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Classifying Arc-Transitive Circulants
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Abstract. A circulant is a Cayley digraph over a finite cyclic group. The classification of arc-transitive circulants
is shown. The result follows from earlier descriptions of Schur rings over cyclic groups.
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1. Introduction

Let G be a finite group with identity element 1. For a given set S ⊆ G \{1} define a directed
graph � as

V � := G, E� := { (g, gs) ∈ G × G | g ∈ G, s ∈ S }.

In the case when S is symmetric, i.e., S = S−1 = {g−1 | g ∈ S} by � we mean an
undirected graph. We call � a Cayley digraph over G and it will be denoted by Cay(G, S).
We will refer to S as the connection set of � (in [7] the term symbol is used). It follows
from the definition that the left regular representation of G induces a regular subgroup of
Aut�. We will denote this subgroup as G∨. The full automorphism group of Cay(G, S) will
be also denoted by Aut(G, S). A circulant of order n is a Cayley digraph over a cyclic group
of order n.

Let H denote a cyclic group of order n and � = Cay(H, S). In this paper we consider
arc-transitive circulants �, i.e., for which Aut� acts transitively on the set of its arcs. If
� is not connected, then it can be easily seen that every component of connectedness is
isomorphic to the same arc-transitive circulant of order m, where m is a proper divisor
of n. By this reason it will be sufficient to regard among the arc-transitive circulants the
connected ones.

The desire to know all arc-transitive circulants with symmetric connection set occured
in [1]. The classification then was given for those of square-free order in [7]. In this paper
we classify all connected arc-transitive circulants. It should be mentioned that the complete
classification was obtained by Li [6] using permutation group techniques, which method
completely differs from the approach presented here. This result was appeared as reference
[72] in [5]. Before to state our main results a few notions are in order.

For the (di)graphs � and � denote by �[�] the lexicographical product of � by �,
i.e., the (di)graph with vertex set V � × V �; and for u1, u2 ∈ V � and v1, v2 ∈ V � the



354 KOVÁCS

pair ((u1, u2), (v1, v2)) is an arc if and only if (u1, u2) ∈ E� or u1 = u2 and (v1, v2) ∈
E�. If V � = V �, then denote by � − � the (di)graph with vertex set V �, and arc set
E� \ E�. Furthermore, �̄ will be used for the complement of �, m� will denote the
(di)graph consisting of m disjoint copies of �. Kn will be the complete graph on n vertices.
The circulant � defined over the cyclic group H is called normal, if H∨ is normal in Aut�.

Theorem 1 Let � be a connected arc-transitive circulant of order n. Then one of the
following holds:
(a) � = Kn;
(b) � is a normal circulant;
(c) � = �[K̄ d ], where n = md and � is a connected arc-transitive circulant of order m;
(d) � = �[K̄ d ] − d�, where n = md, d > 3, gcd(d, m) = 1 and � is a connected

arc-transitive circulant of order m.

Remark 1 In the particular case that n is a square free number and � is undirected
Theorem 1 gives the earlier result of [7]:

Theorem 2 ([7, Theorem 1.1]) Let � be a connected arc-transitive undirected circulant
of order n. If n is a square-free number and � is undirected, then one of the following holds:
(a) � = Kn;
(b) � is a normal circulant;
(c) � = �[K̄ d ] or � = �[K̄ d ] − d�, where n = md and � is a connected arc-transitive

circulant of order m.

Remark 2 As it was pointed out in [7] the arc-transitive circulants in class (b) can be
easily constructed. If � = Cay(H, S) is from class (b), then it follows (cf. [3, Lemma 2.1],
[7]) that Aut� = {g �→ gσ h | σ ∈ K , h ∈ H} for a suitable group K < AutH , and S =
{gσ | σ ∈ K } for some generating element g of H . For short we set gK = {gσ | σ ∈ K }.

The subgroups K < AutH such that Cay(H, gK ) is arc-transitive were described in
[2]. To recall this result a few notions need to be introduced. For a given subset T ⊂ H
define Stab(T ) := {h ∈ H | T h = T }. Let P(H ) be the set of all prime factors of
|H |. For p ∈ P(H ) let Hp denote the Sylow p-subgroup of H . It is well-known that
H = ∏

p∈P(H ) Hp and AutH = ∏
p∈P(H ) AutHp. For a given subgroup K ≤ AutH we write

AutHp ≤ K , if K is of the form K = (AutHp)K ′, where K ′ ≤ ∏
q∈P(H )\{p} AutHq . Define

P∗(K ) = {p ∈ P(H ) | |Hp| = p, AutHp ≤ K }.

Theorem 3 ([2, Theorem 6.1]) Let H be a cyclic group with a generating element g ∈ H,

and let K ≤ AutH. Then Cay(H, gK ) is normal if and only if |Stab(gK )| ≤ 2 and P∗(K ) ⊂
{2, 3}.

Suppose that H is a cyclic group of order n and let d be a proper Hall divisor of n, i.e.,
for which gcd(d, n/d) = 1. Denote by D and K the unique subgroups of H of order d
and k/d , respectively. Then H = DK . If a given subset S ⊂ H can be written of the form
S = S1S2 = {xy | x ∈ S1, y ∈ S2} such that S1 ⊂ D \ {1} and S2 ⊂ K \ {1}, then the
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circulant Cay(H, S) will be called the tensor product of Cay(D, S1) and Cay(K , S2). This
will be denoted by Cay(H, S) = Cay(D, S1) ⊗ Cay(K , S2).

After further examination of the circulants � occuring in classes (c) and (d) in Theorem 1
we will derive the following classification in terms of tensor products:

Theorem 4 Let H be a cyclic group of order n, and let g be a fixed generating element of
H. Then the connected arc-transitive circulants over H can be enumerated as the circulants:

(
� ⊗ Kn1 · · · ⊗ Knk

)
[K̄ m],

where n = n0 . . . nkm (k is possibly equal to 0), the numbers ni , i ∈ {0, . . . , k}, are pairwise
coprime and hi > 3 for all i > 0. Furthermore, � = Kn0 or � = Cay(〈gn/n0〉, (gn/n0 )K )
and K ≤ Aut〈gn/n0〉 such that |Stab((gn/n0 )K )| = 1 and P∗(K ) ⊂ {2, 3}.

The proof of Theorem 1 and Theorem 4 will be given in Section 3. They will be obtained
as a consequence of the strong structure results on Schur rings over cyclic groups proved
in [4] and [2]. For the reader convenience they will be formulated in Theorems 5 and 6 in
Section 2. The definition of a Schur ring over a cyclic group, its connection with circulants,
and its properties that will be needed are also presented in Section 2.

2. Schur rings over cyclic groups

In what follows the cyclic group of order n will be presented as the additive group of the
ring of residue classes modulo n. Zn will be used to denote both this ring and its additive
group. We identify Zn with the set {0, 1, . . . , n −1}. Then Z

∨
n is formed by the permutations

x �→ x + k, k ∈ Zn ( + is the additive operation of Zn). Let Z
∗
n be the multiplicative group

of units of Zn . Z
∗
n will also denote its action over Zn via left multiplication, i.e., for k ∈ Z

∗
n

the corresponding permutation is given by x �→ k · x ( · is the multiplicative operation of
Zn).

In the basic notation of Schur rings we will follow [10]. For the cyclic group Zn , let
Z(Zn) be the group ring of all formal sums

∑
i∈Zn

ai i , ai ∈ Z. It is also a Z-module with
scalar multiplication k(

∑
i∈Zn

ai i) := ∑
i∈Zn

(kai )i . For a subset T ⊆ Zn let T denote the
element

∑
i∈T i in Z(Zn). Such an element is also called a simple quantity. The transpose

of α = ∑
i∈Zn

ai i is defined as α
 := ∑
i∈Zn

ai (−i).
Let S be a subring of Z(Zn) which as a module is generated by the simple quantities

T0, . . . , Tr . S is called a Schur ring (for short an S-ring) over Zn if the sets Ti ’s form a
partition of Zn satisfying: T0 = {0}, and that for each i ∈ {0, . . . , r} there exists some
j ∈ {0, . . . , r} such that Ti


 = Tj . The sets Ti ’s are called the basic sets of S. The number
r + 1 is called the rank of S. The module generated by 0 and Zn \ {0} is an S-ring, which
is called the smallest S-ring over Zn .

We remark that S-rings can be defined over any finite group G by replacing Zn with
G in the above definition, where for the group ring element α = ∑

g∈G agg ∈ Z(G),
its transpose is defined as α
 := ∑

g∈G agg−1. They were created by I. Schur to study
permutation groups, cf. [10]. The idea to use S-rings over Zn to study circulants goes back
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to the works of M. Klin and R. Pöschel. For a recent survey on this approach we refer to
[9].

The automorphism group of the S-ring S is defined as

Aut(S) :=
r⋂

i=1

Aut(Zn, Ti ), (1)

where T0 = {0}, T1, . . . , Tr are the basic sets of S. Clearly, Z∨
n ≤ Aut(S). S is called normal

(cf. [2]) if Z
∨
n is normal in Aut(S).

For a given subset S ⊆ Zn \ {0} there exists a least S-ring over Zn containing S, see [9].
Moreover, if this S-ring is denoted by 〈〈S〉〉, then

Aut(Zn, S) = Aut(〈〈S〉〉). (2)

Let S be an S-ring over Zn . We recall next a few results about the structure of the basic
sets of S. The order of the subgroup of Zn generated by a given set T ⊆ Zn is called the
order of T . T is called free if Stab(T ) = {i ∈ Zn | T + x = T } is trivial. S is called free
if its basic sets of maximal order are free. A subgroup H ≤ Zn is called a S-subgroup if
H ∈ S.

Theorem 5 ([4]) Let S be an S-ring over Zn. If S is not free, then there exist S-subgroups
{0} < H ≤ K < Zn such that each basic set of S contained in Zn \ K is a union of
H-cosets.

Let d be a Hall divisor of n, and assume that D and K are S-subgroups of Zn such that
|D| = d and |K | = n/d , respectively. Then Zn = D + K . Denote by S1 and S2 the S-ring
over D and K , respectively that are induced by S. Then S is called the tensor product of S1

and S2, if any of its basic sets is of the form T1 + T2, where T1 and T2 are basic sets of S1

and S2, respectively. In the particular case when S1 is of rank 2, the S-ring S is also called
d-decomposable.

Theorem 6 ([2, Corollary 6.4]) A free S-ring over Zn is not normal if and only if it is
d-decomposable for some Hall divisor d | n, d > 3.

3. The proof of the main results

Theorem 1 will follow from Theorems 5 and 6 using the following

Proposition 1 Let Cay(Zn, S) be a connected arc-transitive circulant. If {0} < H < Zn

is an 〈〈S〉〉-subgroup, then H ∩ S = ∅.

Proof: For short let S = 〈〈S〉〉. We are going to show that S is a basic set of S. Denote by
A the point stabilizer of 0 ∈ Zn in Aut(S). If T is a basic set of S, then by (1) we have that
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T is fixed by A, hence it is the union of orbits of A. Since Aut(S) = Aut(Zn, S), see (2), and
Cay(Zn, S) is arc-transitive, S is an orbit of A. These observations imply that S is indeed a
basic set of S.

Now the proposition follows immediately. By H being an S-subgroup H ∩ S = ∅ or
S ⊂ H . In the latter case 〈S〉 = H < Zn , which cannot occur because of the initial
assumption that Cay(Zn, S) is connected. �

The Proof of Theorem 1: Let � = Cay(Zn, S) be a connected arc-transitive circulant
and let S = 〈〈S〉〉. If � = Kn , then it is arc-transitive, so we may assume that � �= Kn and,
thereby, S has rank more than 2. S is normal if and only if so is � = Cay(Zn, S), see (2),
hence in what follows we can assume that S is not normal.

Assume thatS is not free. Then apply Theorem 5 to conclude that there existS-subgroups
{0} < H ≤ K < Zn such that for each basic set T ofS, T \K is the union of some H -cosets.
S ∩ K = ∅ by Proposition 1, and since S is a basic set of S it follows that S is the union of
some H -cosets.

Denote by i∗ the image of i ∈ Zn under the natural homomorphism of Zn onto Zn/h ,
where h = |H |. It is easy then to check that

� = Cay(Zn, S) = Cay(Zn/h, S∗)[K̄ h],

where S∗ = {i∗ | i ∈ S}. Cay(Zn, S) is connected and arc-transitive if and only if so is
Cay(Zn/h, S∗). This gives by taking � = Cay(Zn/h, S∗) that � belongs to class (c).

It remains to consider the possibility that S is free. S is not normal is equivalent to saying
that it is d-decomposable for some Hall divisor d > 3, see Theorem 6. Let D, K < Zn

with |D| = d and |K | = k = n/d. Since D and K are S-groups, we obtain as above
that S ∩ D = S ∩ K = ∅. This implies that there exists a subset U ⊂ K such that
S = ∪i∈U ((D \ {0}) + i). From this

Cay(Zn, S) = Cay(Zk, U ′)[K̄ d ] − dCay(Zk, U ′),

where U ′ = {i ∈ Zk | di ∈ U }. � is connected and arc-transitive if and only if so is
Cay(Zk, U ′). Thus by taking � = Cay(Zk, U ′) one obtains � as one of the circulants in
class (d).

The Proof of Theorem 4: Let � = Cay(Zn, S) be a connected arc-transitive circulant
and let S = 〈〈S〉〉. We are going to use the notation of the previous proof. If S is not free,
then it follows that H = Stab(S) is a non-trivial S-subgroup of Zn . From this it follows
(see the above proof) that � = �[Kh], where h = |H | and � = Cay(Zn/h, S∗), where S∗

is the image of S under the natural homomorphism of Zn onto Zn/h . It also follows that the
S-ring 〈〈S∗〉〉 is a free S-ring over Zn/h .

Therefore, it remains to describe �, where S is a free S-ring over Zn . If now � �= Kn and
� is not normal, then � was proved to belong to class (d) in Theorem 1. More precisely, we
have the connection set S in the form: S = U + (D \ {0}), where K and U were suitable
disjoint subgroups of Zn , U ⊂ K . In terms of tensor products we have � = � ⊗ Kd , where
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� = Cay(K , U ), d = |D| > 3 and gcd(d, |K |) = 1. It is clear that the S-ring 〈〈U 〉〉 over
K remains free. Thus the previous argument can be applied to �. After finitely many steps
we obtain eventually � as the tensor product of a circulant �′ with the tensor products of
a few complete graphs, where �′ is complete or it is a normal circulant. Since the S-ring
generated by the connection set of �′ is free, the description of �′ given in Theorem 4
follows from Theorem 3.

Remark 3 We remark that in the above proof for the free S-ring 〈〈S〉〉, the set S could have
been obtained directly from the characterization of basic sets of S-rings over cyclic groups,
see [8, Theorem 3.1].
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