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Abstract. The structure of a Hopf operad is defined on the vector spaces spanned by forests of leaf-labeled,
rooted, binary trees. An explicit formula for the coproduct and its dual product is given, using a poset on forests.
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0. Introduction

The theme of this paper is the algebraic combinatorics of leaf-labeled rooted binary
trees and forests of such trees. We shall endow these objects with several algebraic
structures.

The main structure is an operad, called the Bessel operad, which is the suspension of
an operad defined by a distributive law between the suspended commutative operad and
the operad of commutative non-associative algebras (sometimes called Griess algebras).
The Bessel operad may be seen as an analog of the Gerstenhaber operad [10], which is
the suspension of an operad defined by a distributive law between the suspended com-
mutative operad and the Lie operad. Unlike the Gerstenhaber operad, the Bessel operad
has a simple combinatorial basis, given explicitly by forests of leaf-labeled rooted binary
trees.

The Bessel operad, like the Gerstenhaber operad, is a Hopf operad. More precisely, they
are both endowed with a cocommutative coproduct. This gives rise to a family of finite-
dimensional coalgebras. In the dual vector spaces of the Bessel operad, one gets algebras
based on forests of leaf-labeled binary trees.

An explicit formula is obtained for the coproduct in these coalgebras of forests (and
therefore for their dual products), using a poset structure on the set of forests, which may
be of independent interest.

After some preliminary material on operads in the first section, the second section is
devoted to the definition of a distributive law between the suspended commutative op-
erad and the Griess operad. The suspension of the operad defined by this distributive
law is introduced in the next section. The coproduct is defined and shown to be given
by an explicit sum in the fourth section. In the last section, the dual algebras are briefly
studied.
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1. Generalities on operads

As the usual setup for operads [4, 8, 9] is slightly different from the way operads are dealt
with here, this section gathers some conventions and definitions.

An operad P is seen as a functor from the groupoid of finite sets and bijections to some
symmetric monoidal category (vector spaces for example) together with binary composition
maps satisfying some natural axioms. If the target category is the category of sets, the
underlying functor is a species in the sense of [2].

Finite sets will be denoted by capital letters I, J, K , . . . . Elements of finite sets will be
denoted by letters i, j, k, . . . . The symbols � and # are used as place-holders for composition
maps.

The composition map ◦� is defined for any two finite sets I and J as a map from
P(I �{�}) ⊗P(J ) to P(I � J ). Other symbols such as # are used instead of � when iterated
compositions appear.

The tensor product ⊗ on the category of operads is given on the level of functors by
(P ⊗ Q)(I ) = P(I ) ⊗ Q(I ) and by the tensor products of composition maps.

A presentation by generators and relations of an operad is given as follows: some gen-
erators labelled by their inputs, with some specific symmetry properties with respect to
the symmetric group on these inputs, and some relations involving compositions of these
generators.

Under some mild hypothesis on the target category, there is a monoidal structure on the
category of functors starting from the groupoid of finite sets, which is called the composition
product and denoted by ◦. Then an operad can equivalently be defined as a monoid for ◦.
In this context, a distributive law relating two operads P and Q is a morphism of functors
from P ◦Q to Q◦P which induces an operad structure on Q◦P . For details on this notion,
see [7].

To describe a distributive law between two operads given by generators and relations, it
is sufficient to define it on single compositions of generators. Then a consistency condition
has to be checked on the double compositions of generators, see [7, Section 2] for more on
this.

2. A distributive law

All the operads considered here are in the monoidal category of complexes of vector spaces
over Q with zero differential, i.e. the category of vector spaces over Q which are graded
by Z, with Koszul sign rules for the tensor product. An Hopf operad is an operad P with a
coassociative morphism of operads from P to P ⊗ P .

A tree is a leaf-labeled rooted binary tree and a forest is a set of such trees, see figure 1.
Vertices are either inner vertices (valence 3) or leaves and roots (valence 1). By convention,
edges are oriented towards the root. Leaves are bijectively labeled by a finite set. A half-edge
is a pair made of an inner vertex and an incident edge (incoming or outgoing). Trees and
forests are pictured with their roots down and their leaves up, but are not to be considered
as planar.
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Figure 1. A forest on {0, 1, 2, . . . , 7}.

2.1. The determinant operad and orientations

An orientation of a finite set X is a generator of the Z-module �|X |ZX . For example,
1 ∧ 3 ∧ 4 ∧ 2 is an orientation of {1, 2, 3, 4}.

Let us recall the definition of the suspended commutative associative operad Det intro-
duced by Ginzburg and Kapranov [4]. Let I be a finite set. The vector space Det(I ) is the
determinant vector space �|I |QI placed in degree |I |−1. Any orientation of I gives a basis
of Det(I ). The composition of the operad Det is given by the rule

(x ∧ �) ◦� y = x ∧ y, (1)

for all x ∈ Det(I ) and y ∈ Det(J ).
It is well known and easy to check that Det has the presentation by the antisymmetric

generator ei, j = i ∧ j of degree 1 in Det({i, j}) satisfying

ei,� ◦� e j,k = ek,� ◦� ei, j . (2)

The operad Det is binary quadratic and Koszul, see [4] for the definitions of these notions.

2.2. The Griess operad and rooted binary trees

The operad Gri describing commutative but not necessarily associative algebras (sometimes
called Griess algebras) admits the following description. The space Gri(I ) has a basis
indexed by rooted binary trees with leaves labeled by I and the composition is grafting.
This vector space is placed in degree 0. In fact, Gri is the free operad on a binary symmetric
generator ωi, j of degree 0 corresponding to the unique rooted binary tree with two leaves
labeled by {i, j}. The operad Gri is binary quadratic and Koszul.

2.3. The operad B of root-oriented forests

Proposition 2.1 The following formula defines a distributive law from Gri ◦ Det to
Det ◦ Gri:

ωi,� ◦� e j,k = e j,� ◦� ωi,k − ek,� ◦� ωi, j . (3)
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Proof: As Gri is a free operad, one has only to check that the rewriting of

ωi,� ◦� (e j,# ◦# ek,�) − ωi,� ◦� (ek,# ◦# e�, j ), (4)

using (3) as a replacement rule, gives zero modulo the relation (2) which defines Det. Indeed,
one has

ωi,� ◦� (e j,# ◦# ek,�) = (ωi,� ◦� e j,#) ◦# ek,�

= (e j,� ◦� ωi,# − e#,� ◦� ωi, j ) ◦# ek,�

= e j,� ◦� (ωi,# ◦# ek,�) − (e#,� ◦� ωi, j ) ◦# ek,�

= e j,� ◦� (ek,# ◦# ωi,� − e�,# ◦# ωi,k) − (e#,� ◦# ek,�) ◦� ωi, j

= (e j,� ◦� ek,#) ◦# ωi,� − (e j,� ◦� e�,#) ◦# ωi,k − (e#,� ◦# ek,�) ◦� ωi, j

= (e j,� ◦� ek,#) ◦# ωi,� + (e j,� ◦� e#,�) ◦# ωi,k + (e#,� ◦� ek,�) ◦# ωi, j

= (e j,� ◦� ek,#) ◦# ωi,� + (e�,� ◦� e j,#) ◦# ωi,k + (ek,� ◦� e�,#) ◦# ωi, j .

This expression is invariant by cyclic permutations of j, k, �. This shows that the rewriting
of (4) is zero, which proves the proposition.

Let us summarize the description of the operad defined by this distributive law.

Proposition 2.2 The operad B defined on Det ◦ Gri by this distributive law is isomorphic
to the quotient of the free operad generated by ei, j antisymmetric in degree 1 and ωi, j

symmetric in degree 0 by the following relations.

ei,� ◦� e j,k = ek,� ◦� ei, j , (5)

ωi,� ◦� e j,k = e j,� ◦� ωi,k − ek,� ◦� ωi, j . (6)

Corollary 2.3 The operad B is binary quadratic and Koszul.

Proof: Koszulness follows from a theorem of Markl [7] since B is defined by a distributive
law between two Koszul operads.

A root-orientation of a forest F is an orientation of the set of roots of F . A root-oriented
forest is a tensor product of a root-orientation and a forest, see figure 2. By the construction
of B by a distributive law, the vector space B(I ) has a basis indexed by root-oriented forests.
The degree of a root-oriented forest is the number of roots minus one.

Here is a partial description of the composition, in the case where the first element is a
generator. Let F1 � F2 be the disjoint union of two forests F1 and F2. We use (from now on)
the abuse of notation (−1)x for (−1)deg(x) when x is homogeneous and also (−1)◦ instead of
(−1)deg(◦) for any kind of orientation o. The degree of an orientation is the number of wedge
signs that it contains. The generator ei, j acts on forests by disjoint union in the following
sense.
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Figure 2. A root-oriented forest on {0, 1, 2, . . . , 9}.

Proposition 2.4 Let o1 ⊗ F1 and o2 ⊗ F2 be two root-oriented forests. Then

e�,# ◦� (o1 ⊗ F1) ◦# (o2 ⊗ F2) = (−1)o1 o1 ∧ o2 ⊗ (F1 � F2). (7)

Proof: The proposition can be restated as follows. Let x ∈ B(I ) and y ∈ B(J ). Then

(e�,# ◦� x) ◦# y = (−1)x x ∧ y,

Indeed, one has e#,� ◦� x = # ∧ x and (x ∧ #) ◦# y = x ∧ y by the composition rule of Det.
The sign is given by e#,� = −e�,# and # ∧ x = (−1)x+1x ∧ #.

Let T1 ∨ T2 be the tree obtained by grafting T1 and T2 on the two leaves of the tree with
one inner vertex. The generator ωi, j acts on trees by grafting in the following sense.

Proposition 2.5 Let o1 ⊗ T1 and o2 ⊗ T2 be two root-oriented trees. Then

ω�,# ◦� (o1 ⊗ T1) ◦# (o2 ⊗ T2) = o ⊗ (T1 ∨ T2), (8)

where o is the unique root-orientation of the tree T1 ∨ T2.

Proof: This is just the composition of Gri, restated inside B, by definition of the compo-
sition in an operad defined by a distributive law.

3. The Bessel operad as a suspension

This section is devoted to the operad Bess = Det ⊗ B which is a suspended version of
B. This suspension is necessary for the definition of a Hopf operad structure in the next
section. Note that the word “suspension” is just used here to mean the tensor product with
Det, even if it corresponds to the usual shift of degree on the level of algebras.

The generating series of the operad Bess has for coefficients the Bessel polynomials
[5, 6], which are known to count the forests (sets) of rooted leaf-labeled binary trees, hence
the chosen name.

3.1. Outer and inner orientations

By its definition, the vector space Bess(I ) has a basis indexed by tensor products o1 ⊗o2 ⊗ F
where o1 is an orientation of I and o2 is a root-orientation of the forest F . This tensor
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product of two orientations is called an outer orientation of F . In this section, an alternative
description is given for this kind of orientation, which will be more convenient later.

A global orientation of a forest F is an orientation of the set V (F) � {RF }, where V (F)
is the set of inner vertices of F and RF is an auxiliary element.

A local orientation of a forest F at an inner vertex v is an orientation of its 3 incident
half-edges (which is of course equivalent to a cyclic order).

An inner-oriented forest is a tensor product o ⊗ ⊗
v∈V (F) ov ⊗ F , where o is a global

orientation of the forest F and the ov are local orientations of F at its inner vertices. This
will from now on be abridged o ⊗ F , where o is a global orientation, the local orientations
being implicit. Notice that the order in the product of the local orientations do not matter,
as they have degree 2.

One can identify an outer orientation o1 ⊗ o2 with an inner orientation in the following
way:

1. Consider the exterior product o1 ∧ RF ∧ o2 where RF is an auxiliary element.
2. Remove from this exterior product all possible pairs � ∧ r where � is a leaf and r is a

root which are related by an edge.
3. Add to this exterior product pairs e+ ∧ e− for all edges e between two inner vertices.

Here e+ (resp. e−) stands for the upper (resp. lower) half-edge.

The result is an exterior product on all half-edges of F and an auxiliary element RF . One
can assume that half-edges are gathered by three according to their incident inner vertex.
Replacing each such triple e1

v ∧ e2
v ∧ e3

v by the vertex v, one gets a global orientation of
F . One has to keep track of what has been replaced. This is done by assigning the local
orientation ov = e1

v ∧ e2
v ∧ e3

v to the inner vertex v.
Here is an example of this equivalence of orientations. Consider the outer-oriented forest

shown in figure 3. One can compute the corresponding inner orientation.

1 ∧ 2 ∧ 4 ∧ 3 ∧ 5 ∧ RF ∧ a ∧ c ∧ b

= 1 ∧ 2 ∧ 3 ∧ 5 ∧ RF ∧ a ∧ b

= 1 ∧ 2 ∧ 3 ∧ RF ∧ a

= 1 ∧ 2 ∧ 3 ∧ RF ∧ a ∧ e+ ∧ e−

= (1 ∧ 2 ∧ e+) ∧ RF ∧ (3 ∧ a ∧ e−),

where e+ and e− are the upper and lower half-edges of the unique inner edge. Hence one

Figure 3. An outer-oriented forest on {1, 2, 3, 4, 5}.
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Figure 4. An inner-oriented forest on {1, 2, 3, 4, 5}.

can take the global orientation to be s ∧ RF ∧ t (where s is the upper vertex and t the lower
one) and the local orientations to be 1 ∧ 2 ∧ e+ at vertex s and 3 ∧ a ∧ e− at vertex t . The
result is shown in figure 4.

The grading is modified (but its parity is not changed) in order that the forests with no
inner vertex are in degree 0, which will be convenient in the next section. From now on, the
degree of an inner-oriented forest is the number of its inner vertices.

3.2. Presentation of Bess

From the known presentation of B, a presentation of Bess by generators and relations is
given in this section.

Let Ei, j be the inner-oriented forest with two trees on {i, j} defined by the outer-oriented
formula Ei, j = ( j ∧ i) ⊗ ei, j . It is symmetric of degree 0. As an inner-oriented forest, it is

R⊗
i
|

j
| . (9)

Let �i, j be the inner-oriented tree on {i, j} defined by the outer-oriented formula �i, j =
(i ∧ j) ⊗ ωi, j . It is antisymmetric of degree 1. As an inner-oriented tree, it is given by
figure 5.

Proposition 3.1 The operad Bess is isomorphic to the quotient of the free operad on the
generators Ei, j symmetric of degree 0 and �i, j antisymmetric of degree 1 by the relations

Ei,� ◦� E j,k = Ek,� ◦� Ei, j , (10)

�i,� ◦� E j,k = E j,� ◦� �i,k + Ek,� ◦� �i, j . (11)

Proof: The tensor product by the operad Det acts essentially by changing all the signs.
It is well known that the suspended operad has a presentation by similar generators and

Figure 5. �i, j as an inner-oriented tree.
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relations (up to sign) as it is simply given by a shift of grading at the level of algebras. Let
us compute the new relations for our chosen generators. First,

Ei,� ◦� E j,k = ((� ∧ i) ⊗ ei,�) ◦� ((k ∧ j) ⊗ e j,k)

= ((i ∧ �) ◦� (k ∧ j)) ⊗ (ei,� ◦� e j,k)

= (i ∧ k ∧ j) ⊗ (ei,� ◦� e j,k).

Therefore Ei,� ◦� E j,k is invariant by cyclic permutations of i, j, k. One also has

�i,� ◦� E j,k = ((i ∧ �) ⊗ ωi,�) ◦� ((k ∧ j) ⊗ e j,k)

= ((i ∧ �) ◦� (k ∧ j)) ⊗ (ωi,� ◦� e j,k)

= (i ∧ k ∧ j) ⊗ (e j,� ◦� ωi,k − ek,� ◦� ωi, j )

= ( j ∧ i ∧ k) ⊗ (e j,� ◦� ωi,k) + (k ∧ i ∧ j) ⊗ (ek,� ◦� ωi, j ))

= E j,� ◦� �i,k + Ek,� ◦� �i, j .

Therefore an algebra over Bess is a complex C together with a commutative associative
product on C and a commutative not necessarily associative product on the shifted complex
C [1], which satisfy a compatibility relation deduced from (11).

The composition inside E is then described as follows.

Proposition 3.2 Let o1 ⊗ F1 and o2 ⊗ F2 be two inner-oriented forests. Then

E�,# ◦� (o1 ⊗ F1) ◦# (o2 ⊗ F2) = (o1 � o2) ⊗ (F1 � F2), (12)

where the global orientation o1 � o2 is obtained from o1 ∧ r ∧ o2 by replacing R1 ∧ r ∧ R2

by R. The local orientations are unchanged.

Proof: Let o′
1 ⊗ o′′

1 and o′
2 ⊗ o′′

2 be the corresponding outer orientations of F1 and F2.
Using Proposition 2.4, one has

E�,# ◦� (o1 ⊗ F1) ◦# (o2 ⊗ F2)

= ((# ∧ �) ⊗ e�,#) ◦� (o′
1 ⊗ o′′

1 ⊗ F1) ◦# (o′
2 ⊗ o′′

2 ⊗ F2)

= (−1)o′
1+o′

2+o′
2o′′

1 ((# ∧ �) ◦� o′
1 ◦# o′

2) ⊗ (e�,# ◦� (o′′
1 ⊗ F1) ◦# (o′′

2 ⊗ F2))

= (−1)(1+o′′
1 )(1+o′

2)o′
1 ∧ o′

2 ⊗ o′′
1 ∧ o′′

2 ⊗ (F1 � F2).

Hence the corresponding inner orientation is given by

(−1)(1+o′′
1 )(1+o′

2)o′
1 ∧ o′

2 ∧ R ∧ o′′
1 ∧ o′′

2 .

On the other hand, let us compute the orientation corresponding to o1 � o2.

o′
1 ∧ R1 ∧ o′′

1 ∧ r ∧ o′
2 ∧ R2 ∧ o′′

2 = (−1)(1+o′′
1 )(1+o′

2)o′
1 ∧ o′

2 ∧ R ∧ o′′
1 ∧ o′′

2 .

Therefore the two orientations are the same.
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The composition inside � on trees has the following description.

Proposition 3.3 Let o1 ⊗ T1 and o2 ⊗ T2 be two inner-oriented trees. Then

��,# ◦� (o1 ⊗ T1) ◦# (o2 ⊗ T2) = (o1 ∨ o2) ⊗ (T1 ∨ T2), (13)

where the global orientation o1 ∨ o2 is defined by (−1)o1 o1 ∧ o2 modulo R1 ∧ R2 = R ∧ v

where v is the inner vertex of �. The local orientations are unchanged.

Proof: Let o′
1 ⊗ root1 and o′

2 ⊗ root2 be the corresponding outer orientations of T1 and
T2. Using Proposition 2.5, one has

��,# ◦� (o′
1 ⊗ root1 ⊗ T1) ◦# (o′

2 ⊗ root2 ⊗ T2)

= ((� ∧ #) ◦� o′
1 ◦# o′

2) ⊗ (ω�,# ◦� root1 ⊗ T1 ◦# root2 ⊗ T2)

= (−1)o′
1 (o′

1 ∧ o′
2) ⊗ root ⊗ (T1 ∨ T2).

So the corresponding orientation is (−1)o′
1 o′

1 ∧o′
2 ∧ R∧root. Introducing pairs of half-edges

gives

(−1)o′
1 o′

1 ∧ o′
2 ∧ R ∧ root ∧ root1 ∧ e−

1 ∧ root2 ∧ e−
2 ,

where e−
1 and e−

2 are lower half-edges. This is equivalent with the local orientation (root ∧
e−

1 ∧ e−
2 ) at vertex v (which is the local orientation of �, see figure 5) and orientation

(−1)o′
1 o′

1 ∧ o′
2 ∧ R ∧ root1 ∧ v ∧ root2.

On the other hand, the proposed orientation is

(−1)o1 o′
1 ∧ R1 ∧ root1 ∧ o′

2 ∧ R2 ∧ root2 = (−1)o1 o′
1 ∧ o′

2 ∧ R1 ∧ root1 ∧ R2 ∧ root2.

This matches the computed orientation, as R1 ∧ R2 = R ∧ v and (−1)o1 = (−1)o′
1 .

Let us extend the definition of ∨ from trees to forests, as follows. Let F1 = T 1
1 � T 2

1 �
· · · � T m

1 and F2 = T 1
2 � T 2

2 � · · · � T n
2 be forests, where the T are trees. Define F1 ∨ F2 to

be the sum

∑
1≤a≤m

∑
1≤b≤n

(
T a

1 ∨ T b
2

) � T 1
1 � · · · � T̂ a

1 � · · · � T 2
2 � · · · � T̂ b

2 � . . . ,

where T̂ means that this term is absent. In words, F1 ∨ F2 is the sum over all possible

pairings of a tree from T1 and a tree from T2, where these two trees are replaced in the
disjoint union F1 � F2 by their ∨ product.
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Then Proposition 3.3 is still true for forests instead of just trees, with the extended
definition just given for ∨.

Proposition 3.4 Let o1 ⊗ F1 and o2 ⊗ F2 be two inner-oriented forests. Then

��,# ◦� (o1 ⊗ F1) ◦# (o2 ⊗ F2) = (o1 ∨ o2) ⊗ (F1 ∨ F2), (14)

where the global orientation o1 ∨ o2 is defined by (−1)o1 o1 ∧ o2 modulo R1 ∧ R2 = R ∧ v

where v is the inner vertex of �. The local orientations are unchanged.

Proof: By recursion on the total number of trees in F1 and F2. The proposition is true if
F1 and F2 are trees. Let us assume that F2 has at least two trees.

One the one hand,

��,# ◦� (o1 ⊗ F1) ◦# ((o2 � o3) ⊗ (F2 � F3))

= ��,# ◦� (o1 ⊗ F1) ◦# (E�,∞ ◦� (o2 ⊗ F2) ◦∞ (o3 ⊗ F3))

= ��,# ◦# E�,∞ ◦� (o1 ⊗ F1) ◦� (o2 ⊗ F2) ◦∞ (o3 ⊗ F3)

= (E�,# ◦# ��,∞ + E∞,# ◦# ��,�) ◦� (o1 ⊗ F1) ◦� (o2 ⊗ F2) ◦∞ (o3 ⊗ F3)

= (−1)o2o3 E�,# ◦# ��,∞ ◦� (o1 ⊗ F1) ◦∞ (o3 ⊗ F3) ◦� (o2 ⊗ F2)

+ E∞,# ◦# ��,� ◦� (o1 ⊗ F1) ◦� (o2 ⊗ F2) ◦∞ (o3 ⊗ F3)

= (−1)o2o3 E�,# ◦# ((o1 ∨ o3) ⊗ (F1 ∨ F3)) ◦� (o2 ⊗ F2)

+ E∞,# ◦# ((o1 ∨ o2) ⊗ (F1 ∨ F2)) ◦∞ (o3 ⊗ F3)

= (−1)o2o3 ((o1 ∨ o3) � o2) ⊗ ((F1 ∨ F3) � F2)

+ ((o1 ∨ o2) � o3) ⊗ ((F1 ∨ F2) � F3).

On the other hand, the definition of ∨ implies that

(o1 ∨ (o2 � o3)) ⊗ (F1 ∨ (F2 � F3)) = (o1 ∨ (o2 � o3)) ⊗ ((F1 ∨ F3) � F2)

+ (o1 ∨ (o2 � o3)) ⊗ ((F1 ∨ F2) � F3)).

So it remains to compare the orientations. Using their defining properties, it is easy to
see that

(−1)o2o3 (o1 ∨ o3) � o2 = o1 ∨ (o2 � o3) = (o1 ∨ o2) � o3.

The proposition is proved.

4. A coproduct on Bess

In this section, a map from Bess to Bess ⊗ Bess is first defined on generators, then shown
to be given by an explicit formula.
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4.1. Definition on generators

Let us define a coproduct � : Bess → Bess ⊗ Bess on the generators Ei, j and �i, j of Bess
by

�(Ei, j ) = Ei, j ⊗ Ei, j , (15)

�(�i, j ) = Ei, j ⊗ �i, j + �i, j ⊗ Ei, j . (16)

Proposition 4.1 These formulas define a coassociative cocommutative morphism of op-
erads from Bess to Bess ⊗ Bess, i.e. the structure of a Hopf operad on Bess. In particular,
each Bess(I ) inherits a structure of cocommutative coalgebra.

Proof: Coassociativity and cocommutativity are clear on generators. One has to check
that the relations (10) and (11) of Bess are annihilated by �. First,

�(Ei,� ◦� E j,k) = (Ei,� ⊗ Ei,�) ◦� (E j,k ⊗ E j,k) = (Ei,� ◦� E j,k) ⊗ (Ei,� ◦� E j,k),

which inherits the invariance of Ei,� ◦� E j,k under cyclic permutations of i, j, k. Hence �

vanishes on the relation (10). For the other relation, on the one hand

�(�i,� ◦� E j,k) = (Ei,� ⊗ �i,� + �i,� ⊗ Ei,�) ◦� (E j,k ⊗ E j,k)

= (Ei,� ⊗ �i,�) ◦� (E j,k ⊗ E j,k) + (�i,� ⊗ Ei,�) ◦� (E j,k ⊗ E j,k)

= (Ei,� ◦� E j,k) ⊗ (�i,� ◦� E j,k) + (�i,� ◦� E j,k) ⊗ (Ei,� ◦� E j,k)

= (Ei,� ◦� E j,k) ⊗ (E j,� ◦� �i,k) + (Ei,� ◦� E j,k) ⊗ (Ek,� ◦� �i, j )

+ (E j,� ◦� �i,k) ⊗ (Ei,� ◦� E j,k) + (Ek,� ◦� �i, j ) ⊗ (Ei,� ◦� E j,k).

On the other hand,

�(E j,� ◦� �i,k) = (E j,� ⊗ E j,�) ◦� (Ei,k ⊗ �i,k + �i,k ⊗ Ei,k)

= (E j,� ◦� Ei,k) ⊗ (E j,� ◦� �i,k) + (E j,� ◦� �i,k) ⊗ (E j,� ◦� Ei,k)

= (Ei,� ◦� E j,k) ⊗ (E j,� ◦� �i,k) + (E j,� ◦� �i,k) ⊗ (Ei,� ◦� E j,k),

and a similar formula holds for �(Ek,� ◦� �i, j ). From these formulas, it is clear that �

vanishes on relation (11). This proves the proposition.

Remark As it is a coalgebra in the chosen ambient category (see Section 2), the coalgebra
structure on Bess(I ) is graded by the number of inner vertices.

4.2. A poset on forests

There is an explicit formula for the coproduct, which is a sum over subsets of the set of
inner vertices. A poset on forests involved in this formula is described first.
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Figure 6. An interval in the poset of forests on {i, j, k, �}.

A leaf is an ancestor of a vertex if there is path from the leaf to the root going through
the vertex.

Let F and F ′ be two forests on the set I . Then F ′ ≤ F if there is a topological map from
F ′ to F with the following properties:

1. It is increasing with respect to orientation towards the root.
2. It maps inner vertices to inner vertices injectively.
3. It restricts to the identity on leaves.

In fact, such a topological map from F ′ to F is determined by the image of inner vertices of
F ′. Indeed one can recover the map by joining the image of an inner vertex with its ancestor
leaves in F ′. See figure 7 for an example of comparable forests, where the topological map
is shown using colors.

This relation defines a partial order on the set of forests on I . The maximal elements
of this poset are the trees. This poset is ranked by the number of inner vertices. Figure 6
displays an interval in the poset of forests on the set {i, j, k, �}.

Figure 7. Example for the order relation.
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Remark As can be seen on figure 6, the interval in this poset between the minimal element
and one of the “comb” trees (which have a leaf with all the inner vertices belonging to its
path to the root) can be identified to the partition lattice. The proof is by identifying a forest
with the partition of the set of leaves defined by its trees. Details will be given elsewhere.

If F is a forest on the set I and V is a subset of the set V (F) of inner vertices of
F , let γ (F, V ) be the sum of forests F ′ such that F ′ ≤ F and the inner vertices of
F ′ are identified with the elements of V . The sum γ (V, F), which is an element of the
free Z-module generated by the set of forests on the finite set I , can also be consid-
ered as a set, as it has no multiplicity. Indeed, there is at most one way to complete
a injection of inner vertices into a topological map from a given forest F ′ to a given
forest F .

Lemma 4.2 Let � and ∨ be the bilinear extensions of the operations � and ∨ on forests.

1. Let T = T1 ∨ T2 be a tree and V ′ be a subset of V (T ) containing the bottom vertex v.
Let V ′

1 = V ′ ∩ V (T1) and V ′
2 = V ′ ∩ V (T2). Then γ (T, V ′) = γ (T1, V ′

1) ∨ γ (T2, V ′
2).

2. Let T = T1 ∨ T2 be a tree and V ′ be a subset of V (T ) not containing the bottom vertex
v. Let V ′

1 = V ′ ∩ V (T1) and V ′
2 = V ′ ∩ V (T2). Then γ (T, V ′) = γ (T1, V ′

1) � γ (T2, V ′
2).

3. Let F = F1 � F2 be a forest and V ′ be a subset of V (F). Let V ′
1 = V ′ ∩ V (F1) and

V ′
2 = V ′ ∩ V (F2). Then γ (F, V ′) = γ (F1, V ′

1) � γ (F2, V ′
2).

Proof: The second and third cases are essentially the same and easy consequences of the
definition of the poset. If two sets V1, V2 of inner vertices of a forest F have no ancestor leaf
in common, then the set γ (F, V1 � V2) is in bijection with the product γ (F, V1)×γ (F, V2).
For γ seen as a sum, this gives the expected result.

The first case now. Any element of γ (T, V ′) is a forest F with inner vertices V ′. This
forest can be restricted to V ′

1 and to V ′
2 to give two forests F1 and F2. To be able to recover

the forest F from F1 and F1, it is necessary and sufficient to know to which tree of F1 and to
which tree of F2 the vertex v was connected in F . Therefore the set γ (T, V ′) is in bijection
with the set of quadruples (F1, α, F2, β) where F1 and F2 are in γ (T1, V ′

1) and γ (T2, V ′
2), α

is a tree of F1 and β is a tree of F2.
Therefore, seen as a sum, γ (T, V ′) is exactly given by the bilinear extension of the

operation ∨ on forests, which is a sum over the set of pairs of subtrees.

4.3. Explicit formula for the coproduct

Proposition 4.3 Let o ⊗ F be an inner-oriented forest. Then

�(o ⊗ F) =
∑

V (F)=V ′�V ′′
(o′ ⊗ γ (F, V ′)) ⊗ (o′′ ⊗ γ (F, V ′′)). (17)

where the local orientations are unchanged and the global orientations satisfy o′∧r∧o′′ = o
modulo R′ ∧ r ∧ R′′ = R.
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Figure 8. Half of an example for the cocommutative coproduct.

An example for this formula is given in figure 8, where only half of the terms are displayed
because of cocommutativity, and where signs and orientations are omitted for simplicity.

Proof: The proof is a recursion on the number of inner vertices. The proposition is clear
for trees with no inner vertex. The proof of the recursion step is done separately for trees
and for forests with at least two trees.

The case of trees Let o1 ⊗ T1 and o2 ⊗ T2 be two inner-oriented trees and let o ⊗ T =
(o1 ∨ o2) ⊗ (T1 ∨ T2). Then

�(o ⊗ T ) = �(��,# ◦� (o1 ⊗ T1) ◦# (o2 ⊗ T2))

=
∑

V (T1)=V ′
1�V ′′

1

∑
V (T2)=V ′

2�V ′′
2

(��,# ⊗ E�,# + E�,# ⊗ ��,#)

◦� (o′
1 ⊗ γ ′

1 ⊗ o′′
1 ⊗ γ ′′

1 ) ◦# (o′
2 ⊗ γ ′

2 ⊗ o′′
2 ⊗ γ ′′

2 ), (18)

where γ ∗
i stands for γ (Ti , V ∗

i ).
The first half of this formula corresponding to the expansion of the composition in

��,# ⊗ E�,# is given by

∑
V (T1)=V ′

1�V ′′
1

∑
V (T2)=V ′

2�V ′′
2

(−1)o′
2o′′

1 (��,# ◦� (o′
1 ⊗ γ ′

1) ◦# (o′
2 ⊗ γ ′

2))

⊗(E�,# ◦� (o′′
1 ⊗ γ ′′

1 ) ◦# (o′′
2 ⊗ γ ′′

2 ))

=
∑

V (T1)=V ′
1�V ′′

1

∑
V (T2)=V ′

2�V ′′
2

(−1)o′
2o′′

1 ō′ ⊗ (γ ′
1 ∨ γ ′

2) ⊗ ō′′ ⊗ (γ ′′
1 � γ ′′

2 ), (19)

the orientations satisfying

o′
1 ∧ r1 ∧ o′′

1 = o1 R′
1 ∧ r1 ∧ R′′

1 = R1

o′
2 ∧ r2 ∧ o′′

2 = o2 R′
2 ∧ r2 ∧ R′′

2 = R2

(−1)o′
1 o′

1 ∧ o′
2 = ō′ R′ ∧ s = R′

1 ∧ R′
2

o′′
1 ∧ r ′′ ∧ o′′

2 = ō′′ R′′
1 ∧ r ′′ ∧ R′′

2 = R′′.
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On the other hand, one has to compute∑
V (T )=V ′�V ′′

v∈V ′

o′ ⊗ γ (T, V ′) ⊗ o′′ ⊗ γ (T, V ′′). (20)

As V (T ) = {v} � V (T1) � V (T2), one can replace the sum by a double sum, using Lemma 4.2:

∑
V (T1)=V ′

1�V ′′
1

∑
V (T2)=V ′

2�V ′′
2

o′ ⊗ (γ ′
1 ∨ γ ′

2) ⊗ o′′ ⊗ (γ ′′
1 � γ ′′

2 ),

with the orientations determined by

o′ ∧ r ∧ o′′ = o1 ∨ o2 R′ ∧ r ∧ R′′ = R

(−1)o1 o1 ∧ o2 = o1 ∨ o2 R1 ∧ R2 = R ∧ s.

All these conditions on orientations together imply that the orientations o′ ⊗ o′′ and
(−1)o′

2o′′
1 ō′ ⊗ ō′′ are the same. Therefore (19) and (20) are equal.

The other half of the sum (18), corresponding to the expansion of the composition in
E�,# ⊗ ��,#, is shown in the same way to be equal to∑

V (T )=V ′�V ′′
v∈V ′′

o′ ⊗ γ (T, V ′) ⊗ o′′ ⊗ γ (T, V ′′). (21)

Therefore the full sum (18) is given by the expected formula (17) and the recursion step
is done for trees.

The case of true forests Let o1 ⊗ F1 and o2 ⊗ F2 be two inner-oriented forests and let
o ⊗ F = (o1 � o2) ⊗ (F1 � F2). One has

�(o ⊗ F) = �(E�,# ◦� o1 ⊗ F1 ◦# o2 ⊗ F2)

=
∑

V1=V ′
1�V ′′

1

∑
V2=V ′

2�V ′′
2

(E�,# ⊗ E�,#) ◦� (o′
1 ⊗ γ ′

1 ⊗ o′′
1 ⊗ γ ′′

1 ) ◦# (o′
2 ⊗ γ ′

2 ⊗ o′′
2 ⊗ γ ′′

2 )

=
∑

V1=V ′
1�V ′′

1

∑
V2=V ′

2�V ′′
2

(−1)o′
2o′′

1 (E�,# ◦� o′
1 ⊗ γ ′

1 ◦# o′
2 ⊗ γ ′

2)

⊗ (E�,# ◦� o′′
1 ⊗ γ ′′

1 ◦# o′′
2 ⊗ γ ′′

2 )

=
∑

V1=V ′
1�V ′′

1

∑
V2=V ′

2�V ′′
2

(−1)o′
2o′′

1 ō′ ⊗ (γ ′
1 � γ ′

2) ⊗ ō′′ ⊗ (γ ′′
1 � γ ′′

2 ), (22)

where γ ∗
i stands for γ (Fi , V ∗

i ) and the orientations satisfy

o′
1 ∧ r1 ∧ o′′

1 = o1 R′
1 ∧ r1 ∧ R′′

1 = R1

o′
2 ∧ r2 ∧ o′′

2 = o2 R′
2 ∧ r2 ∧ R′′

2 = R2
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o′
1 ∧ r ′ ∧ o′

2 = ō′ R′
1 ∧ r ′ ∧ R′

2 = R′

o′′
1 ∧ r ′′ ∧ o′′

2 = ō′′ R′′
1 ∧ r ′′ ∧ R′′

2 = R′′.

On the other hand, one has to compute

∑
V (F)=V ′�V ′′

o′ ⊗ γ (F, V ′) ⊗ o′′ ⊗ γ (F, V ′′). (23)

As V (F) = V (F1) � V (F2), one can replace the summation by two separate summations,
using Lemma 4.2:

∑
V (F1)=V ′

1�V ′′
1

∑
V (F2)=V ′

2�V ′′
2

o′ ⊗ (γ ′
1 � γ ′

2) ⊗ o′′ ⊗ (γ ′′
1 � γ ′′

2 ), (24)

with the orientations satisfying

o′ ∧ r ∧ o′′ = o1 � o2 R′ ∧ r ∧ R′′ = R

o1 ∧ r12 ∧ o2 = o1 � o2 R1 ∧ r12 ∧ R2 = R.

One can then show by using all the conditions above that the orientations o′ ⊗ o′′ and
(−1)o′

2o′′
1 ō′ ⊗ ō′′ are the same, which implies that (22) and (23) are equal. The recursion step

is done for forests.
The proposition is proved.

Proposition 4.4 The projection to the one-dimensional degree zero component is a counit.
The inclusion of this degree zero component is an augmentation.

Proof: For a finite set I , there is just one forest of degree zero, which has no inner vertex.
By inspection of the formula for the coproduct, this forest is grouplike. The second part of
the proposition follows. This forest can only be obtained in the coproduct of F for the two
summands given by V (F) � ∅ and ∅ � V (F), and the counit property is easily checked.

5. Algebras of labeled binary trees

As it is sometimes more convenient to work with algebras rather than coalgebras, we
introduce here the algebra structure on the dual vector space of Bess(I ). A finite set I is
fixed from now on.
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5.1. Description and properties

Let us consider the dual basis, still indexed by inner-oriented forests on I , of the dual vector
space Bess∗(I ), defined by the following pairing from Bess(I ) ⊗ Bess∗(I ) to Q.

〈o ⊗ F, o′ ⊗ F ′〉 =
{

0 if F �= F ′,
1 if F = F ′ and o = o′.

The induced pairing from Bess(I )⊗Bess(I )⊗Bess∗(I )⊗Bess∗(I ) to Q is denoted again
by 〈 〉.

It appears to be more convenient to use the opposite of the dual product.

Proposition 5.1 The opposite of the dual product is given by

(o1 ⊗ F1) × (o2 ⊗ F2) =
∑

(F,V1�V2)

o ⊗ F, (25)

where the orientations satisfy o1 ∧ r ∧ o2 = o and R1 ∧ r ∧ R2 = R, the sum being over
the set of pairs (F, V1 � V2) where F is a forest and V (F) = V1 � V2 a partition of the set
of inner vertices of F such that F1 appears in γ (F, V1) and F2 appears in γ (F, V2).

Proof: The defining property of the dual product ×op is

〈o1 ⊗ F1 ⊗ o2 ⊗ F2, �(o ⊗ F)〉 = 〈(o1 ⊗ F1) ×op (o2 ⊗ F2), o ⊗ F〉. (26)

Let �(o ⊗ F) = ∑
o′ ⊗ γ ′ ⊗ o′′ ⊗ γ ′′, with the orientations given by o′ ∧ r ∧ o′′ = o and

R′ ∧ r ∧ R′′ = R. The left hand-side of (26) can be computed as follows.

∑
〈o1 ⊗ F1 ⊗ o2 ⊗ F2, o′ ⊗ γ ′ ⊗ o′′ ⊗ γ ′′〉

=
∑

(−1)o′o2〈o1 ⊗ F1, o′ ⊗ γ ′〉〈o2 ⊗ F2, o′′ ⊗ γ ′′〉
= (−1)o1o2δo′,o1δF1∈γ ′δo′′,o2δF2∈γ ′′ ,

where δF∈γ is 1 if F belongs to the set/sum γ and else 0, and the orientations are identified
in an obvious way. Here was used the fact that the sum γ (F, V ) is without multiplicity.

Therefore, as taking the opposite product exactly removes the sign (−1)o1o2 , one has

〈(o1 ⊗ F1) × (o2 ⊗ F2), o ⊗ F〉 = δo′,o1δF1∈γ ′δo′′,o2δF2∈γ ′′ .

The proposition follows.

Let the support of a forest F , denoted by Supp(F), be the set of leaves which are not
linked to the root by an edge, i.e. such that the path to the root contains at least one inner
vertex.
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Lemma 5.2 Let F be any forest appearing in the product of F1 and F2. Then Supp(F) =
Supp(F1) ∪ Supp(F2).

Proposition 5.3 Let F1, F2 be two forests on I with disjoint supports. Then the only forest
appearing in the product of F1 and F2 is the forest F with Supp(F) = Supp(F1)�Supp(F2)
which coincides with F1 and F2 on their respective support.

Proof: Any forest appearing in the product should have support the disjoint union of
supports. The condition that F1 ≤ F implies that the number of inner vertices of F
which are linked to the support of F1 is greater or equal than the number of inner ver-
tices of F1. The same is true for F2 and its support. But the number of inner vertices
of F is the sum of those of F1 and F2, therefore there is equality and the proposition
follows.

For any set I containing {i, j}, let Yi, j be the element of Bess∗(I ) corresponding to the
forest with one inner vertex, with support {i, j} and orientation as in figure 5.

Lemma 5.4 Let F be a forest on I with j �∈ Supp(F). Then the forests appearing in
F × Yi, j are exactly all forests obtained from F by grafting a leaf j to any edge in the path
from i to the root.

Proof: It is clear that each such forest do appear in the product. We need only to show
that there are no others. The forests which appear should have a vertex with leaves i and j
as ancestors. As j do not belong to the support of F , this vertex should be added to F . It
can only be added on an edge of the path from i to the root.

5.2. Some relations and open questions

Let us introduce some notation. Let LLL(i, j, k, �) be the inner-oriented forest on any set
I containing {i, j, k, �}, which is defined on its support {i, j, k, �} by the same orientations
and tree as figure 9.

Let YYY(i, j, k, �) be the inner-oriented forest on any set I containing {i, j, k, �},
which is defined on its support {i, j, k, �} by the same orientations and tree as
figure 10.

Figure 9. LLL(2, 4, 5, 0) on {0, 1, 2, 3, 4, 5}.
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Figure 10. YYY(0, 2, 1, 5) on {0, 1, 2, 3, 4, 5}.

Lemma 5.5 One has

LLL(i, j, k, �) = −LLL(i, j, �, k), (27)

YYY(i, j, k, �) = −YYY(i, j, �, k), (28)

YYY(i, j, k, �) = YYY(k, �, i, j). (29)

The following relations are satisfied in any algebra Bess∗(I ).

Proposition 5.6 Let i, j, k be three distinct elements of I . Then

Yi, j × Y j,k × Yk,i = 0. (30)

Proof: There can be no forest with 3 inner vertices and support of cardinal 3. The propo-
sition therefore follows from Lemma 5.2.

Remark that Yi, j × Y j,k × Yk,� = Y�,k × Yk, j × Y j,i .

Proposition 5.7 Let i, j, k, � be four distinct elements of I . Then∑
Yi1,i2 × Yi2,i3 × Yi3,i4 = 0, (31)

where the sum is over the set of total orders on {i, j, k, �} up to reversal.

Proof: Using the product rule for the orientations and Lemma 5.4, one computes

Yi, j × Y j,k × Yk,� = LLL(i, j, k, �) + LLL(i, �, j, k)

+ LLL(�, i, k, j) + LLL(�, k, j, i) + YYY(i, j, k, �).

The sum of all 12 similar terms obtained from this one by permutations of {i, j, k, l} is then
seen to vanish, using the antisymmetry and symmetry properties of LLL and YYY stated in
Lemma 5.5.

It is an interesting open problem to give a presentation by generators and relations of the
algebras Bess∗(I ).

Question 1 Do the elements Yi, j generate Bess∗(I )?
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Assuming an affirmative answer, one can then ask

Question 2 Do the relations above give a presentation of Bess∗(I )?

5.3. Differential forms and hyperplane arrangement

Let I be a finite set and CI be the vector space with coordinates (xi )i∈I . Let HI be the union
of all hyperplanes xi − x j = 0 for i �= j in the subspace

∑
i∈I xi = 0 of CI .

It is well known from the work of Cohen (see [3, 10]) that the Gerstenhaber operad is
the homology of the little discs operad, whose underlying spaces are homotopy equivalent
to the complements of the complex arrangements HI . Therefore, by the classical theorem
of Arnold [1] computing the cohomology of this complement, the coalgebra associated to
a finite set I defined by the Hopf structure of the Gerstenhaber operad has the following
description : it is isomorphic to the dual of the subalgebra generated by all forms d(xi −
x j )/(xi − x j ) for i �= j in I inside the algebra of differential forms on the complement of
HI .

The differential forms Yi, j = d(xi − x j )/(xi − x j )2 for i �= j in I are defined on the
complement of HI . Obviously, they satisfy Yi, j = −Y j,i .

Let i, j, k be three distinct elements of I . Then one has clearly

Yi, j ∧ Y j,k ∧ Yk,i = 0. (32)

Further experimental evidence has been obtained showing that the algebra on forests of
binary trees considered in this article should be isomorphic to a quotient of the subalgebra
generated by the Yi, j inside the algebra of differential forms on the complement of HI .
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