Orbits of Groups Generated by Transvections over F 2
Ahmet I. Seven
Northeastern University Boston MA USA
DOI: 10.1007/s10801-005-3021-1
Abstract
Let V be a finite dimensional vector space over the two element field. We compute orbits for the linear action of groups generated by transvections with respect to a certain class of bilinear forms on V. n particular, we compute orbits that are in bijection with connected components of real double Bruhat cells in semisimple groups, extending results of M. Gekhtman, B. Shapiro, M. Shapiro, A. Vainshtein and A. Zelevinsky.
Pages: 449–474
Keywords: keywords transvections; real double Bruhat cells
Full Text: PDF
References
1. R. Brown and S. Humphries, “Orbits under symplectic transvections I,” Proc. London Math. Soc. 52(3) (1986), 517-531.
2. R. Brown and S. Humphries, “Orbits under symplectic transvections II: The case K = F2,” Proc. London Math. Soc. 52(3) (1986), 532-556.
3. H. Cárdenas, E. Lluis, Raggi-Cárdenas, A. Gerardo, and R. San Agustín, “Partial linear spaces with dual affine planes,” Comm. Algebra 30(2) (2002), 603-617.
4. R.W. Carter, Simple Groups of Lie Type, Wiley, London, 1972.
5. J. Dieudonne, La geometrie des groupes classiques, Springer, Berlin, Gottingen, Heidelberg, 1955.
6. W. Ebeling, “The monodromy groups of isolated singularities of complete intersections,” Lecture Notes in Mathematics, 1293, Springer-Verlag, Berlin, 1987.
7. S. Fomin and A. Zelevinsky, “Double Bruhat cells and total positivity,” J. Amer. Math. Soc. 12 (1999), 335-380.
8. M. Gekhtman, M. Shapiro, and A. Vainshtein, “The number of connected components in the double Bruhat cells for non simply-laced groups,” Proc. Amer. Math. Soc. 131(3), (2003), 731-739. SEVEN
9. J.I. Hall, “Symplectic geometry and mapping class groups. Geometrical combinatorics (Milton Keynes, 1984),” Res. Notes in Math., 114, Pitman, Boston, MA, 1984, pp. 21-33.
10. J.I. Hall, “Graphs, geometry, 3-transpositions, and symplectic F2-transvection groups,” Proc. London Math. Soc. (3) 58(1), (1989), 89-111.
11. J.I. Hall, “Some 3-transposition groups with normal 2-subgroups.” Proc. London Math. Soc. (3) 58 (1989)(1), 112-136.
12. R.C. Hamelink, “Lie algebras of characteristic 2.” Trans. Amer. Math. Soc. 144 (1969), 217-233.
13. T. Hoffmann, J. Kellendonk, N. Kutz and N. Reshetikhin, “Factorization dynamics and Coxeter-Toda lattices,” Comm. Math. Phys. 212(2) (2000), 297-321.
14. S. Humphries, “Graphs and Nielsen transformations of symmetric, orthogonal and symplectic groups,” Quart. J. Math. Oxford, 36(2) (1985), 297-313.
15. W.A.M. Janssen, “Skew-symmetric vanishing lattices and their monodromy groups,” Math. Ann. 266 (1983), 115-133.
16. M. Kogan and A. Zelevinsky, “On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups,” Intern. Math. Res. Notices 32 (2002), 1685-1702.
17. G. Lusztig, “Total positivity in reductive groups,” in “Lie theory and geometry: in honor of B. Kostant”, Progr. in Math.123, Birkhauser (1994), 531-568.
18. J. McLaughlin, “Some groups generated by transvections.” Arch. Math. (Basel) 18(1967), 364-368.
19. J. McLaughlin, “Some subgroups of SLn (F2).” Illinois J. Math. 13(1969), 108-115.
20. J.J. Rotman and P.M. Weichsel, “Simple Lie algebras and graphs,” J. Algebra 169(3) (1994), 775-790.
21. J.J. Seidel, On two-graphs and Shult's characterization of symplectic and orthogonal geometries over GF(2). T.H.-Report, No. 73-WSK-02. Department of Mathematics, Technological University Eindhoven, Eindhoven, 1973. i + 25.
22. B. Shapiro, M. Shapiro, and A. Vainshtein, “Connected components in the intersection of two open opposite Schubert cells in S Ln(R)/B,” Internat. Math. Res. Notices, 10(1997), 469-493.
23. B. Shapiro, M. Shapiro, and A. Vainshtein, “Skew-symmetric vanishing lattices and intersections of Schubert cells,” Internat. Math. Res. Notices, 11(1998), 563-588.
24. B. Shapiro, M. Shapiro, A. Vainshtein, and A. Zelevinsky, “Simply-laced Coxeter groups and groups generated by symplectic transvections,” Michigan Mathematical Journal, 48(2000), 531-552.
25. E.E. Shult, “Characterizations of certain classes of graphs,” J. Combinatorial Theory Ser. B 13(1972), 142- 167.
26. E.E. Shult, Groups, polar spaces and related structures. Combinatorics, Part 3: Combinatorial group theory (Proc. Advanced Study Inst., Breukelen, 1974), Math. Centre Tracts, Math. Centrum, Amsterdam, 57(1974), 130-161.
27. B. Wajnryb, “On the monodromy group of plane curve singularities,” Math. Ann. 246(1980), 141-154.
28. A. Zelevinsky, “Connected components of real double Bruhat cells,” Intern. Math. Res. Notices 21(2000), 1131-1153.
2. R. Brown and S. Humphries, “Orbits under symplectic transvections II: The case K = F2,” Proc. London Math. Soc. 52(3) (1986), 532-556.
3. H. Cárdenas, E. Lluis, Raggi-Cárdenas, A. Gerardo, and R. San Agustín, “Partial linear spaces with dual affine planes,” Comm. Algebra 30(2) (2002), 603-617.
4. R.W. Carter, Simple Groups of Lie Type, Wiley, London, 1972.
5. J. Dieudonne, La geometrie des groupes classiques, Springer, Berlin, Gottingen, Heidelberg, 1955.
6. W. Ebeling, “The monodromy groups of isolated singularities of complete intersections,” Lecture Notes in Mathematics, 1293, Springer-Verlag, Berlin, 1987.
7. S. Fomin and A. Zelevinsky, “Double Bruhat cells and total positivity,” J. Amer. Math. Soc. 12 (1999), 335-380.
8. M. Gekhtman, M. Shapiro, and A. Vainshtein, “The number of connected components in the double Bruhat cells for non simply-laced groups,” Proc. Amer. Math. Soc. 131(3), (2003), 731-739. SEVEN
9. J.I. Hall, “Symplectic geometry and mapping class groups. Geometrical combinatorics (Milton Keynes, 1984),” Res. Notes in Math., 114, Pitman, Boston, MA, 1984, pp. 21-33.
10. J.I. Hall, “Graphs, geometry, 3-transpositions, and symplectic F2-transvection groups,” Proc. London Math. Soc. (3) 58(1), (1989), 89-111.
11. J.I. Hall, “Some 3-transposition groups with normal 2-subgroups.” Proc. London Math. Soc. (3) 58 (1989)(1), 112-136.
12. R.C. Hamelink, “Lie algebras of characteristic 2.” Trans. Amer. Math. Soc. 144 (1969), 217-233.
13. T. Hoffmann, J. Kellendonk, N. Kutz and N. Reshetikhin, “Factorization dynamics and Coxeter-Toda lattices,” Comm. Math. Phys. 212(2) (2000), 297-321.
14. S. Humphries, “Graphs and Nielsen transformations of symmetric, orthogonal and symplectic groups,” Quart. J. Math. Oxford, 36(2) (1985), 297-313.
15. W.A.M. Janssen, “Skew-symmetric vanishing lattices and their monodromy groups,” Math. Ann. 266 (1983), 115-133.
16. M. Kogan and A. Zelevinsky, “On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups,” Intern. Math. Res. Notices 32 (2002), 1685-1702.
17. G. Lusztig, “Total positivity in reductive groups,” in “Lie theory and geometry: in honor of B. Kostant”, Progr. in Math.123, Birkhauser (1994), 531-568.
18. J. McLaughlin, “Some groups generated by transvections.” Arch. Math. (Basel) 18(1967), 364-368.
19. J. McLaughlin, “Some subgroups of SLn (F2).” Illinois J. Math. 13(1969), 108-115.
20. J.J. Rotman and P.M. Weichsel, “Simple Lie algebras and graphs,” J. Algebra 169(3) (1994), 775-790.
21. J.J. Seidel, On two-graphs and Shult's characterization of symplectic and orthogonal geometries over GF(2). T.H.-Report, No. 73-WSK-02. Department of Mathematics, Technological University Eindhoven, Eindhoven, 1973. i + 25.
22. B. Shapiro, M. Shapiro, and A. Vainshtein, “Connected components in the intersection of two open opposite Schubert cells in S Ln(R)/B,” Internat. Math. Res. Notices, 10(1997), 469-493.
23. B. Shapiro, M. Shapiro, and A. Vainshtein, “Skew-symmetric vanishing lattices and intersections of Schubert cells,” Internat. Math. Res. Notices, 11(1998), 563-588.
24. B. Shapiro, M. Shapiro, A. Vainshtein, and A. Zelevinsky, “Simply-laced Coxeter groups and groups generated by symplectic transvections,” Michigan Mathematical Journal, 48(2000), 531-552.
25. E.E. Shult, “Characterizations of certain classes of graphs,” J. Combinatorial Theory Ser. B 13(1972), 142- 167.
26. E.E. Shult, Groups, polar spaces and related structures. Combinatorics, Part 3: Combinatorial group theory (Proc. Advanced Study Inst., Breukelen, 1974), Math. Centre Tracts, Math. Centrum, Amsterdam, 57(1974), 130-161.
27. B. Wajnryb, “On the monodromy group of plane curve singularities,” Math. Ann. 246(1980), 141-154.
28. A. Zelevinsky, “Connected components of real double Bruhat cells,” Intern. Math. Res. Notices 21(2000), 1131-1153.