ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Inequalities in Products of Minors of Totally Nonnegative Matrices

Mark Skandera

DOI: 10.1023/B:JACO.0000047282.21753.ae

Abstract

Let Delta I, I prime be the minor of a matrix which corresponds to row set I and column set I prime. We give a characterization of the inequalities of the form
Delta I, I prime Delta K, K prime le Delta J, J prime Delta L, L prime

Pages: 195–211

Keywords: nonnegative matrices; inequalities of products

Full Text: PDF

References

1. F. Brenti, “Combinatorics and total positivity,” J. Combin. Theory Ser. A 71 (1995), 175-218.
2. C.W. Cryer, “Some properties of totally positive matrices,” Lin. Alg. Appl. 15 (1976), 1-25.
3. S.M. Fallat, M.I. Gekhtman, and C.R. Johnson, “Multiplicative principal-minor inequalities for totally nonnegative matrices,” Adv. Appl. Math. (2002).
4. S. Fomin and A. Zelevinsky, “Total positivity: Tests and parametrizations,” Math. Intelligencer (2001), 23-33.
5. I. Gessel and G. Viennot, “Binomial determinants, paths, and hook length formulae,” Advances in Mathematics 58 (1985), 300-321.
6. I. Gessel and G. Viennot, “Determinants and plane partitions,”
1989. Preprint.
7. S. Karlin and G. McGregor, “Coincidence probabilities,” Pacific J. Math. 9 (1959), 1141-1164.
8. B. Lindstr\ddot om, “On the vector representations of induced matroids,” Bull. London Math. Soc. 5 (1973), 85-90.
9. C. Loewner, “On totally positive matrices,” Math. Z. 63 (1955), 338-340.
10. G. Lusztig, “Total positivity in reductive groups,” in Lie Theory and Geometry: In Honor of Bertram Kostant, vol. 123 of Progress in Mathematics. Birkh\ddot auser, Boston, 1994, pp. 531-568.
11. R. Stanley, Enumerative Combinatorics, vol.
2. Cambridge University Press, Cambridge, 1999.
12. A. Whitney, “A reduction theorem for totally positive matrices,” J. d'Analyse Math. 2 (1952), 88-92.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition