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Abstract. We generalise the definition and many properties of partial flocks of non-singular quadrics in PG(3, q)
to partial flocks of non-singular quadrics in PG(2r + 1, q).
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1. Introduction and definitions

In [10] O’Keefe and Thas investigated the generalisation of a partial flock of a quadratic
cone in PG(3, q) to a quadratic cone in PG(2r + 1, q) with point vertex. In a similar way,
we generalise a partial flock of a non-singular quadric in PG(3, q) to a non-singular quadric
in PG(2r + 1, q).

In PG(2r + 1, q) let Q2r+1 be a non-singular quadric of either elliptic character or
of hyperbolic character. A partial flock of Q2r+1 of cardinality s is a set of hyperplanes
{π1, . . . , πs} of PG(2r + 1, q), such that each element of the set intersects the quadric in a
non-singular parabolic section and for k �= l the (2r − 1)-dimensional space πk ∩ πl meets
Q2r+1 in an elliptic quadric. In the case r = 1, since an elliptic quadric in PG(1, q) has
no points, the above definition coincides with the existing definition of a partial flock of a
non-singular quadric in PG(3, q).

Let Q3 be a non-singular quadric in PG(3, q). If Q3 is a hyperbolic quadric (respectively,
elliptic quadric), then a partition of all (respectively, all but two) points of Q3 into q + 1
disjoint irreducible conics (respectively, q − 1 irreducible conics) is called a flock of Q3.
Clearly, a flock of Q3 is a partial flock of maximal size and as such partial flocks generalise
this important concept of a flock of a quadric in PG(3, q). If L is a line of PG(3, q) external
to Q3, then the set of irreducible conic sections of Q3, whose planes contain L , forms a
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flock of Q3 called a linear flock. Since every non-singular quadric in PG(3, q) admits a
linear flock the question of the maximal size of a partial flock is solved. In the more general
case of a partial flock of a non-singular quadric in PG(2r + 1, q) the question is open. In
Section 5 we discuss bounds on the size of a partial flock.

The concept of a linear flock is generalised to a linear partial flock of a non-singular
quadric Q2r+1 in PG(2r + 1, q) by taking the hyperplanes intersecting Q2r+1 in a non-
singular parabolic quadric and containing a fixed (2r −1)-dimensional space meetingQ2r+1

in a non-singular elliptic quadric. We characterise the linear partial flocks in Section 4.
In [12] Thas constructed examples of non-linear flocks of the hyperbolic quadric in

PG(3, q), q odd. In Section 6 we generalise this construction method to the case of a
non-singular quadric in PG(2r + 1, q), q odd, using interior and exterior sets of quadrics.

For more information on flocks and partial flocks see the survey article of Thas [16].

2. The algebraic condition

In this section we determinate the algebraic conditions for a set of hyperplanes to form a
partial flock.

For q = 2h , the map trace : GF(q) → GF(2), is given by x �→ ∑h−1
i=0 x2i

.

Theorem 1 In PG(2r + 1, q) let Q2r+1 be the non-singular hyperbolic quadric with
equation Q(x0, x1, . . . , x2r+1) = x0x1 + x2x3 + · · · + x2r x2r+1 = 0. Let F = {π1, . . . , πs}
be a set of hyperplanes each intersecting Q2r+1 in a non-singular parabolic section with
πk : a(k)

0 x0 + · · · + a(k)
2r x2r + a(k)

2r+1x2r+1 = 0 where a(k)
i ∈ G F(q) and

a(k)
0 a(k)

1 + a(k)
2 a(k)

3 + · · · + a(k)
2r a(k)

2r+1 �= 0. (1)

If q is odd, then F is a partial flock of Q2r+1 if and only if

(
a(k)

0 a(l)
1 + a(k)

1 a(l)
0 + · · · + a(k)

2r a(l)
2r+1 + a(k)

2r+1a(l)
2r

)2

− 4
(
a(k)

0 a(k)
1 + · · · + a(k)

2r a(k)
2r+1

)(
a(l)

0 a(l)
1 + · · · + a(l)

2r a(l)
2r+1

)
(2)

is a non-square in G F(q) for all k, l ∈ {1, . . . , s} and k �= l.
If q is even, then F is a partial flock of Q2r+1 if and only if

trace

((
a(k)

0 a(k)
1 + · · · + a(k)

2r a(k)
2r+1

)(
a(l)

0 a(l)
1 + · · · + a(l)

2r a(l)
2r+1

)
(
a(k)

0 a(l)
1 + a(k)

1 a(l)
0 + · · · + a(k)

2r a(l)
2r+1 + a(k)

2r+1a(l)
2r

)2

)
= 1 (3)

for all k, l ∈ {1, . . . , s} and k �= l.

Proof: Let β be the bilinear form ofQ2r+1 and ⊥2r+1 the polarity ofQ2r+1. The hyperplane
πk has a non-singular parabolic intersection with Q2r+1 if Q(π⊥2r+1

k ) = a(k)
0 a(k)

1 + a(k)
2 a(k)

3 +
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· · · + a(k)
2r a(k)

2r+1 �= 0. Now πk ∩ πl meets Q2r+1 in a (2r − 1)-dimensional elliptic quadric if

and only if 〈π⊥2r+1
k , π

⊥2r+1
l 〉 is an exterior line to Q2r+1. That is

Q
((

a(k)
1 , a(k)

0 , . . . , a(k)
2r+1, a(k)

2r

) + λ
(
a(l)

1 , a(l)
0 , . . . , a(l)

2r+1, a(l)
2r

)) = 0 (4)

has no solution for λ ∈ G F(q), and so

λβ
((

a(k)
1 , a(k)

0 , . . . , a(k)
2r+1, a(k)

2r

)
,
(
a(l)

1 , a(l)
0 , . . . , a(l)

2r+1, a(l)
2r

))
+ Q

(
a(k)

1 , a(k)
0 , . . . , a(k)

2r+1, a(k)
2r

) + λ2 Q
(
a(l)

1 , a(l)
0 , . . . , a(l)

2r+1, a(l)
2r

) = 0

has no solution. Using, the discriminant when q is odd and the trace map when q is even,
on the quadratic above gives the algebraic conditions.

Theorem 2 In PG(2r + 1, q) let Q2r+1 be an elliptic quadric with equation Q(x0, x1,

. . . , x2r+1) = f (x0, x1) + x2x3 + · · · + x2r x2r+1 = 0, where f is an irreducible quadratic
form of a suitable type. If q is odd, then f (x0, x1) = x2

0 −ηx2
1 where η is a fixed non-square

of G F(q); and if q is even f (x0, x1) = x2
0 + x0x1 + ρx2

1 where trace(ρ) = 1. Let F =
{π1, . . . , πs} be a set of hyperplanes intersectingQ2r+1 in a non-singular parabolic section,
with πk : a(k)

0 x0 + · · · + a(k)
2r x2r + a(k)

2r+1x2r+1 = 0 where a(k)
i ∈ G F(q). If q is odd, then

(
a(k)

0

)2

4
−

(
a(k)

1

)2

4η
+ a(k)

2 a(k)
3 + · · · + a(k)

2r a(k)
2r+1 �= 0 (5)

for k = 1, . . . , s and F is a partial flock if and only if

(
a(k)

0 a(l)
0

2
− a(k)

1 a(l)
1

2η
+ a(k)

2 a(l)
3 + · · · + a(k)

2r+1a(l)
2r

)2

− 4

((
a(k)

0

)2

4
−

(
a(k)

1

)2

4η
+ a(k)

2 a(k)
3 + · · · + a(k)

2r a(k)
2r+1

)

×
((

a(l)
0

)2

4
−

(
a(l)

1

)2

4η
+ a(l)

2 a(l)
3 + · · · + a(l)

2r a(l)
2r+1

)

is a square in G F(q). If q is even and if we write

θk = ρ
(
a(k)

0

)2 + a(k)
0 a(k)

1 + (
a(k)

1

)2 + a(k)
2 a(k)

3 + · · · + a(k)
2r a(k)

2r+1, (6)

then θk �= 0 for k = 1, . . . , s and F is a partial flock if and only if

trace

(
θkθ�(

a(k)
0 a(l)

1 + a(k)
1 a(l)

0 + · · · + a(k)
2r a(l)

2r+1 + a(k)
2r+1a(l)

2r

)2

)
= 0

for all k, l ∈ {1, . . . , s} and k �= l.



362 BROWN, O’KEEFE AND TONESI

Proof: As in the proof of hyperbolic case in Theorem 1, we use the quadratic form Q
and the bilinear form β associated with Q. We obtain a quadratic equation in λ which must
have two solutions.

3. Degenerate partial flocks

Definition 3 Let F = {π1, . . . , πs} be a partial flock of a non-singular quadric Q2r+1 in
PG(2r + 1, q) and let �(F) = ∩s

k=1πk . If �(F) contains a non-singular hyperbolic section
of Q2r+1, then we say that F is degenerate; otherwise we say that F is non-degenerate.

Lemma 4 Let Q2r+1 be a non-singular quadric in PG(2r + 1, q) with polarity
⊥2r+1 and let F = {π1, . . . , πs} be a degenerate partial flock of Q2r+1. Let
Hm be an m-dimensional, non-singular hyperbolic section of Q2r+1 such that
Hm ⊂ � (F) and let Q2r−m = 〈Hm〉⊥2r+1 ∩ Q2r+1 with polarity ⊥2r−m. Then F ′ =
{(π⊥2r+1

1 )
⊥2r−m

, . . . , (π⊥2r+1
s )

⊥2r−m } is a partial flock of Q2r−m of size s.
Conversely ifQ2r−m is a non-singular sub-quadric ofQ2r+1 of dimension 2r −m with po-

larity ⊥2r−m such that 〈Q2r−m〉⊥2r+1 ∩Q2r+1 = Qm is hyperbolic, and if F ′ = {π1, . . . , πs}
is a partial flock of Q2r−m , then F = {(π⊥2r−m

1 )⊥2r+1 , . . . , (π⊥2r−m
s )⊥2r+1} is a degenerate

partial flock of Q2r+1 with 〈Qm〉 ⊂ �(F).

Proof: Suppose F = {π1, . . . , πs} is the degenerate partial flock of Q2r+1. The point
π

⊥2r+1
k ∈ 〈Q2r−m〉 for k = 1, . . . , s and the line 〈π⊥2r+1

k , π
⊥2r+1
l 〉 is an external line or a

secant line to Q2r−m for all k, l ∈ {1, . . . , s}, k �= l, according to whether the character
of Q2r+1 is hyperbolic or elliptic. Hence (π⊥2r+1

k )⊥2r−m ∩ (π⊥2r+1
l )⊥2r−m is a (2r − m − 2)

-dimensional non-singular elliptic section of Q2r−m for all k, l ∈ {1, . . . , s}, k �= l. The
result follows.

Remark 5 Lemma 4 says that we can generalise a partial flock of a quadric to a degenerate
partial flock in higher dimensions. In particular we can generalise the flocks of Q+(3, q) to
degenerate partial flocks of Q+(2r + 1, q).

Remark 6 In Lemma 4 since Q2r−m is a sub-quadric of Q2r+1 it follows that for any
π ∈ F we have (π⊥2r+1 )⊥2r−m ⊂ π . Hence F ′ is obtained by intersecting the elements of F
with PG(2r − m, q) = 〈Q2r−m〉.

4. The linear partial flocks

Let Q2r+1 be a non-singular quadric in PG(2r + 1, q) and let PG(2r − 1, q) be a (2r − 1)-
dimensional subspace of PG(2r + 1, q) such that PG(2r − 1, q) ∩Q2r+1 is a non-singular
elliptic quadric. Then the set {π1, . . . , πs} of hyperplanes containing PG(2r − 1, q) and
meeting Q2r+1 in a non-singular parabolic quadric is called a linear partial flock of Q2r+1.
In the case where Q2r+1 is hyperbolic s = q + 1 and when Q2r+1 is elliptic s = q − 1.
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We now characterise the linear partial flocks.

Theorem 7 LetF = {π1, . . . , πs} be a partial flock of size s of the non-singular hyperbolic
quadric H2r+1 in PG(2r + 1, q). For distinct k , l ∈ {1, . . . , s} let Ekl = πk ∩ πl ∩ H2r+1.
If for any fixed such k, l the elements of F cover the points of H2r+1 \ Ekl , then s ≥ q + 1
and if s = q + 1, then F is linear.

Proof: For πm ∈ F , let Pm = πm ∩ H2r+1. Let S = H2r+1 \ {Pk ∪ Pl} and suppose that
the elements of F \ {πk, πl} cover the points of S. For p ∈ S, let Np denote the number of
elements of F \ {πk, πl} on p. By hypothesis, Np ≥ 1 for p ∈ S. Now count the ordered
pairs (p, πm), where p ∈ S, πm ∈ F \ {πk, πl} and p ∈ πm ; it follows that

|H2r+1| − |Pk | − |Pl | + |Ekl | = |S| ≤
∑
p∈S

Np

=
∑

πm∈F\{πk ,πl }
(|Pm | − |πm ∩ (πk ∪ πl) ∩ H2r+1|)

=
∑

πm∈F\{πk ,πl }
(|Pm | − |πm ∩ πk ∩ H2r+1| − |πm ∩ πl ∩ H2r+1|

+ |πm ∩ πk ∩ πl ∩ H2r+1|)
=

∑
πm∈F\{πk ,πl }

(|Pm | − 2|Ekl | + |πm ∩ Ekl |) ≤ (s − 2)(|Pm | − |Ekl |).

So |H2r+1| − |Ekl | ≤ s (|Pm | − |Ekl |) for any m ∈ {1, . . . , s} and on substitution we obtain
q + 1 ≤ s. If s = q + 1, then equality must hold throughout the expression and so Np = 1
for all p ∈ S. Thus F partitions H2r+1 \ Ekl and each element of F contains Ekl ; so the
flock is linear.

Theorem 8 LetF = {π1, . . . , πs} be a partial flock of size s of the elliptic quadric E2r+1 in
PG(2r+1, q) with polarity⊥2r+1. For distinct fixed k , l ∈ {1, . . . , s} letEkl = πk∩πl∩E2r+1

and E⊥2r+1
kl ∩ E2r+1 = {x, y}. If the elements of F cover the points of E2r+1 \ {xEkl ∩ yEkl},

then s ≥ q − 1 and if s = q − 1, then F is linear.

Proof: For πm ∈ F , let Pm = πm ∩E2r+1. Let S = E2r+1 \ {xEkl ∪ yEkl} and suppose that
the elements of F cover the points of S. For z ∈ S, let Nz denote the number of elements
of F on z. By hypothesis, Nz ≥ 1 for z ∈ S. Now count the ordered pairs (z, πm), where
z ∈ S, πm ∈ F and z ∈ πm ; it follows that

|E2r+1| − |xEkl | − |yEkl | + |Ekl | = |S| ≤
∑
z∈S

Nz

=
∑
πm∈F

(|Pm | − |πm ∩ (xEkl ∪ yEkl)|)

=
∑
πm∈F

(|Pm | − |πm ∩ xEkl | − |πm ∩ yEkl | + |πm ∩ xEkl ∩ yEkl |).



364 BROWN, O’KEEFE AND TONESI

There are three different possibilities for πm ∩ Ekl : Ekl , P2r−2 a (2r − 2)-dimensional, non-
singular parabolic section of E2r+1 or vE2r−3 a quadratic cone with vertex a point v and
base a (2r − 3)-dimensional, non-singular elliptic quadric of E2r+1. If πm ∩ Ekl = Ekl , then
πm ∩ xEkl = πm ∩ yEkl = Ekl , otherwise πm ∩ xEkl may either be a cone with vertex x and
base πm ∩Ekl or a (2r −1)-dimensional, non-singular elliptic section of E2r+1, and similarly
for πm ∩ yEkl . By calculating the value of |πm ∩ xEkl |+ |πm ∩ yEkl |− |πm ∩ xEkl ∩ yEkl | for
all of these possibilities, we have that |πm ∩ xEkl |+|πm ∩ yEkl |−|πm ∩ xEkl ∩ yEkl | ≥ |Ekl |.
Thus |S| ≤ s(|Pm | − |Ekl |). On substitution we find s ≥ q − 1. If s = q − 1, then
equality must hold throughout the expression and Nz = 1 for all z ∈ S. Thus F partitions
E2r+1 \ {xEkl ∪ yEkl} and each of the elements of F contains Ekl ; so the flock is linear.

5. Upper bounds on the size of a partial flock

In this section we look at the known bounds on the largest possible size of a partial flock.

Definition 9 An ovoid of a non-singular quadric Q2r+1 in PG(2r + 1, q) is a set of points
on Q2r+1 which has exactly one point in common with every maximal singular space on
Q2r+1. A partial ovoid of Q2r+1 is a set of points on Q2r+1 which has at most one point in
common with any maximal singular space on Q2r+1.

An ovoid of Q−(2r + 1, q) has size qr+1 + 1 and an ovoid of Q+(2r + 1, q) has size qr + 1
(see [7, Theorem AVI.2.1]).

Adapting [3] we have the following theorems relating partial flocks of the non-singular
quadrics Q+(2r + 1, q) and Q−(2r + 1, q) and partial ovoids of Q+(2r + 3, q).

Theorem 10 Let F = {π1, . . . , πs} be a partial flock of a non-singular quadric Q2r+1

in PG(2r + 1, q). Then there exists a partial ovoid O of Q+(2r + 3, q) with cardinality
s(q + 1) if Q2r+1 is elliptic and with cardinality s(q − 1) + 2 if Q2r+1 is hyperbolic.

Proof: EmbedQ2r+1 into Q+(2r+3, q) as the intersection of Q+(2r+3, q) with a (2r+1)-
dimensional subspace �. Let ⊥2r+3 be the polarity of Q+(2r + 3, q). For k, � ∈ {1, . . . , s},
k �= �, we have that π

⊥2r+3
k and π

⊥2r+3
� are conic planes, with conics Ck = π

⊥2r+3
k ∩ Q+(2r +

3, q) and C� = π
⊥2r+3
� ∩ Q+(2r + 3, q). Now 〈π⊥2r+3

k , π
⊥2r+3
� 〉 intersects Q+(2r + 3, q) in

a three-dimensional non-singular elliptic quadric and hence no two points of Ck ∪ C� are
collinear in Q+(2r +3, q). Thus O = C1 ∪C2 ∪· · ·∪Cs is a partial ovoid of Q+(2r +3, q)
of size s(q + 1) if Q2r+1 is elliptic and s(q − 1) + 2 if Q2r+1 is hyperbolic.

Comparing the size of the partial ovoid of Q+(2r + 3, q) in Theorem 10 with the size of
an ovoid of Q+(2r + 3, q), gives an upper bound on the size of a partial flock of Q2r+1.
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Theorem 11 Let Q2r+1 be a non-singular quadric of PG(2r +1, q) and let F be a partial
flock of Q2r+1. Then

|F | ≤




qr+1 + 1

q + 1
if Q2r+1 is elliptic,

qr+1 − 1

q − 1
if Q2r+1 is hyperbolic.

Remark 12 For some cases the upper bound is not integral. Thus for these cases a partial
flock cannot give rise to an ovoid. In particular a partial flock of Q−(2r + 1, q) may not
give rise to an ovoid of Q+(2r + 3, q), as above, if r is odd.

Definition 13 Let Q2r+1 be a non-singular quadric of PG(2r + 1, q) and X a set of points
of PG(2r + 1, q) not on Q2r+1. The set X is called an exterior set with respect to Q2r+1 if
the span of any two points in X is a line exterior to Q2r+1. The set X is called an interior
set with respect to Q2r+1 if the span of any two points is a line interior to Q2r+1.

Lemma 14 Let F = {π1, π2, . . . , πs} be a partial flock of Q+(2r + 1, q) and let ⊥ be the
polarity of Q+(2r +1, q). Then the set {π⊥

1 , π⊥
2 , . . . , π⊥

s } is an exterior set of Q+(2r +1, q).

In [3] De Clerck and Thas proved that the size of an exterior set X of Q+(2r + 1, q)
is at most qr+1−1

q−1 ; if X has exactly qr+1−1
q−1 points then it is called a maximal exterior set,

abbreviated to MES. The maximal exterior sets have been completely classified by De
Clerck and Thas (see [3]). In the case where there is no MES, the bound is decreased by
Klein [9]. Klein gave a recursive bound for the size of an exterior set, that is

M(2r + 1, q) ≤ qr+1 − 1

qr − 1
M(2r − 1, q)

where M(2k +1, q) = max{|X |, X is an exterior set of Q+(2k +1, q)}. Klein [9] observed
that by setting M(3, q) = q + 1 (the known maximal size of an exterior set) the recursive
formula gives the bound of De Clerck and Thas [3]. For many cases Klein improved the
bound for Q+(5, q) and hence, by the recursion formula, the general bound. These results
on an exterior set give corresponding results on a partial flock of Q+(2r + 1, q).

Theorem 15 If F is a partial flock of Q+(2r + 1, q), then |F | ≤ qr+1−1
qr −1 M(2r − 1, q).

6. Generalized Thas partial flocks of non-singular quadrics in PG(2r + 1, q), q odd

We recall from [4] that if Q3 is a non-singular hyperbolic quadric in PG(3, q), with q odd,
then on the set of all irreducible conics sections of Q3 it is possible to define the following
equivalence relation: two conics C1 and C2 are equivalent if and only if there is an irreducible
conic C on Q3 which is tangent to both C1 and C2. There are two equivalence classes under
the equivalence relation and the two classes are said to be opposite. We can extend this
equivalence relation to apply to the planes of PG(3, q) meeting Q3 in a conic. Suppose L
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is a line not meeting Q3 and let L⊥3 be the polar line of L with respect to Q3. Of the q + 1
conic planes on L there are q+1

2 in each class. Let V be the set of q+1
2 conic planes on L

of one class. Clearly V is a partial flock of Q3. If we define W to be the set of q+1
2 conic

planes containing L⊥3 with the opposite class (respectively, same class) as those of V when
q ≡ 1 (mod 4), (respectively, q ≡ −1 (mod 4)), then V ∪ W is a non-linear flock of Q3.
These are the Thas flocks, constructed by Thas in [12]. For an elliptic quadric it is possible
to introduce the same equivalence relation on conic sections of the quadric and the same
construction of a flock. In this case the construction yields linear flocks (see [4]).

If we employ the polarity of the hyperbolic quadric Q3, then the equivalence relation on
conic planes becomes an equivalence relation on points not on Q3, and a flock becomes an
exterior set. Two points x and y are equivalent if there is a third point z such that 〈x, z〉 and
〈y, z〉 are both tangents to Q3. Viewed in this way the Thas construction gives an exterior
set from the union of two exterior sets, both of which have all their elements in the same
class. Similarly, if Q3 is elliptic, then the polarity of Q3 gives rise to an equivalence relation
on points not on Q3, and a flock becomes an interior set.

Extending these ideas to general dimension 2r + 1 we will give constructions for inte-
rior and exterior sets of non-singular quadrics, and hence of partial flocks of non-singular
quadrics.

6.1. An equivalence relation on points not on a quadric

Let Q2r+1 be a non-singular quadric in PG(2r + 1, q), q odd, with polarity ⊥2r+1. Let
Q2r+1 have quadratic form Q(x) and associated bilinear form β(x, y). Given this and
following Fisher and Thas [4], we now define the following operations: y · z = β (y, z),
‖y‖ = y · y, y × z = (y · z)2 − ‖y‖‖z‖. It follows that y × z is the discriminant of the
equation Q (y + λz) = 0 for λ ∈ G F(q)\ {0}. The number of the solutions of this equation
determines whether 〈y, z〉 is an exterior line to the quadric, a tangent line to the quadric or
a secant line to the quadric respectively. In particular we have the following:

|〈y, z〉 ∩ Q2r+1| = 2 ⇐⇒ y × z is a non-zero square,

|〈y, z〉 ∩ Q2r+1| = 1 ⇐⇒ y × z = 0,

|〈y, z〉 ∩ Q2r+1| = 0 ⇐⇒ y × z is a non-square.

We say that y ∼ z if there exists a point v such that 〈y, v〉 and 〈z, v〉 are both tangent lines
to Q2r+1. Otherwise we write y �∼ z. The relation ∼ is an equivalence relation on the set of
non-singular points of PG(2r + 1, q) and also on the set of hyperplane sections which are
non-singular parabolic quadrics, mentioned in the introduction to Section 6.

Theorem 16 Let y and z be two points of PG(2r + 1, q) \ Q2r+1, then y ∼ z if and only
if ‖y‖‖z‖ is a square in G F(q).

Proof: Suppose that y ∼ z. Then there exists a point v such that 〈y, v〉 and 〈z, v〉 are both
tangent lines to Q2r+1 and hence y × v = z × v = 0. Thus (y · v)2 (z · v)2 = ‖v‖2‖y‖‖z‖
and ‖y‖‖z‖ is a square.
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Conversely, suppose that ‖y‖‖z‖ is a square. If y = z, then there is a point v such that
y ∼ v and z ∼ v. So now suppose that y �= z. Let v be a fixed point of Q2r+1 such that we
have v · y = 0 and v · z �= 0. Let t = y + hv where h ∈ G F(q) \ {0} and so ‖t‖ = ‖y‖ �= 0
and y × t = 0. The equation z × t = 0 is a quadratic equation in h with discriminant
4 (z · v)2 ‖z‖‖y‖. Since this is a non-zero square, there is at least one value of h such that
z × t = 0 and so y ∼ z.

Theorem 17 If y ∼ z and v is a non-singular point such that v · y = v · z = 0, then 〈y, v〉
and 〈z, v〉 are either both exterior lines or both secant lines to Q2r+1. If

Vext = {v : v · y = v · z = 0, 〈y, v〉 and 〈z, v〉 are exterior lines} and

Vsec = {v : v · y = v · z = 0, 〈y, v〉 and 〈z, v〉 are secant lines},

then Vext consists exactly of the set of non-singular points of y⊥2r+1 ∩ z⊥2r+1 of one class
and Vsec exactly of the non-singular points on y⊥2r+1 ∩ z⊥2r+1 of the other class. Further,
Vext has the same class as y,z if and only if q ≡ −1 (mod 4) and Vsec has the same class
as y,z if and only if q ≡ 1 (mod 4).

Proof: Consider a non-singular point v such that v · y = v · z = 0, that is v ∈ y⊥2r+1 ∩
z⊥2r+1 . Thus v × y = −‖v‖‖y‖, v × z = −‖v‖‖z‖ and so (v × y) (v × z) = ‖v‖2‖y‖‖z‖
which is a non-zero square by Theorem 16. It follows that v × y and v × z are either both
square or both non-square. Thus 〈y, v〉 and 〈z, v〉 are either both exterior lines to Q2r+1 or
both secant lines to Q2r+1. Thus v is in one of Vext, Vsec. If v ∈ Vext, then v × y = −‖v‖‖y‖
is a non-square and so, by Theorem 16, v is in the same class as y (and z) if and only if −1
is a non-square, that is, if and only if q ≡ −1 (mod 4). By similar arguments, all elements
of Vsec are in the same class as y, z if and only if q ≡ 1 (mod 4).

6.2. Construction method for exterior and interior sets of non-singular quadrics

We now give the generalized Thas construction method for the exterior and interior sets
using exterior sets and interior sets of quadrics of lower dimensions.

Definition 18 Let F = {y1, . . . , ys} be an exterior (respectively, interior) set of a non-
singular quadric Q2r+1 of PG(2r + 1, q), q odd, such that yk ∼ yl for all k, l ∈ {1, . . . , s},
k �= l. We call such a set homogeneous in Q2r+1. Otherwise F is said to be inhomogeneous.
We say that a homogeneous exterior (respectively, interior) set has the same class as its
elements.

Lemma 19 Let F = {y1, . . . , ys} and F ′ = {v1, . . . , vt } be two homogeneous exterior
(respectively, interior) sets with respect to a non-singular quadric Q2r+1 of PG(2r + 1, q),
q odd, such that

yk · vl = 0 for all k = 1, · · · , s and l = 1, . . . , t.



368 BROWN, O’KEEFE AND TONESI

(i) If F and F ′ are in the same class and q ≡ −1 (mod 4) (respectively, q ≡ 1 (mod 4)),
then F ∪ F ′ is a homogeneous exterior (respectively, interior) set of Q2r+1.

(ii) If F and F ′ are in opposite classes and q ≡ 1 (mod 4) (respectively, q ≡ −1 (mod 4)),
then F ∪ F ′ is an inhomogeneous exterior (respectively, interior) set of Q2r+1.

Proof: Follows from Theorem 17.

By this method we can “patch” together homogeneous exterior (respectively, interior)
sets of non-singular quadrics to form an exterior (respectively, interior) set in a higher
dimensional non-singular quadric.

Theorem 20 Let Q2r+1 be a non-singular quadric in PG(2r + 1, q), q odd. Let Qm be
an m-dimensional, non-singular section of Q2r+1 and let Q2r−m = 〈Qm〉⊥2r+1 ∩Q2r+1. Let
F = {y1, . . . , ys} and F ′ = {v1, . . . , vt } be homogeneous exterior (respectively, interior)
sets of Qm and Q2r−m respectively.

(i) If F and F ′ are in the same class with respect to Q2r+1 and q ≡ −1 (mod 4) (respec-
tively, q ≡ 1 (mod 4)), then F ∪ F ′ is a homogeneous exterior (respectively, interior)
set of Q2r+1.

(ii) If F and F ′ are in opposite classes with respect to Q2r+1 and q ≡ 1 (mod 4) (re-
spectively, q ≡ −1 (mod 4)), then F ∪F ′ is an inhomogeneous exterior (respectively,
interior) set of Q2r+1.

Proof: Follows from Lemma 19.

In the following theorems we investigate the largest known constructions of exterior and
interior sets given by the generalized Thas construction method. We consider the homoge-
neous and inhomogeneous cases separately since in the homogeneous case we may use the
method repeatedly, while in the inhomogeneous case only once.

Theorem 21 For q ≡ −1 (mod 4) and r ≥ 0, the generalized Thas construction method
gives rise to homogeneous exterior sets of the following sizes:

Q+(2r + 1, q) :

{
r (q + 1)/2 + 1 if r is even,

(r + 1)(q + 1)/2 if r is odd; and

Q−(2r + 1, q) :

{
(r + 1)(q + 1)/2 if r is even,

r (q + 1)/2 + 1 if r is odd.

Proof: We can use the generalized Thas construction method to construct an exterior set
of Q+(2r + 1, q), q ≡ −1 (mod 4) in two ways. Firstly we take non-singular sections
Q+(2k + 1, q) and Q+(2(r − k − 1) + 1, q) of Q+(2r + 1, q) which are polar with respect
to the polarity of Q+(2r + 1, q) and then combine homogeneous exterior sets, of the same
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class, of these quadrics. The other way is to do the same with a polar Q−(2k + 1, q) and
Q−(2(r − k − 1) + 1, q) pair. Thus we can prove the theorem by using induction on r .

For the case r = 0, we see that Q+(1, q) has a largest exterior set of size 1 (and so
homogeneous) and Q−(1, q) has a largest homogeneous exterior set of size (q + 1)/2, and
the theorem is satisfied for r = 0. Next we consider r > 0 and suppose that the theorem is
satisfied for all r ′ with 0 ≤ r ′ < r .

First we consider constructions for Q+(2r + 1, q) in the case where r is odd. If k is odd,
then it follows that r−k−1 is also odd and using a polar Q+(2k+1, q), Q+(2(r−k−1)+1, q)
pair yields a homogeneous exterior set of size (k + 1)(q + 1)/2 + (r − k)(q + 1)/2 =
(q + 1)(r + 1)/2. A polar Q−(2k + 1, q), Q−(2(r − k − 1) + 1, q) pair gives a set of
size k(q + 1)/2 + 1 + (r − k − 1)(q + 1)/2 + 1 = (q + 1)(r − 1)/2 + 2. If k is even,
then r − k − 1 is also even and we obtain exterior sets of size (r − 1)(q + 1)/2 + 2 and
(r + 1)(q + 1)/2. If r is even and k is odd, then it follows that r − k − 1 is even. A polar
Q+(2k + 1, q), Q+(2(r − k − 1) + 1, q) pair gives a set of size r (q + 1)/2 + 1 and a polar
Q−(2k +1, q), Q−(2(r −k −1)+1, q) pair gives a set of size (r −1)(q +1)/2+2, smaller
than (r + 1)(q + 1)/2. If r and k are even, then r − k − 1 is odd and this case is equivalent
to the one just considered.

Now we consider Q−(2r + 1, q) and working analogously to the Q+(2r + 1, q) case we
have proved our result by induction.

We have a similar result for homogeneous interior sets.

Theorem 22 For q ≡ 1 (mod 4) and r ≥ 0 the generalized Thas construction method
gives rise to homogeneous interior sets of the following sizes:

Q+(2r + 1, q) : (r + 1)(q − 1)/2,

Q−(2r + 1, q) : r (q − 1)/2 + 1.

Now we consider the construction of inhomogeneous partial flocks using the generalized
Thas method.

Theorem 23 Let Q2r+1 be a non-singular quadric in PG(2r + 1, q), q odd. If q ≡ 1
(mod 4), then the generalized Thas construction gives rise to an inhomogeneous exte-
rior set of size q + 1; and if q ≡ −1 (mod 4) an inhomogeneous interior set of size
q − 1.

Proof: In this case using the generalized Thas construction we may only combine two
homogeneous exterior sets or interior sets, respectively. Using linear examples gives the
above results.

Remark 24 The sizes of the exterior and interior sets constructed above are not necessarily
the biggest possible using the generalized Thas construction. Since the construction may be
applied for any homogeneous exterior or interior set, discovery of new “big” homogeneous
exterior/interior sets could possibly lead to bigger exterior/interior sets using the generalized
Thas construction.
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Since a partial flock of Q−(2r + 1, q) is equivalent to an interior set of Q−(2r + 1, q)
and a partial flock of Q+(2r + 1, q) is equivalent to an exterior set of Q+(2r + 1, q) we
have the following result by combining the previous three theorems.

Theorem 25 For non-singular quadrics in PG(2r + 1, q), r ≥ 1, the generalized Thas
construction method gives rise to partial flocks of the following sizes:

Q+(2r + 1, q) :




r (q + 1)/2 + 1 if r is even and q ≡ −1 (mod 4),
(r + 1)(q + 1)/2 if r is odd and q ≡ −1 (mod 4),
q + 1 if q ≡ 1(mod 4);

Q−(2r + 1, q) :

{
r (q − 1)/2 + 1 if q ≡ 1 (mod 4),
q − 1 if q ≡ −1 (mod 4).
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