Tight Gaussian 4-Designs
Eiichi Bannai
and Etsuko Bannai
Faculty of Mathematics, Graduate School Kyushu University Japan
DOI: 10.1007/s10801-005-2505-3
Abstract
A Gaussian t-design is defined as a finite set X in the Euclidean space \Bbb R n satisfying the condition: \frac1 V(\mathbb R n) ò \mathbb R n f( x) e - a 2 | | x | | 2 dx= å u Ĩ X w( u) f( u) \frac{1}{V({\mathbb R}^n)}\int_{{\mathbb R}^n} f(x)e^{-α^2||x||^2}dx=\sum_{u\in X}ω(u)f(u) for any polynomial f( x) in n variables of degree at most t, here α is a constant real number and ω is a positive weight function on X. It is easy to see that if X is a Gaussian 2 e-design in \Bbb R n, then | X | $^{3}$ (( n+ e) || ( e)) |X|\geq {n+e\choose e} . We call X a tight Gaussian 2 e-design in \Bbb R n if | X |=(( n+ e) || ( e)) |X|={n+e\choose e} holds. In this paper we study tight Gaussian 2 e-designs in \Bbb R n. In particular, we classify tight Gaussian 4-designs in \Bbb R n with constant weight w = \frac1 | X | ω=\frac{1}{|X|} or with weight w( u)=\frac e - a 2 | | u | | 2 å x Ĩ X e - a 2 | | x | | 2 ω(u)=\frac{e^{-α^2||u||^2}} {\sum_{x\in X}e^{-α^2||x||^2}} . Moreover we classify tight Gaussian 4-designs in \Bbb R n on 2 concentric spheres (with arbitrary weight functions).
Pages: 39–63
Keywords: keywords Gaussian design; tight design; spherical design; 2-distance set; Euclidean design; addition formula; quadrature formula
Full Text: PDF
References
1. E. Bannai, “On extremal finite sets in the sphere and other metric spaces,” in Algebraic, Extremal and Metric Combinatorics, 1986 (Montreal, PQ, 1986), London Math. Soc. Lecture Note Ser., 131, Cambridge Univ. Press, Cambridge, 1988, pp. 13-38.
2. E. Bannai and E. Bannai, Algebraic Combinatorics on Spheres(in Japanese), Springer Tokyo, 1999, pp. xvi + 367.
3. E. Bannai and E. Bannai, “On tight Euclidean 4-designs,” preprint.
4. E. Bannai and R.M. Damerell, “Tight spherical designs I,” J. Math. Soc. Japan 31 (1979), 199-207.
5. E. Bannai and R. M. Damerell, “Tight spherical designs II,” J. London Math. Soc. 21 (1980), 13-30.
6. E. Bannai, K. Kawasaki, Y. Nitamizu, and T. Sato, “An upper bound for the cardinality of an s-distance set in Euclidean space,” Combinatorica 23 (2003), 535-557.
7. E. Bannai, A. Munemasa, and B. Venkov, “The nonexistence of certain tight spherical designs,” to appear in Algebra i Analiz 16 (2004).
8. G.E.P. Box and J.S. Hunter, “Multi-factor experimental designs for exploring response surfaces,” Ann. Math. Statist. 28 (1957), 195-241.
9. P. Delsarte, J.-M. Goethals and J.J. Seidel, “Spherical codes and designs,” Geom. Dedicata 6 (1977), 363-388.
10. P. Delsarte and J.J. Seidel, “Fisher type inequalities for Euclidean t-designs,” Lin. Algebra and its Appl. 114/115 (1989), 213-230.
11. P. de la Harpe and C. Pache, “Cubature formulas, geometric designs, reproducing kernels, and Markov operators,” preprint, University of Gen`eve (2004).
12. C.F. Dunkl and Y. Xu, “Orthogonal polynomials of several variables,” Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001, vol. 81, pp. xvi + 390.
13. S.J. Einhorn and I.J. Schoeneberg, “On Euclidean sets having only two distances between points I,” Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 479-488.
14. S.J. Einhorn and I.J. Schoeneberg, “On Euclidean sets having only two distances between points II,” Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 489-504.
15. A. Erdélyi et al. “Higher transcendental Functions, Vol II, (Bateman Manuscript Project),” MacGraw-Hill, 1953.
16. S. Karlin and W.J. Studden, “Tchebycheff Systems with Application in Analysis and Statistics,” Interscience, 1966.
17. J. Kiefer, “Optimum designs V, with applications to systematic and rotatable designs,” Proc. 4th Berkeley Sympos. 1 (1960), 381-405.
18. D.G. Larman, C.A. Rogers and J.J. Seidel, “On two-distance sets in Euclidean space,” Bull London Math. Soc. 9 (1977), 261-267.
19. A. Neumaier and J.J. Seidel, “Discrete measures for spherical designs, eutactic stars and lattices,” Nederl. Akad. Wetensch. Proc. Ser. A 91 = Indag. Math. 50 (1988), 321-334.
20. A. Neumaier and J.J. Seidel, “Measures of strength 2e and optimal designs of degree e,” Sankhya Ser. A 54 (Special Issue), (1992), 299-309.
21. P.D. Seymour and T. Zaslavsky, “Averaging sets: A generalization of mean values and spherical designs,” Adv. in Math. 52(3), (1984), 213-240.
22. G. Szeg\ddot o, Orthogonal Polynomials, 4th edition. American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., 1975, pp. xiii + 432.
23. J.L. Ullman, “A class of weight functions that admit Tchebycheff quadrature,” Michigan Math. J. 13 (1966), 417-423.
2. E. Bannai and E. Bannai, Algebraic Combinatorics on Spheres(in Japanese), Springer Tokyo, 1999, pp. xvi + 367.
3. E. Bannai and E. Bannai, “On tight Euclidean 4-designs,” preprint.
4. E. Bannai and R.M. Damerell, “Tight spherical designs I,” J. Math. Soc. Japan 31 (1979), 199-207.
5. E. Bannai and R. M. Damerell, “Tight spherical designs II,” J. London Math. Soc. 21 (1980), 13-30.
6. E. Bannai, K. Kawasaki, Y. Nitamizu, and T. Sato, “An upper bound for the cardinality of an s-distance set in Euclidean space,” Combinatorica 23 (2003), 535-557.
7. E. Bannai, A. Munemasa, and B. Venkov, “The nonexistence of certain tight spherical designs,” to appear in Algebra i Analiz 16 (2004).
8. G.E.P. Box and J.S. Hunter, “Multi-factor experimental designs for exploring response surfaces,” Ann. Math. Statist. 28 (1957), 195-241.
9. P. Delsarte, J.-M. Goethals and J.J. Seidel, “Spherical codes and designs,” Geom. Dedicata 6 (1977), 363-388.
10. P. Delsarte and J.J. Seidel, “Fisher type inequalities for Euclidean t-designs,” Lin. Algebra and its Appl. 114/115 (1989), 213-230.
11. P. de la Harpe and C. Pache, “Cubature formulas, geometric designs, reproducing kernels, and Markov operators,” preprint, University of Gen`eve (2004).
12. C.F. Dunkl and Y. Xu, “Orthogonal polynomials of several variables,” Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001, vol. 81, pp. xvi + 390.
13. S.J. Einhorn and I.J. Schoeneberg, “On Euclidean sets having only two distances between points I,” Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 479-488.
14. S.J. Einhorn and I.J. Schoeneberg, “On Euclidean sets having only two distances between points II,” Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 489-504.
15. A. Erdélyi et al. “Higher transcendental Functions, Vol II, (Bateman Manuscript Project),” MacGraw-Hill, 1953.
16. S. Karlin and W.J. Studden, “Tchebycheff Systems with Application in Analysis and Statistics,” Interscience, 1966.
17. J. Kiefer, “Optimum designs V, with applications to systematic and rotatable designs,” Proc. 4th Berkeley Sympos. 1 (1960), 381-405.
18. D.G. Larman, C.A. Rogers and J.J. Seidel, “On two-distance sets in Euclidean space,” Bull London Math. Soc. 9 (1977), 261-267.
19. A. Neumaier and J.J. Seidel, “Discrete measures for spherical designs, eutactic stars and lattices,” Nederl. Akad. Wetensch. Proc. Ser. A 91 = Indag. Math. 50 (1988), 321-334.
20. A. Neumaier and J.J. Seidel, “Measures of strength 2e and optimal designs of degree e,” Sankhya Ser. A 54 (Special Issue), (1992), 299-309.
21. P.D. Seymour and T. Zaslavsky, “Averaging sets: A generalization of mean values and spherical designs,” Adv. in Math. 52(3), (1984), 213-240.
22. G. Szeg\ddot o, Orthogonal Polynomials, 4th edition. American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., 1975, pp. xiii + 432.
23. J.L. Ullman, “A class of weight functions that admit Tchebycheff quadrature,” Michigan Math. J. 13 (1966), 417-423.