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Abstract. Let S = GR(2?, n) be the Galois ring of characteristic 2> and rank n and let R = S[X]/(X?2, 2X —4).
We give an explicit construction of Hadamard difference sets in (R, +) = Zg x Z7.
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1. Introduction

Let G be a finite group of order v. A subset D C G is called a difference set in G with
parameters (v, k, 1) if |D| = k and d1d2_1 (dy,dy € D, d| # d,) represents each element
in G \ {e} exactly A times. A difference set with parameters (v, k,A) = (4N?,2N? —
N, N? — N) is called a Hadamard difference set. Initially studied by Menon [8], Hadamard
difference sets have received much attention ever since. A lot is known about Hadamard
difference sets: For example, in finite 2-groups, every nontrivial difference set is either a
Hadamard difference set or a complement of a Hadamard difference set [8]. A finite abelian
2-group G of order 2?¢*? has a Hadamard difference if and only if exp(G) < d + 2 [10,
6]. For a survey on Hadamard difference sets, the reader is referred to [2] by Davis and
Jedwab.

The existence of Hadamard difference sets in abelian 2-groups with |G| = 22¢*2 and
exp(G) < d + 2 was proved by Kraemer [6]. The construction in [6] is algorithmic. There
are still interests in more explicit constructions of Hadamard difference sets in abelian 2-
groups, as stated in one of the open problems in [2]. It seems that suitable ring structures
on the groups are the key to explicit constructions. (The reader may see [3] and [4] for ring
theoretic constructions of other types of difference sets.) In this note, we consider a finite
ring R = S[X]/(Xz, 2X — 4) where S = GR(23, n) is the Galois ring of characteristic 23
and rank n [7]. We give a simple and explicit construction of Hadamard difference sets in
(R, +)=7Zg x 7.
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2. The construction
Let S = GR(2%, n) and
R = S[X]/(X? 2X —4).
Denote the image of X in R by x. R is a local ring with maximal ideal 2R + x R. Note that
2R + xR is not a principal ideal, hence R is not a chain ring [7]. However, R has a unique

minimal ideal 4R, hence R is a finite Frobenius local ring [4]. In fact, the complete ideal
lattice of R is as follows:

R

2R+ xR
2R/ \xR
AN . /
{(‘)}
It is easy to see that (R, +) = Zg x Z} and that as an abelian group,
(2R + xR)/AR = 73"
Let Tr : S — Zg be the trace map of S. Define

A S[X] — Zg

ag+a X +--- = Tr(ag + 2a;) 2.1

Then (X2, 2X — 4) C ker A, hence A induces a Zg-linear map A : R — Zg. Let§ = ¢*™'/3.
Then x( ) = &*0) is a character of (R, +). Note that the minimal ideal 4R ¢ Kker x.
Hence yx is a generating character of (R, +), i.e., every character of (R, +) is of the form
Xa() = x(a-) for some a € R [4]. Let

V ={vedS: Tr(v) = 0}. (2.2)
V is an (n — 1)-dimensional vector space over Z,. Note that

(S/28) x4S — 473 = 7,
(a+ 28, v) — Tr(av), aeS
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is a nondegenerate Z,-bilinear form. Thus
{a+2S € S§/25 : Tr(av) =0forallv € V}
is a 1-dimensional Z,-subspace of §/2S. Therefore, fora € S,
Tr(av) =0forallve V iffa=0o0r1 (mod 2S). (2.3)
Let T be the Teichmiiller set of § and put 7" = T'\{0}. Define
D=T*(14+xT +2T +V) C R\(2R + xR).

Clearly, |D| = (2" — 1231, For any subgroup H C (R, +), we use H* to denote the
group of characters of (R, +) which are principal on H. The following lemma gives the
interesting character value distribution of D.

Lemma 2.1 Let  be a nonprincipal character of (R, +). We have

ly(D)| =2*""1 if ¢ ¢ (4R)*,
(D) =0, if ¥ € A4R)“\(2R + xR)*, (2.4)
w(D) = —23""1 if 4 € QR +xR)* \ RL.

Proof:

Casel. ¢ ¢ (4R)*.Inthis case, ¥ = y,forsomea € R*, where R* is the multiplicative
groupof Rand R* = T*(1 +xT 4 2T +4T). We may assume thata = 1 +xb +2c +4d
(b,c,d € T). Thus

xa(D) = Z x(€(1 4+ xw + 2z + v)(1 + xb + 2¢ + 4d))

eeT* veV
w,zeT
= Y x(e(l+xw+22)(1 +xb +2c +4d)) Y _ x(ev).
€eT* veV
w,zeT

It follows from (2.3) that

Z (ev) V], ife=1,
€v) =
X 0, otherwise.

veV
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Hence
Xa(D) = V| > x((1+xw + 22)(1 + xb + 2c + 4d))
w,zeT
= |V Z x(1 +xb 4 2¢ + 4d + xw + 2xwc + 2z + 2xzb + 4z¢)
w,zeT
= V] D x(142b+2c+4d + 2w + 4wc + 2z + 4zb + 4zc)  (by (2.1)).
w,zeT
Therefore,
Xa(D) = IVI|Y x@w +4we)|| Y xQ2z+ 4k +0))|.
weT zeT
In the above,
> xQw +4we)| = | > xQuw? + 4wc)
weT weT
=D xQw+e))
weT
=) xQw)
weT
=23,

where the last step follows from the well known result about the exponential sum over the
Teichmiiller set of GR(4, n) [1, 11]. Of course, we also have | }°__; x(2z +4(b + ¢)2)| =
21/2 Therefore,

Ixa(D)| = [V]2" =221,

Case?2.y € (4R)*\(2R+xR)* . In this case we may write ¢y = x, wherea = xb+2c+4d
(b,c,d € T, b and c not both 0). We then have

XaD)= > x(e(l+xw+2z + v)xb + 2 + 4d))

eeT* veV
w,zeT

= V| D x(e(xb+2c +4d + 2xwe + 2xzb + 4z¢))

eeT™
w,zeT

= |V||: > x(e@b+2¢ +4d))] [ > X(4wc)i| [Zx(4z(b + c)):|.

ecT* weT zeT



RING THEORETIC CONSTRUCTION OF HADAMARD DIFFERENCE SETS IN Z§ x Z5 185

At least one of ¢ and b + c is nonzero. Thus

[Z x(4wc)} [Z X(dz(b + c))i| =0.

weT zeT

Case 3.y € (2R + xR)*\R*. We can assume that ¢/ = x4. Clearly,

xa(D) =ITPIV] Y x(4e) = —|TPP|V] = 2",

eecT*

|

Theorem 2.2 Let E C (2R + xR)/4R = 73" be any Hadamard difference set. Let E C
2R + xR be the preimage of E. Then D U E is a Hadamard difference set in (R, +).

Proof: First we have
IDUE| =|D|+ [4R||E| = (2" — 1)2*"~! 4 2n (221 —pn=ly = pin=1 _ p2n—1,

Let ¢ be any nonprincipal character of (R, +). By the well known characterization of
difference sets in abelian groups in terms of character values [10], we only have to show
that [(D U E)| = 22", We have

0, if Y ¢ (4R)*,
Y(E) = {£2"2" 1, if ¥ € @R)"\Q2R + xR)*, (2.5)
2722 =t —2n=1if ¢ € QR + xR)"\R*.

Combining (2.4) and (2.5), we always have |y(D U E)| = 2"~1. O

In the above construction, there are two independent pieces: a shell D in R\(2R + xR)
and a core E in 2R + x R. We mention that this kind of shell-nesting method is common in
constructions of Latin square type partial difference sets [5].

We compare the above construction with known constructions of Hadamard difference
sets in finite abelian 2-groups. First, if the group is of the form H x H, there is a very general
construction of Hadamard difference sets using finite local rings [4]. However, when n is
odd, Zg x Zf is not of the form H x H. Next, we consider the Menon construction [8]: Let
G and G be finite groups and D; C Gy, D, C G,. Then

(D1 x (G2\D2)) U((G1\Dy) x D) (2.6)
is a Hadamard difference set in G| x G if and only if D; is a Hadamard difference set in

G; fori = 1,2. When G # 0 and G, # 0, we call a subset in G; x G of the type (2.6)
decomposable.
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Proposition 2.3 In Theorem 2.2, if D U E is decomposable in (R, +), then E is decom-
posable in 2R + xR)/4R = Z%”.

Proof: Assumethat R = G| X G,,(G; #0, i =1,2),D; C G; (i =1,2)and
DUE = (D x (G2\D,)) U((G1\Dy) x Dy).

Note that all elements in D have order 8 and all elements in E have order <4. Let H; =
{ge€G;:4¢g=0}andput F; = D; N H; i =1,2). Then2R + xR = H; x H, and

E = (F) x (H)\F2)) U (H\F1) X F). 2.7)

‘We have

2R~|—)CR - H] H2

7 _ M
4R 4G, ~ 4G,

12

where H;/4G; # 0 (i = 1, 2). (Otherwise we would have rank(% X 4%2) < 2n.) We
claim that F; is a union of cosets of 4G; in H; (i = 1,2). If F; = @ or H; for some
i = 1 or 2, the claim is obviously true. So assume that F; # H; (i = 1,2). Choose a
nonprincipal character v, of H, such that Y,(F,) # 0. Let i be any character of H; which
is not principal on 4G. Then ¥ x , is a character of H; x H, = 2R + xR which is
nonprincipal on 4G x 4G, = 4R. Thus

0 = (Y1 X Y2)(E) = Y1(F)Y2(Ho\F2) + Y1 (H \ F)Ya(F) = =241 (F)Ya(F).

It follows that v (F;) = 0 for all ¥ ¢ (4G;)*. Therefore F, is a union of cosets of 4G in
H,. In the same way, F> is a union of cosets of 4G, in H,. Mapping both sides of (2.7) to

2R+xR __ H, H
= ﬁ X ﬁ,we have
- H, \ . H \ . -
E = Fl X\ — F2 @) —Q Fl X F2
4G, 4G,
where F; is the image of F; in H; /4G;. Thus E is decomposable. O

Hadamard difference sets in Z%” are precisely supports of bent functions on Zg” [9]. There
are many indecomposable bent functions. For example, any bent function on Z%” of degree
n is indecomposable [9]. Choose any indecomposable bent function on Z%” and let E be the
corresponding indecomposable Hadamard difference set in Z%”. Then by Proposition 2.3,
the Hadamard difference set D U E in Theorem 2.2 is indecomposable hence can not be
obtained from the Menon construction.

The construction in [6] works for all abelian groups G with |G| = 22¢*? and exp(G) <
d + 2. However, we find it difficult to compare the constructions in this note and in [6]
because of the algorithmic nature of the latter.
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