoint union of the
set of π -partitions of all linear extensions π of P :

A(P) =
∐

π∈L(P)

A(π ).

Proof: The proof follows from induction on the number of incomparable pairs of elements
of P . If there are no incomparable pairs, then P has a total order and already represents
a permutation. Suppose i and j are incomparable in P . Let Pi j be the poset formed from
P by introducing the relation i < j . Then it is clear that A(P) = A(Pi j )

∐
A(Pji ). We
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continue to split these posets (each with strictly fewer incomparable pairs) until we have a
collection of totally ordered chains corresponding to distinct linear extensions of P .

Corollary 2.1

�P (k) =
∑

π∈L(P)

�π (k).

The fundamental theorem tells us that in order to study P-partitions for a given poset,
we can focus on the π -partitions for its linear extensions—a more straightforward task. In
particular, counting π -partitions is not too difficult. Notice that for any permutation π and
any positive integer k,

(
k + n − 1 − des(π )

n

)
=

((
k − des(π )

n

))
,

where
(( a

b

))
denotes the “multi-choose” function—the number of ways to choose b objects

from a set of a objects with repetitions. Another interpretation of
(( a

b

))
is the number of

integer solutions to the set of inequalities

1 ≤ i1 ≤ i2 ≤ · · · ≤ ib ≤ a.

With this in mind,
( k+n−1−des(π )

n

)
is the same as the number of solutions to

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k − des(π ).

Better still, we can say it is the number of solutions (though not in general the same set of
solutions) to

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k and is < is+1 if s ∈ Des(π ). (2)

For example, the number of solutions to 1 ≤ i < j ≤ 4 is the same as the number of
solutions to 1 ≤ i ≤ j − 1 ≤ 4 − 1 or the solutions to 1 ≤ i ≤ j ′ ≤ 3. In general, if we
take f (π (s)) = is it is clear that f is a π -partition if and only if (i1, i2, . . . , in) is a solution
to (2), which gives

�π (k) =
(

k + n − 1 − des(π )

n

)
.

Before moving on, let us point out that in order to prove that the formulas in this paper
hold as polynomials in x and y, it will suffice to prove that they hold for all pairs of positive
integers. It is not hard to prove this fact, and we use it in each of the proofs presented in this
paper.
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2.2. Proofs for the case of the symmetric group

We will now prove Theorem 1.1 using the theory of P-partitions.

Proof of Theorem 1.1: If we write out φ(xy) = φ(x)φ(y) using the definition, we have

∑

π∈Sn

(
xy + n − 1 − des(π )

n

)
π

=
∑

σ∈Sn

(
x + n − 1 − des(σ )

n

)
σ

∑

τ∈Sn

(
y + n − 1 − des(τ )

n

)
τ

=
∑

σ,τ∈Sn

(
x + n − 1 − des(σ )

n

)(
y + n − 1 − des(τ )

n

)
στ

If we equate the coefficients of π we have

(
xy + n − 1 − des(π )

n

)
=

∑

στ=π

(
x + n − 1 − des(σ )

n

)(
y + n − 1 − des(τ )

n

)
. (3)

Clearly, if formula (3) holds for all π , then formula (1) is true. Let us interpret the left hand
side of this equation.

Let x = k, and y = l be positive integers. Then the left hand side of equation (3) is
just the order polynomial �π (kl). To compute this order polynomial we need to count the
number of π -partitions f : [n] → X , where X is some totally ordered set with kl elements.
But instead of using [kl] as our image set, we will use a different totally ordered set of the
same cardinality. Let us count the π -partitions f : [n] → [l] × [k]. This is equal to the
number of solutions to

(1, 1) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, k) and
(4)

(is, js) < (is+1, js+1) if s ∈ Des(π ).

Here we take the lexicographic ordering on pairs of integers. Specifically, (i, j) < (i ′, j ′)
if i < i ′ or else if i = i ′ and j < j ′.

To get the result we desire, we will sort the set of all solutions to (4) into distinct cases
indexed by subsets I ⊂ [n − 1]. The sorting depends on π and proceeds as follows.
Let F = ((i1, j1), . . . , (in, jn)) be any solution to (4). For any s = 1, 2, . . . , n − 1, if
π (s) < π (s + 1), then (is, js) ≤ (is+1, js+1), which falls into one of two mutually exclusive
cases:

is ≤ is+1 and js ≤ js+1, or (5)

is < is+1 and js > js+1. (6)
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If π (s) > π (s + 1), then (is, js) < (is+1, js+1), which means either:

is ≤ is+1 and js < js+1, or (7)

is < is+1 and js ≥ js+1, (8)

also mutually exclusive. Define IF = {s ∈ [n − 1] \ Des(π ) | js > js+1} ∪ {s ∈ Des(π ) |
js ≥ js+1}. Then IF is the set of all s such that either (6) or (8) holds for F . Notice that in
both cases, is < is+1. Now for any I ⊂ [n − 1], let SI be the set of all solutions F to (5)
satisfying IF = I . We have split the solutions of (4) into 2n−1 distinct cases indexed by all
the different subsets I of [n − 1].

Say π = (2, 1, 3). Then we want to count the number of solutions to

(1, 1) ≤ (i1, j1) < (i2, j2) ≤ (i3, j3) ≤ (l, k),

which splits into four distinct cases:

∅ : i1 ≤ i2 ≤ i3 j1 < j2 ≤ j3
{ 1 } : i1 < i2 ≤ i3 j1 ≥ j2 ≤ j3
{ 2 } : i1 ≤ i2 < i3 j1 < j2 > j3

{ 1, 2 } : i1 < i2 < i3 j1 ≥ j2 > j3.

We now want to count all the solutions contained in each of these cases and add them up.
For a fixed subset I we will use the theory of P-partitions to count the number of solutions
for the set of inequalities first for the js’s and then for the is’s. Multiplying will give us the
number of solutions in SI ; we do the same for the remaining subsets and sum to obtain the
final result. For I = { 1 } in the example above, we would count first the number of integer
solutions to j1 ≥ j2 ≤ j3, with 1 ≤ js ≤ k, and then we multiply this number by the
number of solutions to 1 ≤ i1 < i2 ≤ i3 ≤ l to obtain the cardinality of S{1}. We will now
carry out the computation in general.

For any particular I ⊂ [n−1], form the poset PI of the elements 1, 2, . . . , n by π (s) <PI

π (s+1) if s /∈ I , π (s) >PI π (s+1) if s ∈ I . We form a “zig-zag” poset of n elements labeled
consecutively by π (1), π (2), . . . , π(n), with downward zigs corresponding to the elements
of I . For example, if I = {2, 3} for n = 5, then PI has π (1) < π (2) > π (3) > π (4) <

π (5). See Figure 2.
For any solution in SI , let f : [n] → [k] be defined by f (π (s)) = js for 1 ≤ s ≤ n. We

will show that f is a PI -partition. If π (s) <PI π (s+1) and π (s) < π (s+1) in Z, then (5) tells
us that f (π (s)) = js ≤ js+1 = f (π (s +1)). If π (s) <PI π (s +1) and π (s) > π (s +1) in Z,
then (7) tells us that f (π (s)) = js < js+1 = f (π (s + 1)). If π (s) >PI π (s + 1) and π (s) <

π (s+1) in Z, then (6) gives us that f (π (s)) = js > js+1 = f (π (s+1)). If π (s) >PI π (s+1)
and π (s) > π (s + 1) in Z, then (8) gives us that f (π (s)) = js ≥ js+1 = f (π (s + 1)). In
other words, we have verified that f is a PI -partition. So for any particular solution in SI , the
js’s can be thought of as a PI -partition. Conversely, any PI -partition f gives a solution in SI

since if js = f (π (s)), then ((i1, j1), . . . , (in, jn)) ∈ SI if and only if 1 ≤ i1 ≤ · · · ≤ in ≤ l
and is < is+1 for all i ∈ I . We can therefore turn our attention to counting PI -partitions.
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Figure 2. The “zig-zag” poset PI for I = {2, 3} ⊂ [5].

Let σ ∈ L(PI ). Then for any σ -partition f , we get a chain

1 ≤ f (σ (1)) ≤ f (σ (2)) ≤ · · · ≤ f (σ (n)) ≤ k

with f (σ (s)) < f (σ (s+1)) if s ∈ Des(σ ). The number of solutions to this set of inequalities
is

�σ (k) =
(

k + n − 1 − des(σ )

n

)
.

Recall by Observation 2.1 that σ−1π (s) < σ−1π (s+1) if π (s) <PI π (s+1), i.e., if s /∈ I .
If π (s) >PI π (s + 1) then σ−1π (s) > σ−1π (s + 1) and s ∈ I . We get that Des(σ−1π ) = I
if and only if σ ∈ L(PI ). Set τ = σ−1π . The number of solutions to

1 ≤ i1 ≤ · · · ≤ in ≤ l and is < is+1 if s ∈ Des(τ )

is given by

�τ (l) =
(

l + n − 1 − des(τ )

n

)
.

Now for a given I , the number of solutions in SI is

∑

σ∈L(PI )
στ=π

(
k + n − 1 − des(σ )

n

)(
l + n − 1 − des(τ )

n

)
.

Summing over all subsets I ⊂ [n − 1], we can write the number of all solutions to (4) as

∑

στ=π

(
k + n − 1 − des(σ )

n

)(
l + n − 1 − des(τ )

n

)
,

and so we have derived formula (3).
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We now have a taste of how P-partitions can be used. We are ready to go on and prove
Theorem 1.2.

Proof of Theorem 1.2: If we write out the definition for ϕ(x) in the statement of Theo-
rem 1.2, multiply both sides by n2, and equate coefficients, we have for any π ∈ Sn ,

n

(
xy + n − 1 − cdes(π )

n − 1

)
=

∑

στ=π

(
x + n − 1 − cdes(σ )

n − 1

)(
y + n − 1 − cdes(τ )

n − 1

)
.

For some i , we can writeπ = νωi whereω is the n-cycle ( 1 2 . . . n ) and ν = (n, ν(2), . . . ,

ν(n)). Observe that cdes(π ) = cdes(ν) = des(ν). Form the permutation ν̂ ∈ Sn−1 by
ν̂(s) = ν(s + 1), s = 1, 2, . . . , n − 1. Then we can see that cdes(π ) = des(ν̂) + 1. We have

(
xy + n − 1 − cdes(π )

n − 1

)
=

(
xy + (n − 1) − 1 − des(ν̂)

n − 1

)
.

Now we can apply Eq. (3) to give us

(
xy + (n − 1) − 1 − des(ν̂)

n − 1

)
(9)

=
∑

στ=ν̂

(
x + (n − 1) − 1 − des(σ )

n − 1

)(
y + (n − 1) − 1 − des(τ )

n − 1

)
.

For each pair of permutations σ, τ ∈ Sn−1 such that στ = ν̂, define the permutations
σ̃ , τ̃ ∈ Sn as follows. For s = 1, 2, . . . , n − 1, let σ̃ (s) = σ (s) and τ̃ (s + 1) = τ (s). Let
σ̃ (n) = n and τ̃ (1) = n. Then by construction we have σ̃ τ̃ = ν and a quick observation
tells us that cdes(σ̃ ) = des(σ ) + 1 and cdes(τ̃ ) = des(τ ) + 1. On the other hand, from
any pair of permutations σ̃ , τ̃ ∈ Sn such that σ̃ τ̃ = ν, σ̃ (n) = n, we can construct a
pair of permutations σ, τ ∈ Sn−1 such that στ = ν̂ by reversing the process. Observe
now that if σ̃ (n) = n and σ̃ τ̃ = ν, then τ̃ (1) = n. Therefore we have that (9) is equal
to

∑

σ̃ τ̃=ν
σ̃ (n)=n

(
x + n − 1 − cdes(σ̃ )

n − 1

)(
y + n − 1 − cdes(τ̃ )

n − 1

)

=
∑

σ̃ (τ̃ωi )=π
σ̃ (n)=n

(
x + n − 1 − cdes(σ̃ )

n − 1

)(
y + n − 1 − cdes(τ̃ωi )

n − 1

)

=
∑

(σ̃ωn− j )(ω j τ̃ωi )=π
σ̃ (n)=n

(
x + n − 1 − cdes(σ̃ωn− j )

n − 1

)(
y + n − 1 − cdes(ω j τ̃ωi )

n − 1

)

=
∑

στ=π
σ ( j)=n

(
x + n − 1 − cdes(σ )

n − 1

)(
y + n − 1 − cdes(τ )

n − 1

)
,
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where the last two formulas hold for any j ∈ [n]. Notice that the number of cyclic descents
of τ = ω j τ̃ωi is still the same as the number of cyclic descents of τ̃ . We take the sum over
all j = 1, . . . , n, yielding

n

(
xy + n − 1 − cdes(π )

n − 1

)
=

∑

στ=π

(
x + n − 1 − cdes(σ )

n − 1

)(
y + n − 1 − cdes(τ )

n − 1

)

as desired.

3. The augmented descent algebra

3.1. Definitions and observations

Here we present the definitions and basic results we will need to prove the remaining
theorems. Proofs of some of these basic facts are identical to the proofs of analogous
statements for ordinary P-partitions and may be omitted. It bears mentioning that the
following definitions for type B posets and type B P-partitions, though taken from Chow [9],
derive from earlier work by Victor Reiner [18]. In [17], Reiner extends this concept to any
Coxeter group.

Definition 3.1 A Bn poset is a poset P whose elements are 0, ±1, ±2, . . . , ±n such that
if i <P j then − j <P −i .

Note that if we are given a poset with n + 1 elements labeled by 0, a1, . . . , an where
ai = i or −i , then we can extend it to a Bn poset of 2n + 1 elements. See Figures 3 and 4.

Let X = {x0, x1, x2, . . . } be a countable, totally ordered set with total order

x0 < x1 < x2 < · · · .

Then define ±X to be the set {. . . , −x1, x0, x1, . . . } with total order

· · · < −x2 < −x1 < x0 < x1 < x2 < · · · .

Definition 3.2 For any Bn poset P , a P-partition of type B is a function f : ±[n] → ±X
such that:

Figure 3. Two B3 posets.
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Figure 4. Linear extensions of a B2 poset P .

• f (i) ≤ f ( j) if i <P j
• f (i) < f ( j) if i <P j and i > j in Z

• f (−i) = − f (i)

Note that type B P-partitions differ from ordinary P-partitions only in the addition of
the property f (−i) = − f (i). Let A(P) denote the set of all type B P-partitions. We
usually think of X as a subset of the nonnegative integers, and when X has finite cardinality
k + 1, then the type B order polynomial, denoted �P (k), is the number of P-partitions
f : ±[n] → ±X .

We can think of any signed permutation π ∈ Bn as a Bn poset with the total order
π (s) <π π (s + 1), 0 ≤ s ≤ n − 1. For example, the signed permutation (−2, 1) has
−1 <π 2 <π 0 <π −2 <π 1 as a poset. Note that A(π ) is the set of all functions
f : ±[n] → ±X such that for 0 ≤ s ≤ n, f (−s) = − f (s) and

x0 = f (π (0)) ≤ f (π (1)) ≤ f (π (2)) ≤ · · · ≤ f (π (n)),

where f (π (s)) < f (π (s+1)) whenever π (s) > π (s+1), s = 0, 1, . . . , n−1. For example,
the type B π -partitions where π = (−2, 1) are all maps f such that x0 < f (−2) ≤ f (1).
As before,

Observation 3.1 For a type B poset P, a signed permutation π is in L(P) if and only if
i <P j implies π−1(i) < π−1( j).

We have a fundamental theorem for P-partitions of type B.
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Theorem 3.1 (FTPPB) The set of all type B P-partitions of a Bn poset P is the disjoint
union of the set of π -partitions of all linear extensions π of P:

A(P) =
∐

π∈L(P)

A(π ).

Corollary 3.1

�P (k) =
∑

π∈L(P)

�π (k).

Similarly to the type A case, it is easy to compute the order polynomial �π (k) for any
permutation π ∈ Bn . Any π -partition f : ±[n] → ±[k] is determined by where we
map π (1), π (2), . . . , π (n) since f (−i) = − f (i) (and so f (0) = 0). To count them
we can take f (π (s)) = is , and look at the number of integer solutions to the set of
inequalities

0 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k, and is < is+1 if s ∈ Des(π ).

This number is the same as the number of solutions to

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k + 1 − des(π ),

which we know to be
((k+1−des(π )

n

))
. We have

�π (k) =
(

k + n − des(π )

n

)
.

Now we have the tools to prove Theorem 1.3.

Proof of Theorem 1.3: We will omit the details, since they are essentially the same as
for Theorem 1.1. The main difference is that we want to count π -partitions f : ±[n] →
±[l]×±[k]. We notice that because of the property f (−s) = − f (s), this is just like counting
all f : [n] → {0, 1, . . . , l} × {−k, . . . , −1, 0, 1, . . . , k} where for s = 1, 2, . . . , n,
f (π (s)) = (is, js) with (0, 0) ≤ (is, js) ≤ (l, k) in the lexicographic order. See Figure 5.

This choice of image set X has 2kl + k + l + 1 elements, and so for each π we can count
all these maps with �π (2kl + k + l) = (2kl+k+l−des(π )

n

)
. We use similar arguments to those

of Theorem 1.1 for splitting the lexicographic solutions to

(0, 0) ≤ (i1, j1) ≤ · · · ≤ (in, jn) ≤ (l, k) and (is, js) < (is+1, js+1) if s ∈ Des(π ).
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Figure 5. The lexicographic order on {0, 1, . . . , l} × {−k, . . . , −1, 0, 1, . . . , k} with (0, 0) ≤ (is , js ) ≤ (l, k).

Once we have properly grouped the set of solutions it is not much more work to obtain the
crucial formula:

�π (2kl + k + l) =
∑

στ=π

�σ (k)�τ (l).

We now give the definition of an augmented P-partition and basic tools related to their
study. Let X = {x0, x1, . . . , x∞} be a countable, totally ordered set with a maximal element
x∞. The total ordering on X is given by

x0 < x1 < x2 < · · · < x∞.

Define ±X to be {−x∞, . . . , −x1, x0, x1, . . . , x∞} with the total order

−x∞ < · · · < −x1 < x0 < x1 < · · · < x∞.

Definition 3.3 For any Bn poset P , an augmented P-partition is a function f : ±[n] →
±X such that:
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• f (i) ≤ f ( j) if i <P j
• f (i) < f ( j) if i <P j and i > j in Z

• f (−i) = − f (i)
• if 0 < i in Z, then f (i) < x∞.

Note that augmented P-partitions differ from P-partitions of type B only in the addition of
maximal and minimal elements of the image set ±X and in the last criterion. Let A(a)(P)
denote the set of all augmented P-partitions. When X has finite cardinality k + 1 (and so
±X has cardinality 2k + 1), then the augmented order polynomial, denoted �

(a)
P (k), is the

number of augmented P-partitions.
For any signed permutation π ∈ Bn , note that A(a)(π ) is the set of all functions f :

±[n] → ±X such that for 0 ≤ s ≤ n, f (−s) = − f (s) and

x0 = f (π (0)) ≤ f (π (1)) ≤ f (π (2)) ≤ · · · ≤ f (π (n)) ≤ x∞,

and f (π (s)) < f (π (s +1)) whenever π (s) > π (s +1). In addition, we have f (π (n)) < x∞
whenever π (n) > 0. The set of all augmented π -partitions where π = (−2, 1) is all maps
f such that x0 < f (−2) ≤ f (1) < x∞.

We have a fundamental theorem for augmented P-partitions.

Theorem 3.2 (FTAPP) The set of all augmented P-partitions of a Bn poset P is the
disjoint union of the set of π -partitions of all linear extensions π of P :

A(a)(P) =
∐

π∈L(P)

A(a)(π ).

Corollary 3.2

�
(a)
P (k) =

∑

π∈L(P)

�(a)
π (k).

As in our previous cases, it is fairly easy to compute the augmented order polynomial
for totally ordered chains. The number of augmented π -permutations f : ±[n] → ±[k] is
equal to the number of integer solutions to the set of inequalities

0 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k = in+1, and is < is+1 if s ∈ aDes(π ).

Therefore, just as with other types of order polynomials, we can express the augmented
order polynomial as a binomial coefficient,

�(a)
π (k) =

(
k + n − ades(π )

n

)
.
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To give one example of the usefulness of augmented P-partitions, we conclude this
subsection with proof of Proposition 1.2, claiming A(a)

n (t) = 2n An(t).

Proof of Proposition 1.2: From the general theory of P-partitions in Stanley’s book [20],
we have

∑

k≥0

�P (k)t k =
∑

π∈L(P) tdes(π )+1

(1 − t)|P|+1
.

Let P be an antichain—that is, a poset with no relations—of n elements. Then �P (k) = kn

since each of the n elements of P is free to be mapped to any of k places. Furthermore,
L(P) = Sn , so we get the following equation,

∑

k≥0

kntk = An(t)

(1 − t)n+1
.

Now let P be the poset given by an antichain of 2n +1 elements labeled 0, ±1, ±2, . . . ,

±n. The number of augmented P-partitions f : ±[n] → ±[k] is determined by the choices
for f (1), f (2), . . . , f (n), which can take any of the values in {−k, −k+1, . . . , k−2, k−1}.
Therefore �

(a)
P (k) = (2k)n . For Bn posets P , it is not difficult to show that we have the

identity

∑

k≥0

�
(a)
P (k)t k =

∑
π∈L(P) tades(π )

(1 − t)n+1
.

For our antichain we have L(P) = Bn , and therefore

A(a)
n (t)

(1 − t)n+1
=

∑

k≥0

(2k)ntk = 2n
∑

k≥0

kntk = 2n An(t)

(1 − t)n+1
,

so the proposition is proved.

3.2. Proofs for the case of the hyperoctahedral group

The following proofs will follow the same basic structure as the proof of Theorem 1.1, but
with some important changes in detail. In both cases we will rely on a slightly different
total ordering on the integer points (i, j), where i and j are bounded both above and below.
Let us now define the augmented lexicographic order. See Figure 6.

Consider all points (i, j) with 0 ≤ i ≤ l, −k ≤ j ≤ k. We have (i, j) < (i ′, j ′) if i < i ′

or else if i = i ′ and j < j ′ as before, except in the important special case that follows. We
now say (i, j) = (i ′, j ′) in one of two situations. Either

i = i ′ and j = j ′
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Figure 6. The augmented lexicographic order.

or

i + 1 = i ′ and j = k = − j ′.

If we have 0 ≤ i ≤ l, −2 ≤ j ≤ 2, then in augmented lexicographic order, the first few
points (0, 0) ≤ (i, j) ≤ (l, 2) are:

(0, 0) < (0, 1) < (0, 2)

= (1, −2) < (1, −1) < (1, 0)

< (1, 1) < (1, 2)

= (2, −2) < (2, −1) < (2, 0) < · · ·

To be more precise, what we have done is to form equivalence classes of points and to
introduce a total order on these equivalence classes. If j �= ±k, then the class represented
by (i, j) is just the point itself. Otherwise, the classes consist of the two points (i, k) and
(i + 1, −k). When we write (i, j) = (i ′, j ′), what we mean is that the two points are in
the same equivalence class. In the proofs that follow, it will be important to remember the
original points as well as the equivalence classes to which they belong. This special ordering
will be very apparent in deriving the q-analogs of Theorem 1.4 and Theorem 1.5.

We will now prove Theorem 1.4.
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Proof of Theorem 1.4: As before, we equate coefficients and prove that a simpler formula,

(
2kl + n − ades(π )

n

)
=

∑

στ=π

(
k + n − ades(σ )

n

)(
l + n − ades(τ )

n

)
, (10)

holds for any π ∈ Bn .
We recognize the left-hand side of Eq. (10) as �(a)

π (2kl), so we want to count augmented
P-partitions f : ±[n] → ±X , where X is a totally ordered set of order 2kl +1. We interpret
this as the number of solutions, in the augmented lexicographic ordering, to

(0, 0) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, 0), (11)

where we have

• 0 ≤ is ≤ l,
• −k < js ≤ k if π (s) < 0,
• −k ≤ js < k if π (s) > 0, and
• (is, js) < (is+1, js+1) if s ∈ aDes(π ).

Let us clarify. There are 2kl + l + 1 points (i, j) with 0 ≤ i ≤ l and −k ≤ j ≤ k, not
including the points (0, j) with j < 0, or the points (l, j) with j > 0. Under the augmented
lexicographic ordering, l of these points are identified: points of the form (i, k) = (i+1, −k),
for i = 0, 1, . . . , l − 1. Any particular (is, js) can only occupy one of (i, k) or (i + 1, −k),
but not both. So there are truly 2kl + 1 distinct classes in which the n points can fall. This
confirms our interpretation of the order polynomial.

Now as before, we will split the solutions to the inequalities into distinct cases. Let
π (0) = π (n + 1) = 0, i0 = j0 = 0, in+1 = l, and jn+1 = 0. Let F = ((i1, j1), . . . , (in, jn))
be any solution to (11). If π (s) < π (s + 1), then (is, js) ≤ (is+1, js+1), which falls into one
of two mutually exclusive cases:

is ≤ is+1 and js ≤ js+1, or (12)

is < is+1 and js > js+1. (13)

If π (s) > π (s + 1), then (is, js) < (is+1, js+1), which we split as:

is ≤ is+1 and js < js+1, or (14)

is < is+1 and js ≥ js+1, (15)

also mutually exclusive. Define IF = {s ∈ {0, 1, . . . , n} \ aDes(π ) | js > js+1} ∪ {s ∈
aDes(π ) | js ≥ js+1}. Then IF is the set of all s such that either (13) or (15) holds for
F . Now for any I ⊂ {0, 1, . . . , n}, let SI be the set of all solutions F to (11) satisfying
IF = I . We have split the solutions of (11) into 2n+1 distinct cases indexed by all the
different subsets I of {0, 1, . . . , n}.
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However, S∅ is empty, since

0 ≤ i1 ≤ · · · ≤ in ≤ l

yields

0 ≤ j1 ≤ · · · ≤ jn ≤ 0 with js < js+1 if s ∈ aDes(π ).

As discussed before, the augmented descent set of a signed permutation is never empty, so
we would get 0 < 0, a contradiction. At the other extreme, the set S{0,1,... ,n} has no solutions
either. Here we get

0 < i1 < · · · < in < l

and consequently

0 ≥ j1 ≥ · · · ≥ jn ≥ 0 with js > js+1 if s /∈ aDes(π ).

But aDes(π ) cannot equal {0, 1, . . . , n}, so we get the contradiction 0 > 0.
Now let I be any nonempty, proper subset of {0, 1, . . . , n}. Form the poset PI by π (s) >PI

π (s + 1) if s ∈ I , π (s) <PI π (s + 1) otherwise. The poset PI looks like a zig-zag, labeled
consecutively by 0 = π (0), π (1), π (2), . . . , π(n), 0 = π (n + 1) with downward zigs
corresponding to the elements of I . Because I is neither empty nor full, we never have
0 <PI 0, so PI is a well-defined, nontrivial type B poset.

For a given F ∈ SI , let f : ±[n] → ±[k] be defined by f (π (s)) = js and f (−s) =
− f (s) for s = 0, 1, . . . , n. We will show that f is an augmented PI partition. If π (s) <PI

π (s + 1) and π (s) < π (s + 1) in Z, then (12) tells us that f (π (s)) = js ≤ js+1 =
f (π (s + 1)). If π (s) <PI π (s + 1) and π (s) > π (s + 1) in Z, then (14) tells us that
f (π (s)) = js < js+1 = f (π (s + 1)). If π (s) >PI π (s + 1) and π (s) < π (s + 1) in Z,
then (13) gives us that f (π (s)) = js > js+1 = f (π (s + 1)). If π (s) >PI π (s + 1) and
π (s) > π (s + 1) in Z, then (15) gives us that f (π (s)) = js ≥ js+1 = f (π (s + 1)). Since
we required that −k < js ≤ k if π (s) < 0 and −k ≤ js < k if π (s) > 0, we have that
for any particular solution in SI , the js’s can be thought of as an augmented PI -partition.
Conversely, any augmented PI -partition f gives a solution in SI since if js = f (π (s)), then
((i1, j1), . . . , (in, jn)) ∈ SI if and only if 0 ≤ i1 ≤ · · · ≤ in ≤ l and is < is+1 for all i ∈ I .
We can therefore turn our attention to counting augmented PI -partitions.

Let σ ∈ L(PI ). Then we get for any σ -partition f ,

0 ≤ f (σ (1)) ≤ f (σ (2)) ≤ · · · ≤ f (σ (n)) ≤ k,

and f (σ (s)) < f (σ (s + 1)) whenever s ∈ aDes(σ ), where we take f (σ (n + 1)) = k. The
number of solutions to this set of inequalities is

�(a)
σ (k) =

(
k + n − ades(σ )

n

)
.
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Recall by Observation 3.1 that σ−1π (s) < σ−1π (s+1) if π (s) <PI π (s+1), i.e., if s /∈ I .
If π (s) >PI π (s +1) then σ−1π (s) > σ−1π (s +1) and s ∈ I . We get that aDes(σ−1π ) = I
if and only if σ ∈ L(PI ). Set τ = σ−1π . The number of solutions to

0 ≤ i1 ≤ · · · ≤ in ≤ l and is < is+1 if s ∈ aDes(τ )

is given by

�τ (l) =
(

l + n − ades(τ )

n

)
.

Now for a given I , the number of solutions to (11) is

∑

σ∈L(PI )
στ=π

(
k + n − ades(σ )

n

)(
l + n − ades(τ )

n

)
.

Summing over all subsets I ⊂ {0, 1, . . . , n}, we can write the number of all solutions to
(11) as

∑

στ=π

(
k + n − ades(σ )

n

)(
l + n − ades(τ )

n

)
,

and so the theorem is proved.

The proof of Theorem 1.5 proceeds nearly identically, so we will omit unimportant details
in the proof below.

Proof of Theorem 1.5: We equate coefficients and prove that

(
2kl + k + n − ades(π )

n

)
=

∑

στ=π

(
k + n − ades(σ )

n

)(
l + n − des(τ )

n

)
, (16)

holds for any π ∈ Bn .
We recognize the left-hand side of Eq. (16) as�(a)

π (2kl+k), so we want to count augmented
P-partitions f : ±[n] → ±X , where X is a totally ordered set of order 2kl + k + 1. We
interpret this as the number of solutions, in the augmented lexicographic ordering, to

(0, 0) ≤ (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (in, jn) ≤ (l, k), (17)

where we have

• 0 ≤ is ≤ l,
• −k < js ≤ k if π (s) < 0,
• −k ≤ js < k if π (s) > 0, and
• (is, js) < (is+1, js+1) if s ∈ aDes(π ).
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With these restrictions, we split the solutions to (17) by our prior rules. Let F = ((i1, j1), . . . ,

(in, jn)) be any particular solution. If π (s) < π (s + 1), then (is, js) ≤ (is+1, js+1), which
falls into one of two mutually exclusive cases:

is ≤ is+1 and js ≤ js+1, or

is < is+1 and js > js+1.

If π (s) > π (s + 1), then (is, js) < (is+1, js+1), giving:

is ≤ is+1 and js < js+1, or

is < is+1 and js ≥ js+1,

also mutually exclusive. With (in, jn), there is only one case, depending on π . If π (n) > 0,
then (in, jn) < (l, k) and in ≤ l and −k ≤ jn < k. Similarly, if π (n) < 0, then (in, jn) ≤
(l, k) and we have in ≤ l and −k < jn ≤ k. Define IF and SI as before. We get 2n mutually
exclusive sets SI indexed by subsets I ⊂ {0, 1, . . . , n − 1} (these subsets will correspond
to ordinary descent sets).

Now for any I ⊂ {0, 1, . . . , n − 1}, define the Bn poset PI to be the poset given by
π (s) >PI π (s + 1) if s ∈ I , and π (s) <PI π (s + 1) if s /∈ I , for s = 0, 1, . . . , n − 1. We
form a zig-zag poset labeled consecutively by π (0) = 0, π (1), π (2), . . . , π(n).

For a given solution F ∈ SI , let f : ±[n] → ±[k] be defined by f (π (s)) = js for
0 ≤ s ≤ n, with f (−s) = − f (s). It is not too difficult to check that f is an augmented
PI -partition, and that any augmented PI -partition corresponds to a solution in SI . Let
σ ∈ L(PI ). Then for any σ -partition f we get

f (σ (0)) = 0 ≤ f (σ (1)) ≤ · · · ≤ f (σ (n)) ≤ k,

with f (σ (s)) < f (σ (s + 1)) whenever s ∈ aDes(σ ). The number of solutions to this set of
inequalities is

�(a)
σ (k) =

(
k + n − ades(σ )

n

)
.

We see that for s = 0, 1, . . . , n − 1, σ−1π (s) < σ−1π (s + 1) if π (s) <PI π (s + 1), i.e.,
if s /∈ I . Also, if π (s) >PI π (s + 1) then σ−1π (s) > σ−1π (s + 1) and s ∈ I . This time we
get that Des(σ−1π ) = I , an ordinary descent set, if and only if σ ∈ LPI . Set τ = σ−1π .
The number of solutions to

0 ≤ i1 ≤ · · · ≤ in ≤ l and is < is+1 if s ∈ Des(τ )

is given by

�τ (l) =
(

l + n − des(τ )

n

)
.
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We take the sum over all subsets I to show the number of solutions to (17) is

∑

στ=π

(
k + n − ades(σ )

n

)(
l + n − des(τ )

n

)
,

and the theorem is proved.

4. Some q-analogs

In this section we give some q-analogs of our previous theorems. First we define the q-
variant of the (type A) order polynomial, or q-order polynomial.4 Let P be a poset with n
elements, and take X = {0, 1, . . . , k − 1}. Then,

�P (q; k) =
∑

f ∈A(P)

(
n∏

i=1

q f (i)

)
.

Let nq ! = (1+q)(1+q +q2) · · · (1+q +· · ·+qn−1) and define the q-binomial coefficient( a
b

)
q in the natural way:

(
a

b

)

q

= aq !

bq !(a − b)q !

Another way to interpret the q-binomial coefficient is as the coefficient of xb ya−b in (x + y)a

where x and y “q-commute” via the relation yx = qxy. This interpretation is good for
some purposes, but we will use a different point of view. We will define the q-multi-choose
function

(( a
b

))
q = ( a+b−1

b

)
q as the following:

((
a

b

))

q

=
∑

0≤i1≤···≤ib≤a−1

(
n∏

s=1

qis

)
= �id (q; a),

where id is the totally ordered chain 1 <P 2 <P · · · <P b, the identity permutation in Sb.
In this case, the q-order polynomial counts certain integer partitions (so there is at least
some overlap between P-partitions and the more familiar integer partitions). Specifically,
the coefficient of qr is the number of integer partitions of r with at most b parts, each of
size at most a − 1.5

Now we will obtain formulas for q-order polynomials for all permutations. For any
permutation π ∈ Sn , the q-order polynomial may be expressed as

�π (q; k) =
∑

0≤i1≤···≤in≤k−1
s∈Des(π )⇒is<is+1

(
n∏

s=1

qis

)
.
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When we computed the ordinary order polynomial in Section 3.1 we only cared about the
number of solutions, rather than the set of solutions to the inequalities

0 ≤ i1 ≤ · · · ≤ in ≤ k − 1 and is < is+1 if s ∈ Des(π ). (18)

Since we only cared how many solutions there were and not what the solutions were, we
could count solutions to a system where all the inequalities were weak. We will still follow
the same basic procedure, but as we manipulate our system of inequalities we need to keep
track of how we modify the set of solutions. The q-order polynomial will be seen to be
simply a power of q (depending on π ) times a q-binomial coefficient.

We can form a new system of inequalities that has the same number of solutions as (18),
but in which every inequality is weak:

0 ≤ i ′
1 ≤ · · · ≤ i ′

n ≤ k − 1 − des(π ).

The bijection between these sets of solutions is given by i ′
s = is − a(s) where a(s) is the

number of descents to the left of s. Therefore the q-order polynomial is given by

�π (q; k) =
∑

0≤i1≤···≤in≤k−1
s∈Des(π )⇒is<is+1

(
n∏

s=1

qis

)

=
∑

0≤i ′
1≤···≤i ′

n≤k−1−des(π )

(
n∏

s=1

qi ′
s+a(s)

)

= q
∑n

s=1 a(s) ·
(

∑

0≤i ′
1≤···≤i ′

n≤k−1−des(π )

(
n∏

s=1

qi ′
s

))
.

The sum of all a(s) can be expressed as
∑

s∈Des(π )(n − s), which is sometimes referred to
as the comajor index, denoted comaj(π ).6 The rest of the sum is now recognizable as a
q-binomial coefficient. In summary, we have

�π (q; k) = qcomaj(π )

(
k + n − 1 − des(π )

n

)

q

. (19)

Now we will give a q-analog of Theorem 1.1. We would like to have a q-analog for
Theorem 1.2 as well, but if such a theorem exists, it does not seem to be immediate given
the method of proof in this paper. Recall that the proof of Theorem 1.2 hinged on the
observation that cyclically permuting a permutation π ∈ Sn leaves the number of cyclic
descents unchanged: cdes(π ) = cdes(πωi ) for any i = 0, 1, . . . , n − 1. Unfortunately,
cyclically permuting π has a more subtle effect on the comajor index.
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Moving on, we define the q-version of the structure polynomial,

φ(q; x) =
∑

π∈Sn

qcomaj(π )

(
x + n − 1 − des(π )

n

)

q

π.

Theorem 4.1 As polynomials in x and y (and q) with coefficients in the group algebra
we have

φ(q; x)φ(qx ; y) = φ(q; xy).

Proof: The proof will follow nearly identical lines of reasoning as in the ordinary (q = 1)
case. Here we sketch the proof with emphasis on the major differences. Again, we will
decompose the coefficient of π :

qcomaj(π )

(
kl + n − 1 − des(π )

n

)

q

By (19), we have that the coefficient of π is the order polynomial �π (q; kl) so we will
examine the π -partitions f : [n] → {0, 1, . . . , l − 1} × {0, 1, . . . , k − 1}. Notice that
we are still mapping into a set with kl elements. As before we impose the lexicographic
ordering on this image set. To ensure that we keep the proper powers of q, we think of the
order polynomial now as:

�π (q; kl) =
∑

(0,0)≤(i1, j1)≤···≤(in , jn )≤(l−1,k−1)
s∈Des(π )⇒(is , js )<(is+1, js+1)

(
n∏

s=1

qkis+ js

)
.

We have given each point (i, j) the weight ki + j so that the weight corresponds to the
position of the point in the lexicographic ordering on {0, 1, . . . , l − 1}× {0, 1, . . . , k − 1}.
We now proceed exactly as in the proof of Theorem 1.1. See Figure 7.

�π (q; kl) =
∑

(0,0)≤(i1, j1)≤···≤(in , jn )≤(l−1,k−1)
s∈Des(π )⇒(is , js )<(is+1, js+1)

(
n∏

s=1

qkis+ js

)

=
∑

I⊂[n−1]

(
∑

0≤i1≤···≤in≤l−1
s∈I⇒is<is+1

qkis

)(
∑

σ∈L(PI )

�σ (q; k)

)

=
∑

στ=π

�σ (q; k)�τ (qk ; l),

as desired.
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Figure 7. Weights in the lexicographic order.

In order to give a q-analog of Theorem 1.3, we define the q-order polynomial for a signed
permutation π ∈ Bn as

�π (q; k) =
∑

0≤i1≤···≤in≤k
s∈Des(π )⇒is<is+1

(
n∏

s=1

qis

)
,

which as before can be rewritten,

=
∑

0≤i ′
1≤···≤i ′

n≤k−des(π )

(
n∏

s=1

qi ′
s+a(s)

)

= q
∑n

s=1 a(s) ·
(

∑

0≤i ′
1≤···≤i ′

n≤k−des(π )

(
n∏

s=1

qi ′
s

))

= qcomaj(π )

(
k + n − des(π )

n

)

q

.

Now we define the type B q-structure polynomial,

φ(q; x) =
∑

π∈Bn

qcomaj(π )

(
x + n − des(π )

n

)

q

π.

Theorem 4.2 The following relation holds as polynomials in x and y (and q) with coef-
ficients in the group algebra of the hyperoctahedral group:

φ(q; x)φ(q2x+1; y) = φ(q; 2xy + x + y),



CYCLIC DESCENTS AND P-PARTITIONS 371

or upon substituting

x ← (x − 1)/2,

y ← (y − 1)/2,

then

φ(q; (x − 1)/2)φ(qx ; (y − 1)/2) = φ(q; (xy − 1)/2).

Proof: We will omit most of the details, but the crucial step is to keep the proper ex-
ponent on q . We give to each point (i, j) the weight (2k + 1)i + j so that the weight
corresponds to the position of the point in the lexicographic order on the set {0, 1, . . . , l}×
{−k, . . . , −1, 0, 1, . . . , k}. The proof is outlined in two steps below. For any π and any
pair of positive integers k, l,

�π (q; 2kl + k + l) =
∑

(0,0)≤(i1, j1)≤···≤(in , jn )≤(l,k)
s∈Des(π )⇒(is , js )<(is+1, js+1)

(
n∏

s=1

q (2k+1)is+ js

)

=
∑

στ=π

�σ (q; k)�τ (q2k+1; l).

The augmented version of the q-order polynomial gives us q-analogs for Theorem 1.4
and Theorem 1.5. For a signed permutation π ∈ Bn we have

�(a)
π (q; k) =

∑

0≤i1≤···≤in≤k
s∈aDes(π )⇒is<is+1

(
n∏

s=1

qis

)
= qacomaj(π )

(
k + n − ades(π )

n

)

q

,

where if a(s) is the number of descents of π to the left of s, then the augmented comajor
index, acomaj(π ), is the sum over all s of the numbers a(s). Define

ψ(q; x) =
∑

π∈Bn

qacomaj(π )

(
x + n − ades(π )

n

)

q

π.

Theorem 4.3 As polynomials in x and y (and q) with coefficients in the group algebra of
the hyperoctahedral group we have

ψ(q; x)ψ(q2x ; y) = ψ(q; 2xy),
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Figure 8. Weights in the augmented lexicographic order.

or upon substituting

x ← x/2,

y ← y/2,

then

ψ(q; x/2)ψ(qx ; y/2) = ψ(q; xy/2).

Proof: Here the key is to give the integer pairs (i, j) the proper weight in the augmented
lexicographic ordering. If we take 2ki + j as the weight of the point (i, j) then we get
that the points (i, k) and (i + 1, −k) have the same weight. See Figure 8. So the weight
does indeed correspond to the position of (i, j) in the augmented lexicographic ordering.
Everything else follows as in the proof of Theorem 1.4. For any π ∈ Bn and any pair of
positive integers k, l,

�(a)
π (q; 2kl) =

∑

(0,0)≤(i1, j1)≤···≤(in , jn )≤(l,0)
s∈aDes(π )⇒(is , js )<(is+1, js+1)

(
n∏

s=1

q2kis+ js

)

=
∑

στ=π

�(a)
σ (q; k)�(a)

τ (q2k ; l).
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Theorem 4.4 As polynomials in x and y (and q) with coefficients in the group algebra of
the hyperoctahedral group we have

ψ(q; x)φ(q2x ; y) = ψ(q; 2xy + x),

upon substituting

x ← x/2,

y ← (y − 1)/2,

then

ψ(q; x/2)φ(qx ; (y − 1)/2) = ψ(q; xy/2).

Proof: Because we exploit the augmented lexicographic order in the proof of Theorem 1.5
(the q = 1 case), we will use the same weighting scheme as in the proof of Theorem 4.3
for the points (i, j). We have for any π ∈ Bn and any pair of positive integers k, l,

�(a)
π (q; 2kl + k) =

∑

(0,0)≤(i1, j1)≤···≤(in , jn )≤(l,k)
s∈Des(π )⇒(is , js )<(is+1, js+1)

(
n∏

s=1

q2kis+ js

)

=
∑

στ=π

�(a)
σ (q; k)�τ (q2k ; l).

5. Future work

We hope to be able to apply the method of P-partitions to study descent algebras more
generally. In his thesis work, Vic Reiner [17] defined P-partitions purely in terms of the
root system of a Coxeter group. His definition may provide a way to obtain a theorem that
generalizes Theorems 1.1 and 1.3 to any Coxeter group.

Another avenue that we have already begun to investigate is the study of peak algebras. A
peak of a permutation π ∈ Sn is a position i such that π (i −1) < π (i) > π (i +1). Kathryn
Nyman [16] showed that the span of sums of permutations with the same set of peaks forms
a subalgebra of the group algebra. Later, Aguiar, Bergeron, and Nyman [1] explored many
properties of this and related peak algebras for the symmetric group, including connections
to descent algebras of types B and D. A key tool in [16] was John Stembridge’s enriched
P-partitions [21]. In forthcoming work, we use Stembridge’s tool to study subalgebras
formed by the span of sums of permutations with the same number of peaks, obtaining
results similar to the main theorems of this paper.

A meta-question for this area of research is: what is so special about descents (or peaks)?
Why should this way of grouping permutations give rise to a subalgebra at all? In terms
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of permutation patterns, a descent is an occurrence of the pattern 21, and a peak is an
occurrence of the pattern 132 or 231. What distinguishes descents and peaks from, say,
grouping permutations according to instances of 1324 (which doesn’t give a subalgebra)?

Notes

1. It will be clear from the context whether we are referring to the descent set of an ordinary permutation or that
of a signed permutation.

2. Most generally, Cellini [6] uses the term “descent in zero” to represent this concept for any Weyl group. The
term “augmented descent” was coined by Gessel, [13]. Conceptually, the name “type B cyclic descent” makes
more sense, but in this paper we use the “augmented” label, primarily because it requires fewer characters to
typeset.

3. We note that this definition varies from Richard Stanley’s [20] in that our maps are order-preserving, whereas
his are order reversing, i.e., f (i) ≥ f ( j) if i <P j . However, in [20] the maps of Definition 2.1 are called
(perhaps misleadingly) reverse P-partitions.

4. Properly speaking, this q-analog of the order polynomial is not a polynomial in k. However, we will refer to it as
the “q-order polynomial,” even if it might be more appropriate to call it the “q-analog of the order polynomial.”

5. It appears Fulman may have been aware of a q-analog of his shuffling results, though he never states q-analogs
of his main theorems. See [10], Definitions 3 and 5.

6. The major index of a permutation is
∑

s∈Des(π ) s. Indeed, had we made our P-partitions order reversing, as in

Stanley’s original definition of a P-partition, we would have gotten q
maj(π ) rather than comaj above.
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