U-Turn Alternating Sign Matrices, Symplectic Shifted Tableaux and their Weighted Enumeration
A.M. Hamel1
and R.C. King2
1Department of Physics and Computer Science Wilfrid Laurier University Waterloo Ontario N2L 3C5 Canada
2School of Mathematics University of Southampton Southampton SO17 1BJ England
2School of Mathematics University of Southampton Southampton SO17 1BJ England
DOI: 10.1007/s10801-005-3019-8
Abstract
Alternating sign matrices with a U-turn boundary (UASMs) are a recent generalization of ordinary alternating sign matrices. Here we show that variations of these matrices are in bijective correspondence with certain symplectic shifted tableaux that were recently introduced in the context of a symplectic version of Tokuyama's deformation of Weyl's denominator formula. This bijection yields a formula for the weighted enumeration of UASMs. In this connection use is made of the link between UASMs and certain square ice configuration matrices.
Pages: 395–421
Keywords: keywords alternating sign matrices; symplectic tableaux
Full Text: PDF
References
1. D.M. Bressoud, Proof and Confirmations, MAA, Wash., D.C., 1999.
2. T. Eisenk\ddot olbl, “2-enumerations of halved alternating sign matrices,” Sém. Loth. de Combin. B46c (2001), 11pp.
3. N. El Samra and R.C. King, “Dimensions of irreducible representations of the classical Lie groups,” J. Phys. A 12 (1979), 2317-2328.
4. A.M. Hamel and R.C. King, “Symplectic shifted tableaux and deformations of Weyl's denominator formula for sp(2n),” J. Algebraic Combin. 16 (2002), 269-300.
5. R.C. King, “Weight multiplicities for the classical Lie groups,” in Lecture Notes in Physics, Springer, New York, 1976, vol. 50, pp. 490-499.
6. R.C. King and N.G.I.El-Sharkaway, Standard Young tableaux and weight multiplicities of the classical Lie groups, J. Phys. A 16 (1983), 3153-3177.
7. V.E. Korepin, “Calculation of norms of Bethe wave functions,” Comm. Math. Phys. 86 (1982), 391-418.
8. G. Kuperberg, “Another proof of the alternating sign matrix conjecture,” Internat. Math. Res. Notices 1996 (1996), 139-150.
9. G. Kuperberg, “Symmetry classes of alternating sign matrices under one roof,” Ann. of Math. (2) 156 (2002), 835-866.
10. A. Lascoux, “Square ice enumeration,” Sém. Loth. de Combin. B42 (1999), 15 pp.
11. E.H. Lieb, “Exact solution of the problem of the entropy of two-dimensional ice,” Phys. Rev. Lett. 18 (1967), 692-694.
12. W.H. Mills, D.P. Robbins, and H. Rumsey, “Proof of the Macdonald conjecture,” Invent. Math. 66 (1982), 73-87.
13. S. Okada, “Alternating sign matrices and some deformations of Weyl's denominator formula,” J. Algebraic Comb. 2 (1993), 155-176.
14. J. Propp, “The many faces of alternating sign matrices,” Disc. Math. and Th. Comp. Sci. July 2001.
15. J. Propp, http://www.math.wisc.edu/\sim propp/half-asm.
16. D.P. Robbins, “Symmetry classes of alternating sign matrices,” arXiv:math. CO/008045 v1 5 Aug 2000.
17. S Sundaram, “Tableaux in the representation theory of the classical Lie groups,” in Invariant Theory and Tableaux, D Stanton (Ed.), IMA Springer-Verlag, New York, Vol. 19, 1989, pp. 191-225.
18. T. Tokuyama, “A generating function of strict Gelfand patterns and some formulas on characters of general linear groups,” J. Math. Soc. Japan 40 (1998), 671-685.
19. O. Tsuchiya, “Determinant formula for the six-vertex model with reflecting end,” J. Math. Phys. 39 (1998), 5946-5951.
20. H. Weyl, “Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen duch lineare Transformationen: I,” Math. Z. 23 (1925), 271-309.
21. H. Weyl, “Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen duch lineare Transformationen: II,” Math. Z. 24 (1926), 328-376.
22. D. Zeilberger, “A proof of the alternating sign matrix conjecture,” Elect. J. Comb. 3 (1996), R13.
2. T. Eisenk\ddot olbl, “2-enumerations of halved alternating sign matrices,” Sém. Loth. de Combin. B46c (2001), 11pp.
3. N. El Samra and R.C. King, “Dimensions of irreducible representations of the classical Lie groups,” J. Phys. A 12 (1979), 2317-2328.
4. A.M. Hamel and R.C. King, “Symplectic shifted tableaux and deformations of Weyl's denominator formula for sp(2n),” J. Algebraic Combin. 16 (2002), 269-300.
5. R.C. King, “Weight multiplicities for the classical Lie groups,” in Lecture Notes in Physics, Springer, New York, 1976, vol. 50, pp. 490-499.
6. R.C. King and N.G.I.El-Sharkaway, Standard Young tableaux and weight multiplicities of the classical Lie groups, J. Phys. A 16 (1983), 3153-3177.
7. V.E. Korepin, “Calculation of norms of Bethe wave functions,” Comm. Math. Phys. 86 (1982), 391-418.
8. G. Kuperberg, “Another proof of the alternating sign matrix conjecture,” Internat. Math. Res. Notices 1996 (1996), 139-150.
9. G. Kuperberg, “Symmetry classes of alternating sign matrices under one roof,” Ann. of Math. (2) 156 (2002), 835-866.
10. A. Lascoux, “Square ice enumeration,” Sém. Loth. de Combin. B42 (1999), 15 pp.
11. E.H. Lieb, “Exact solution of the problem of the entropy of two-dimensional ice,” Phys. Rev. Lett. 18 (1967), 692-694.
12. W.H. Mills, D.P. Robbins, and H. Rumsey, “Proof of the Macdonald conjecture,” Invent. Math. 66 (1982), 73-87.
13. S. Okada, “Alternating sign matrices and some deformations of Weyl's denominator formula,” J. Algebraic Comb. 2 (1993), 155-176.
14. J. Propp, “The many faces of alternating sign matrices,” Disc. Math. and Th. Comp. Sci. July 2001.
15. J. Propp, http://www.math.wisc.edu/\sim propp/half-asm.
16. D.P. Robbins, “Symmetry classes of alternating sign matrices,” arXiv:math. CO/008045 v1 5 Aug 2000.
17. S Sundaram, “Tableaux in the representation theory of the classical Lie groups,” in Invariant Theory and Tableaux, D Stanton (Ed.), IMA Springer-Verlag, New York, Vol. 19, 1989, pp. 191-225.
18. T. Tokuyama, “A generating function of strict Gelfand patterns and some formulas on characters of general linear groups,” J. Math. Soc. Japan 40 (1998), 671-685.
19. O. Tsuchiya, “Determinant formula for the six-vertex model with reflecting end,” J. Math. Phys. 39 (1998), 5946-5951.
20. H. Weyl, “Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen duch lineare Transformationen: I,” Math. Z. 23 (1925), 271-309.
21. H. Weyl, “Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen duch lineare Transformationen: II,” Math. Z. 24 (1926), 328-376.
22. D. Zeilberger, “A proof of the alternating sign matrix conjecture,” Elect. J. Comb. 3 (1996), R13.