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Abstract. Let CG (X ) be the set of all (equivalence classes of) regular covering projections of a given connected
graph X along which a given group G ≤ Aut X of automorphisms lifts. There is a natural lattice structure on
CG (X ), where ℘1 ≤ ℘2 whenever ℘2 factors through ℘1. The sublattice CG (℘) of coverings which are below
a given covering ℘ : X̃ → X naturally corresponds to a lattice NG (℘) of certain subgroups of the group of
covering transformations. In order to study this correspondence, some general theorems regarding morphisms and
decomposition of regular covering projections are proved. All theorems are stated and proved combinatorially in
terms of voltage assignments, in order to facilitate computation in concrete applications.

For a given prime p, let C p
G (X ) ≤ CG (X ) denote the sublattice of all regular covering projections with an

elementary abelian p-group of covering transformations. There is an algorithm which explicitly constructs C p
G (X )

in the sense that, for each member of C p
G (X ), a concrete voltage assignment on X which determines this covering

up to equivalence, is generated. The algorithm uses the well known algebraic tools for finding invariant subspaces
of a given linear representation of a group. To illustrate the method two nontrival examples are included.

Keywords: covering projection, lifting automorphisms, Cayley voltages, homological covering, invariant sub-
space, lattice, arc-transitive graph, semisymmetric graph, dipole, Heawood graph

1. Introduction

Graphs admitting an imprimitive action of a subgroup of automorphisms arise naturally
out of their quotients. In attempting to classify graphs with interesting symmetry properties
it is therefore natural to first consider the ‘primitive’ graphs (which is almost exclusively
based on the classification of finite simple groups) and then try to explicitly construct the
‘imprimitive’ ones. In many instances the ‘imprimitive’ graphs arise as derived graphs
along regular covering projections. Djoković [5] showed that the correspondence between
symmetry properties of graphs and symmetry properties of their regular covers is related to
the problem of lifting automorphisms.

So the main question addressed in this paper is the following one. For a given connected
graph X and a subgroup G ≤ Aut X of its automorphisms, find the set CG(X ) of equivalence
classes of connected regular G-admissible covering projections ℘ : X̃ → X , that is, cov-
ering projections along which G lifts. The answer is well understood at some very general
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level in view of the fact that the problem of lifting automorphisms was solved in algebraic
topology decades ago. However, finding the required covering projections explicitly is al-
gorithmically almost intractable—this largely depends also on how the term ‘explicitly’ is
to be understood. As each covering projection of graphs can be, up to equivalence, recon-
structed in terms of voltages [11], our understanding of ‘explicitly’ is to display concrete
voltage assignments on the graph X .

Consider the natural partial ordering ≤ in the set CG(X ), where ℘1 ≤ ℘2 whenever ℘2

factors through ℘1 [24, 25]. Let ℘ : X̃ → X be a G-admissible regular covering projection,
and let G̃ ≤ Aut X̃ be the lift of G. There is a lattice anti-isomorphism �(G,℘) : NG(℘) →
CG(℘) between the set of regular covering projections CG(℘) ⊆ CG(X ) which are below ℘

in the ordering, and the set NG(℘) of normal subgroups of G̃ ≤ Aut X̃ which are contained
in the group of covering transformations CT(℘). So by finding NG(℘) one can determine
CG(℘) and moreover, CG(X ), since CG(X ) = CG(℘U ), where ℘U is the universal covering
projection of an appropriate (infinite) tree onto X .

A regular covering projection is p-elementary abelian if its group of covering transforma-
tions is an elementary abelian p-group. In this paper we show how to explicitly construct,
for a given prime p, the sublattice C p

G(X ) ⊆ CG(X ) of p-elementary abelian G-admissible
regular covering projections. Namely, the lattice C p

G(X ) has a unique maximal element, the
p-homological covering ℘� : X p

�
→ X , which is characterized by having CT(℘�) isomor-

phic to the first homology group H1(X ; Zp). Since℘� is maximal, we haveC p
G(X ) = CG(℘�).

Moreover, finding NG(℘�) is now reduced to finding all invariant subspaces for the linear
representation of G on H1(X ; Zp). Once these subspaces are found, the elements of C p

G(X )
can be explicitly reconstructed in terms of concrete voltage assignments on X .

The paper is organized as follows. In Section 2 we review some preliminary concepts
about graphs and (combinatorial) regular covering projections in terms of voltages. In order
to have a broader range of applications we allow graphs to have semiedges. (Note that the
theory of topological coverings and in particular, standard theorems about lifting automor-
phisms as known in topology do not apply directly in this case since a walk of length 1
traversing a semiedge should be considered as homotopically nontrivial.) In Section 3 we
prove a general theorem about the existence of certain morphisms between regular cov-
ering projections to be used repeatedly later on. In Section 4 we revise some results of
Venkatesh [24, 25] about ordering regular G-admissible covering projections. Our treate-
ment is combinatorial in terms of voltages and hence differs from the one given in [24, 25].
Moreover, we show how to construct the covering projection �(G,℘)(K ) (K ∈ NG(℘)) in
terms of voltages, see Proposition 4.1(b). In Section 5 we specialize the general consid-
erations of previous sections to abelian regular covering projections. This is then used in
Section 6, where elementary abelian coverings are treated in detail. The central result, The-
orem 6.2, upgrades Proposition 4.1(b); in particular, we show how to construct �(G,℘)(K )
(K ∈ NG(℘)) explicitly if the voltage group is elementary abelian. From this, an algorithm
which determines all G-admissible p-elementary abelian regular covering projections fol-
lows (see Corollary 6.5). The method reduces to finding all invariant subspaces of a linear
representation of a group on the first homology group H1(X ; Zp). It is generally known that
such invariant subspaces can be found by considering the factorization of the respective
minimal polynomials. The method generalizes Širáň’s treatement of prime-cyclic covering
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projections [22]. Finally, in Section 7 we provide two fairly detailed concrete examples,
namely, the elementary abelian regular covering projections of prime-dipoles and of the
Heawood graph.

For additional references on graph coverings related to the topics of this article we refer
the reader to [1, 11, 12].

2. Preliminaries

2.1. Graphs

For the purpose of this article, a graph is an ordered 4-tuple X = (D, V ; beg, inv) where
D and V �= ∅ are disjoint finite sets of darts and vertices, respectively, beg : D → V is
a mapping which assigns to each dart x its initial vertex beg x , and inv : D → D is an
involution which interchanges every dart x and its inverse dart x−1 = inv x . If not explicitly
given, the four defining parameters of a graph X are denoted by DX , VX , begX and invX ,
respectively. The terminal vertex end x of a dart x is the initial vertex of inv x . The orbits
of inv are called edges. An edge is called a semiedge if inv x = x , a loop if inv x �= x while
end x = beg x , and is called a link otherwise.

Walks are defined as sequences of darts where for any two consecutive darts x, y we
have end x = beg y. By recursively deleting all consecutive occurrences of a dart and its
inverse in a given walk we obtain a reduced walk which we call the reduction. Two walks
with the same reduction are called homotopic. The naturally induced operation on the set
of all reduced b-based closed walks defines the fundamental group π (X, b) at the base
vertex b. Note that the concept of homotopy does not exactly correspond to homotopy in
the corresponding 1-CW complex associated with a graph. This is due to the fact that a walk
of length 1 traversing a semiedge is homotopically nontrivial. Thus, the fundamental group
is not a free group in general. (Yet a minimal generating set of π (X, b) can be obtained in the
standard way employing a spanning tree.) Consequently, the first homology group H1(X ),
obtained by abelianizing π (X, b), is not necessarily a free Z-module. Namely, let re + rs be
the minimal number of generators of π (X, b), where rs is the number of semiedges and re is
the number of cotree loops and links relative to some spanning tree. Then H1(X ) ∼= Z

re ×Z
rs
2 .

The first homology group H1(X ; Zp) ∼= H1(X )/pH1(X ) with Zp as the coefficient ring can
be considered as a vector space over the field Zp. Observe that

H1(X ; Zp) ∼=
{

Z
re+rs
p p = 2

Z
re
p p ≥ 3

.

A morphism of graphs f : X → X ′ is a function f : VX ∪ DX → VX ′ ∪ DX ′ such that
f VX ⊆ VX ′ , f DX ⊆ DX ′ , and f begX = begX ′ f and f invX = invX ′ f . The product of
graph morphisms is defined as composition of functions. Concepts such as mono-, epi-,
iso- and automorphisms are self-explanatory. An important special case of morphisms
arises in the context of group actions on graphs. Namely, if N ≤ Aut X is a subgroup of
automorphisms let DN = {[x] | x ∈ D} and VN = {[v] | v ∈ V } denote the sets of N -orbits
on darts and vertices of X , respectively, and let begN [x] = [beg x] and invN [x] = [inv x].
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This defines a graph X N = (DN , VN ; begN , invN ) together with a natural epimorphism
pN : X → X N called the quotient projection relative to N .

2.2. Covering projections

A graph epimorphism ℘ : X̃ → X of connected graphs is a covering projection if ℘ is a
local bijection on darts, that is, for each vertex ṽ ∈ VX̃ the set of darts of X̃ having ṽ as
the initial vertex is mapped bijectively onto the set of darts of X having ℘(ṽ) as the initial
vertex. The preimages ℘−1(v) (v ∈ VX ) and ℘−1(x) (x ∈ DX ) are vertex- and dart-fibres,
respectively.

Let ℘i : X̃ i → Xi (i = 1, 2) be covering projections. A morphism of covering projections
℘1 → ℘2 is an ordered pair of graph morphisms (α, α̃) where α : X1 → X2 and α̃ : X̃1 →
X̃2 such that α℘1 = ℘2α̃. Note that if α̃ is a covering projection then so is α, and if α is a
covering projection then so is α̃ provided that α̃ is onto. The definitions of epi-, mono-, iso-
and automorphisms of covering projections follow directly from the categorical definitions
and are self-explanatory. In particular, two covering projections ℘1 and ℘2 are equivalent
if there exists an isomorphism of the form (id, φ).

The group of covering transformations CT(℘) of ℘ : X̃ → X is the group of all self-
equivalences of ℘, that is, of all automorphisms τ ∈ Aut X̃ such that ℘τ = ℘. Since X̃ is
assumed to be connected the group CT(℘) acts semiregularly on each vertex- and dart-fibre.
If CT(℘) acts transitively (and hence regularly) on each fibre, then the covering projection
℘ is called regular. In this case the orbits of CT(℘) coincide with the fibres of ℘, and ℘ is
isomorphic to the quotient projection pCT(℘) : X̃ → X̃CT(℘). Moreover, if X is a connected
graph and N ≤ Aut X acts regularly on each of its vetex- and dart-orbits, then the quotient
projection pN : X → X N is a regular covering projection with N as the group of covering
transformations. An equivalent characterization of a regular covering projection in terms
of fundamental groups is the following. Consider the monomorphism π (X̃ , b̃) → π (X, b)
induced by ℘, where b̃ ∈ ℘−1(b). Then ℘ is regular if and only if the image of π (X̃ , b̃)
under this monomorphism is a normal subgroup of π (X, b).

2.3. Voltages

Regular covering projections can be grasped combinatorially as follows [11, 18]. A Cayley
voltage space on a connected graph X = (D, V ; beg, inv) is an ordered pair (N ; ζ ), where
N is a voltage group acting on itself by right multiplication, and ζ : D → N is a function
such that ζ (x−1) = (ζ (x))−1. The value ζ (x) is called the voltage of the dart x ∈ D. This
function extends naturally to all walks. Note that homotopic walks have the same voltage
and that ζ : π (X, b) → N is a group homomorphism. Conversely, any homomorphism
π (X, b) → N ‘extends’ to a voltage space on X by assigning to the darts of a spanning
tree the trivial voltage, and to the cotree darts the images of the corresponding generators
of π (X, b) under this homomorphism. The voltage space is called locally transitive if the
homomorphism ζ : π (X, b) → N is onto.

Let (N ; ζ ) be a locally transitive Cayley voltage space on a connected graph X =
(D, V ; beg, inv). With (N ; ζ ) we associate a derived covering projection ℘ζ : Cov(N ; ζ ) →
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X as follows. The graph Cov(N ; ζ ) has D × N and V × N as the sets of darts and vertices,
respectively, with beg(x, ν) = (beg x, ν) and inv(x, ν) = (inv x, νζ (x)). The corresponding
projection ℘ζ is defined as the projection onto the first component. This is indeed a regular
covering projection with CT(℘ζ ) ∼= N . Namely, for each a ∈ N define a covering transfor-
mation λa by λa(x, ν) = (x, aν) (x ∈ DX ∪VX ). The mapping λ : N → CT(℘ζ ) establishes
an isomorphism of the left regular action of N on itself and the action of CT(℘ζ ) on a fibre.
The kernel of the homomorphism ζ : π (X, b) → N is precisely the image of π (X̃ , b̃) under
the monomorphism π (X̃ , b̃) → π (X, b) induced by ℘. Conversely, with any regular cov-
ering projection ℘ : X̃ → X there is an associated locally transitive Cayley voltage space
(N ; ζ ) on X with N ∼= CT(℘) such that the derived covering projection ℘ζ is equivalent
to ℘; the required (N ; ζ ) is obtained as follows. First, for each dart x ∈ DX choose a dart
x̃1 ∈ fib(x) and label x̃1 and its initial vertex by lab(x̃1) = lab(beg x̃1) = 1 ∈ N . The
extension of this labelling to DX̃ and VṼ obtained by using the left action of CT(℘) satisfies
the equality lab(x̃) · lab(inv x̃1) = lab(inv x̃) for all darts x ∈ DX and x̃ ∈ fib(x). Thus,
we set the voltage of the dart x ∈ DX to be the label of inv x̃1, that is, ζ (x) = lab(inv x̃1).
Moreover, by taking an arbitrary spanning tree T in X and labelling the vertices of a con-
nected component of ℘−1(T ) in X̃ by 1, we obtain a voltage space with the trivial voltage
assigned to darts of T .

For all group and graph theoretic concepts not defined above we refer the reader to [10,
11, 14, 18].

3. Lifting and projecting automorphisms

Let ℘ : X̃ → X be a covering projection. If (α, α̃) is an automorphism of ℘ we say that
α̃ is a lift of α and that α is a projection of α̃. Observe that α is uniquely determined by
α̃, but α̃ is in general not uniquely determined by α. It is true, however, that α̃ is uniquely
determined by the image of a single vertex (or dart). The set of all lifts of a given α ∈ Aut X
is denoted by L(α). Clearly, L(id) = CT(℘). More generally, let G ≤ Aut X . If for each
α ∈ G the set of lifts L(α) is nonempty, then G̃ = ∪α∈GL(α) is a group called the lift of
G. The induced group homomorphism ℘G̃ : G̃ → G has CT(℘) as the kernel and hence
the sequence CT(℘) → G̃ → G is short exact. We also say that G is a projection of G̃
(although there may exist a proper subgroup of G̃ which projects to G).

In what follows we restrict to the case when the covering projection ℘ : X̃ → X is regular.
Then the largest subgroup of Aut X̃ that projects is precisely the normalizer of CT(℘) within
Aut X̃ . The question whether a given subgroup G ≤ Aut X lifts can be answered in terms
of an associated Cayley voltage space (N , ζ ) as follows [18].

Proposition 3.1 Let (N ; ζ ) be a Cayley voltage space associated with a regular covering
projection ℘ : X̃ → X. Then a group G ≤ Aut X lifts if and only if for each α ∈ G there
exists a group automorphism α#b ∈ Aut N such that

α#bζ = ζα,

where ζ is considered as a homomorphism defined on π (X, b) and π (X, α(b)), respectively.
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It should be noted that α#b ∈ Aut N depends on the base vertex b ∈ VX , and that
#b : G → Aut N is not a group homomorphism in general. The situation changes drastically
if we assume that the group of covering transformations is abelian. We postpone further
discussion on this until Section 5.

Later on we shall need a more general version of Proposition 3.1. This is gathered in the
next theorem and its corollary below.

Theorem 3.2 Let (Ni ; ζi ) (i = 1, 2) be two Cayley voltage spaces associated with regular
covering projections ℘i : X̃ i → X (i = 1, 2), respectively, and let α ∈ Aut X. Then the
following statements are equivalent.
(a) There exists an epimorphism (α, α̃) : ℘1 → ℘2.

(b) There exists a group epimorphism τ : N1 → N2 such that τζ1 = ζ2α, where ζ1 is consid-
ered as a homomorphism π (X, b) → N1 and ζ2 as a homomorphism π (X, α(b)) → N2.

Moreover, the epimorphism (α, α̃) from the statement (a) is an isomorphism if and only if
the epimorphism τ from statement (b) is an isomorphism.

Proof: We may assume that ℘i (i = 1, 2) are actually the derived covering projections.
Suppose first that (a) holds. Take a closed walk W at b ∈ VX such that ζ1(W ) = 1. Its lift
℘−1

1 (W ) is a disjoint union of closed walks isomorphic to W . Since α℘1 = ℘2α̃, the image
α̃(℘−1

1 (W )) is a lift of α(W ), and hence also a disjoint union of closed walks. Since α̃ is
a graph morphism, the cycles in α̃(℘−1

1 (W )) have length at most that of W . On the other
hand, being the lifts of α(W ) ∼= W , their length is at least that of W . Hence, α(W ) lifts to
a disjoint union of closed walks isomorphic to α(W ), implying that ζ2(α(W )) = 1. Thus,
α(Ker ζ1) ≤ Ker ζ2, and (b) follows.

Suppose now that (b) holds. We first explicitly define the required epimorphism α̃ on
darts of Cov(N1, ζ1). Let (x, ν) be an arbitrary dart of Cov(N1, ζ1), where x is a dart of X
and ν ∈ N1. Define

α̃(x, ν) = (α(x), τ (ν)ζ2(α(W ))),

where W is an arbitrary walk from the base vertex b to beg x with voltage ζ1(W ) = 1. (Note
that such a walk always exists since ζ1 : π (X, b) → N1 is onto.) First of all, the mapping is
well defined. Namely, let W and W ′ be two such walks. Then W −1W ′ is a closed walk at b
with trivial ζ1-voltage. In view of the fact that ζ2α = τζ1 the walk α(W −1W ′) has trivial
ζ2-voltage. Thus, ζ2(α(W )) = ζ2(α(W ′)), and hence α̃ is well defined. In order to see that
it commutes with inv, observe that

α̃(inv(x, ν)) = (α(x−1), τ (ν)τ (ζ1(x))ζ2(α(W ′))),

where W ′ is a walk from b to beg x−1 with trivial ζ1-voltage. On the other hand,

inv α̃(x, ν) = (α(x)−1, τ (ν)ζ2(α(W ))ζ2(α(x))).
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Let us now consider the closed walk W ′x−1W −1 at b. We have ζ2α(W ′x−1W −1) =
τζ1(W ′x−1W −1). Using the fact that ζ1(W ) = ζ1(W ′) = 1, a short calculation now shows
that α̃ indeed commutes with inv.

Finally, α̃ can obviously be extended to vertices such that α̃ is indeed a graph epimorphism
satisfying α℘1 = ℘2α̃.

The last part of the theorem is clear from the constructions of α̃ and τ . �

Corollary 3.3 Let (Ni ; ζi ) (i = 1, 2) be two locally transitive Cayley voltage spaces on a
connected graph X. Then the derived regular covering projections ℘1 and ℘2 are
(a) isomorphic if and only if there exists a group isomorphism τ : N1 → N2 and α ∈ Aut X

such that τζ1 = ζ2α, where ζ1 and ζ2 are considered as homomorphisms ζ1 : π (X, b) →
N1 and ζ2 : π (X, α(b)) → N2;

(b) equivalent (cf. [23, Theorem 2]) if and only if there exists an isomorphism τ : N1 → N2

such that τζ1 = ζ2, where ζ1 and ζ2 are considered as homomorphisms defined on
π (X, b).

4. Ordering admissible regular coverings

In this section we revise some results of Venkatesh [24, 25], tailored to our present needs
and giving somewhat different proofs.

Let X be a connected graph and G ≤ Aut X . A regular covering projection ℘ : X̃ → X
is called G-admissible if G lifts along ℘. If ℘i : X̃ i → X (i = 1, 2) are regular G-
admissible covering projections, define ℘2 ≤ ℘1 if and only if there exists an epimorphism
(id, α) : ℘1 → ℘2. Clearly, ℘1 and ℘2 are equivalent if and only if ℘1 ≤ ℘2 and ℘2 ≤ ℘1.
Therefore, the ordering ≤ induces a partial ordering on the set CG(X ) of equivalence classes
of G-admissible regular covering projections onto X . This ordering, which is in fact a lattice,
is denoted by the same symbol ≤. The interval {[℘ ′] | [℘ ′] ≤ [℘]} ⊆ CG(X )} is denoted by
CG(℘).

Let ℘ : X̃ → X be a regular covering projection. If K ≤ CT(℘), then ℘ factors through
the regular covering projection ℘K : X̃ → X̃ K . The corresponding covering projection
X̃ K → X maps according to the rule K x �→ ℘(x), where K x is a dart (or vertex) of
X̃ K , that is, the orbit of a dart (or vertex) x of X̃ under the action of K . If K is normal in
N = CT(℘) we denote this covering projection by

℘N/K : X̃ K → X.

Since K is normal in N , the group N projects along ℘K to a group isomorphic with N/K .
Because ℘ = ℘N/K ℘K , this projected group is contained in CT(℘N/K ) and, moreover, it is
transitive on each of the fibres of ℘N/K . Thus, ℘N/K is regular with CT(℘N/K ) isomorphic
to N/K . If ℘ is G-admissible with G̃ being the lift of G, let NG(℘) denote the set of
subgroups of CT(℘) which are normal in G̃.

Proposition 4.1 Let (N , ζ ) be the Cayley voltage space associated with a G-admissible
regular covering projection ℘ : X̃ → X, and let G̃ be the lift of G ≤ Aut X. Suppose that
K ∈ NG(℘). Then:
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(a) The covering projection ℘N/K : X̃ K → X is regular G-admissible, with the lift of G
isomorphic to the quotient group G̃/K , and ℘N/K ≤ ℘;

(b) The covering projection ℘N/K is equivalent to the derived covering projection ℘qζ :
Cov(N/K , qζ ) → X, where q : N → N/K is the natural quotient projection.

Proof: By the remarks above we already know that ℘N/K is regular. Since K is normal
in G̃, the group G̃ projects along ℘K onto a group isomorphic with G̃/K . Since N/K is
normal in G̃/K , the latter projects along ℘N/K . Let g̃ ∈ G̃ be a lift of g ∈ G along ℘, and
let ḡ be the projection of g̃ along ℘K , that is, let g℘ = ℘ g̃ and ḡ℘K = ℘K g̃. Then we have
g℘N/K ℘K = ℘N/K ℘K g̃ = ℘N/K ḡ℘K , and consequently, g℘N/K = ℘N/K ḡ. Hence ℘N/K

is G-admissible and ℘N/K ≤ ℘. This proves (a).
In order to prove (b) we can assume that X̃ = Cov(N , ζ ) and that ℘ is the derived

covering projection. The vertices and darts of the graph X̃ K are then the orbits K (x, ν),
where x is a vertex or a dart of X and ν ∈ N . Define the mapping α : X̃ K → Cov(N/K ; qζ )
by K (x, ν) �→ (x, Kν). This is clearly a well defined graph isomorphism satisfying ℘N/K =
℘qζ α. �

The assignment K �→ [℘N/K ], where K and ℘N/K are as in Proposition 4.1, gives rise
to a mapping

�(G,℘) : NG(℘) → CG(℘).

We shall prove that �(G,℘) is an order reversing bijection (relative to the inclusion-order in
NG(℘) and the order ≤ in CG(℘)), see Theorem 4.4 below. The bijective correspondence
between NG(℘) and CG(℘) was essentially established in [24, 25], using a somewhat differ-
ent approach. Theorem 4.4 is a direct consequence of Propositions 4.2 and 4.3 below. The
first of these says that the mapping �(G,℘) is order reversing and mono, while the second
one says that �(G,℘) is onto.

Proposition 4.2 Let ℘ : X̃ → X be a G-admissible regular covering projection. Let
K1, K2 ∈ NG(℘) and let N = CT(℘). Then [℘N/K1 ] ≤ [℘N/K2 ] if and only if K2 ≤ K1. In
particular, ℘N/K1 and ℘N/K2 are equivalent if and only if K1 = K2.

Proof: Let (N , ζ ) be a Cayley voltage space associated with ℘. By Proposition 4.1 ℘N/Ki

(i = 1, 2) is equivalent to the derived covering projection ℘qi ζ : Cov(N/Ki , qiζ ) → X ,
where qi : N → N/Ki is the natural quotient projection.

Since ℘N/Ki (i = 1, 2) are both G-admissible, we have that [℘N/K1 ] ≤ [℘N/K2 ] holds if
and only if there exists an epimorphism (id, α) : ℘q2ζ → ℘q1ζ . The condition is equivalent,
by Theorem 3.2, to the requirement that there is a group epimorphism τ : N/K2 → N/K1

such that τq2ζ = q1ζ . But this is equivalent to τq2 = q1 (since ζ is onto), which is nothing
but K2 = Ker q2 ≤ Ker q1 = K1. The last statement in the proposition is now evident. �

Proposition 4.3 Let ℘ : X̃ → X and q : Y → X be G-admissible regular covering
projections, where q ≤ ℘. Then there exists a subgroup K ∈ NG(℘) such that q is
equivalent to the covering projection ℘N/K , where N = CT(℘).
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Proof: By definition there exists a graph epimorphism α : X̃ → Y such that ℘ = qα.
Clearly, α is a covering projection. Consider the monomorphic projections of the funda-
mental groups of X̃ and Y to corresponding subgroups P and Q in π (X, b), respectively.
Since ℘ factors through q we have P ≤ Q. As ℘ is regular, P is normal in π (X, b) and
hence in Q. Thus, the covering projection α is regular, too. It follows that there exists an
isomorphism of covering projections (ι, id) : ℘K → α, where K = CT(α). Since ℘ = qα

we have K ≤ N = CT(℘). Now let Ḡ ≤ Aut Y be the lift of G along q and let G̃ ≤ Aut X̃
be the lift of G along ℘. We leave to the reader to show that Ḡ must lift along α to G̃
(see [?, Lemma 4.1.3]). This is equivalent to saying that G̃ projects along ℘K , or, that
K ∈ NG(℘). Finally, from ℘N/K ℘K = ℘ = qα = qι℘K we conclude that ℘N/K = qι. In
other words, q is equivalent to ℘N/K : X̃ K → X . (An alternative proof of this proposition
using Theorem 3.2 is left to the reader.) �

Theorem 4.4 The mapping �(G,℘) : NG(℘) → CG(℘) is an anti-isomorphism of lattices
(NG(℘), ⊆) and (CG(℘), ≤).

Let ℘ : X̃ → X be a G-admissible regular covering projection. Observe that CG(℘)
contains at least two equivalence classes, namely the one induced by the identity projection
idX : X → X and the one induced by ℘. If these are the only elements of CG(℘) then ℘

is called minimal G-admissible regular covering projection [24, 25]. It is clear that any
G-admissible regular covering can be decomposed into a series of minimal ones. Such
coverings can be characterized by a certain maximality condition imposed on the normal
subgroups of π (X, b) which determine these coverings up to equivalence [24, 25]. An
equivalent characterization is the following.

Corollary 4.5 Let ℘ : X̃ → X be a G-admissible regular covering projection. Then ℘ is
minimal if and only if CT(℘) is a minimal normal subgroup of the lifted group G̃.

Proof: By definition, ℘ is minimal if and only if the set CG(℘) consists of at most two
elements. This is equivalent, by Theorem 4, to saying that the set NG(℘) has at most two
elements. But this is equivalent to saying that CT(℘) is a minimal normal subgroup of G̃.

�
We end this section by a more general analogue of Proposition 4.2. We give a criterion

for the covering projections ℘N/K1 and ℘N/K2 to be isomorphic. See Sections 6 and 7 for
an application.

Proposition 4.6 Let ℘ : X̃ → X be an (Aut X )-admissible regular covering projection.
Suppose that K1 and K2 are two normal subgroups of N = CT(℘). Then the induced
covering projections ℘N/K1 : X̃ K1 → X and ℘N/K2 : X̃ K2 → X are isomorphic if and only
if there exists an automorphism α ∈ Aut X such that α#b (K1) = K2.

Proof: Let (N , ζ ) be a Cayley voltage space associated with ℘. By Proposition 4.1,
the covering projection ℘N/Ki (i = 1, 2) is associated with the Cayley voltage space
(N/Ki , qiζ ), where qi : N → N/Ki is the quotient homomorphism. By Corollary 3.3,
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the derived covering projections ℘q1ζ and ℘q2ζ are isomorphic if and only if there exists an
isomorphism of groups τ : N/K1 → N/K2 and a graph automorphism α ∈ Aut X such that
τq1ζ = q2ζα. Since α lifts along ℘, Proposition 3.1 implies that there is an automorphism
α#b ∈ Aut N satisfying ζα = α#bζ . As ζ is onto, we deduce that τq1ζ = q2ζα = q2α

#bζ is
equivalent to q2α

#b = τq1. The existence of τ is equivalent to the fact that α#b maps Ker q1

to Ker q2, that is, α#b (K1) = K2. �

5. Abelian regular covers

A regular covering projection ℘ : X̃ → X is abelian if the group CT(℘) is abelian. Let
(N ; ζ ) be a Cayley voltage space associated with such a covering. Observe that the homo-
morphism ζ : π (X, b) → N now factors through the abelianization π (X, b) → H1(X ).
The corresponding homomorphism H1(X ) → N (a linear mapping of Z-modules) will also
be denoted by ζ . Converesely, any epimorphism H1(X ) → N ‘extends’ to an epimorphism
π (X, b) → N which in turn gives rise to an abelian regular covering projection. We express
this informally by saying that the voltage assignment can be taken as defined on the first
homology group.

This fact has considerable impact on our treatement of lifting automorphisms. First, we
restate Proposition 3.1, omitting the obvious proof. A similar restatement of Theorem 3.2
and of Corollary 3.3 is left to the reader.

Proposition 5.1 Let (N ; ζ ) be a Cayley voltage space associated with an abelian regular
covering projection ℘ : X̃ → X. Then a group G ≤ Aut X lifts if and only if for each α ∈ G
there exists a group automorphism α# ∈ Aut N such that

α#ζ = ζα,

where ζ and α are considered as defined on H1(X ). In particular, if G lifts then for each
α ∈ G the automorphism α#b of Proposition 3.1 does not depend on the base vertex b, and
considered as defined on H1(X ) it conicides with α#.

Proposition 5.1 can be further rephrased by saying that the group G ≤ Aut X lifts along ℘ζ

if and only if Ker ζ is an invariant submodule of the naturally defined linear representation
of G on the Z-module H1(X ). This readily implies that the (equivalence classes of) G-
admissible abelian regular covering projections of X are in bijective correspondence with
the G-invariant submodules of finite index in H1(X ).

To put the above into a wider setting, recall the anti-isomorphism of lattices �(G,℘) :
NG(℘) → CG(℘) defined in Section 4. We are now going to show, first, that there is a
nice combinatorial characterization of NG(℘) in terms of voltages, and second, that this
characterization is intimately related with the lifted groups considered as extensions of the
group of covering transformations. Suppose that a subgroup G ≤ Aut X has a lift. The
coupling of the extension CT(℘) → G̃ → G with abelian kernel is a homomorphism
� : G → Aut CT(℘), α �→ �α , defined relative to (and independent of) an algebraic
transversal {ᾱ ∈ L(α) | α ∈ G} (with īd = id), where �α is given by �α : c �→ ᾱcᾱ−1.
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A general discussion on the coupling of the extension CT(℘) → G̃ → G in terms of
fundamental groups can be be found in [24, 25].

Theorem 5.2 Let (N ; ζ ) be a locally transitive Cayley voltage space on a connected graph
X, with N abelian, and let ℘ be the derived covering projection. Suppose that G ≤ Aut X
has a lift. Then:
(a) The induced mapping #: G → Aut N is a group homomorphism.
(b) The coupling for the extension CT(℘) → G̃ → G is � = λ̂#, where λ̂ : Aut N →

Aut CT(℘) is the isomorphism φ �→ λφλ−1 (induced by the isomorphism λ : N →
CT(℘) which assigns to each a ∈ N the covering transformation λa). In particular, if
we identify N = CT(℘) (via λ) then α#(ν) = α̃να̃−1, for each α ∈ G, α̃ ∈ L(α) and
ν ∈ N.

Proof: Let α, β ∈ Aut X , and let C be an arbitrary closed walk in X . Then we have
α#β#(ζ (C)) = α#(ζ (β(C))) = ζ (αβ(C)) = (αβ)#(ζ (C)), and (a) holds.

In order to prove (b), recall that the action of CT(℘) on an arbitrary dart or vertex (x, ν)
of Cov(N ; ζ ) is given by λa(x, ν) = (x, aν), and observe that

α̃(x, ν) = (α(x), τxα
#(ν))

for an appropriate τx ∈ N dependent on x and α. We have α̃λa(x, ν) = α̃(x, aν) =
(α(x), τxα

#(ν)) = (α(x), τxα
#(a)α#(ν)) = (α(x), α#(a)τxα

#(ν)) = λα#(a)(α(x), τxα
#(ν)) =

λα#(a)α̃(x, ν). Thus, α̃λaα̃
−1 = λα#(a). It follows that (�αλ)(a) = (λα#)(a) for all a ∈ N .

Hence �(α) = �α = λα#λ−1 = (λ̂#)(α) for all α ∈ G. The rest is obvious. �

By part (a) of Theorem 5.2 we can view the mapping #: G → Aut N as a linear rep-
resentation of the group G over the Z-module N . Let Inv(#) denote the set of #-invariant
submodules of this representation. Then part (b) of Theorem 5.2 implies the following
corollary.

Corollary 5.3 If we identify N = CT(℘) (via λ) as in Theorem 5.2 then Inv(#) = NG(℘).

In view of the above identification we shall consider the mapping �(G,℘) as defined on
the set Inv(#).

As a final remark, consider the homological covering � : X̃� → X which is characterized
by the fact that CT(�) is isomorphic to the first homology group H1(X ). Note that the graph
X̃� is infinite and observe that all theorems and propositions stated so far are valid in the
infinite case as well. It easily follows that there is, up to equivalence, only one such covering
obtained by taking ζ : H1(X ) → H1(X ) to be the identity mapping. Also, this covering is
(Aut X )-admissible. Using Theorem 5.2 we can find all equivalence classes of (finite) G-
admissible abelian regular covering projections of X via the linear representation of G on
H1(X ), as already mentioned in the paragraph following Proposition 5.1. We shall take a
closer look at this in the next section when discussing p-homological covers.



82 MALNIČ ET AL.

6. Elementary abelian regular covers

We start this section with some remarks regarding notation and terminology. By 
n we
denote the standard basis of the (column!) vector space F

n over a field F. If A : U → W is a
linear mapping between two F-vector spaces U and W of finite dimension, then [A;BW ,BU ]
denotes the corresponding matrix relative to the basesBU andBW for U and W , respectively.
If M ∈ F

m×n is a matrix then the same symbol denotes the corresponding linear mapping
F

n → F
m , that is, M = [M ; 
m, 
n]. By U ∗ we denote the dual of an F-vector space

U , and by B∗ its dual basis relative to a basis B of U . The dual of a linear transformation
A : U → U is denoted by A∗. For K ≤ U let ω(K ) = { f ∈ U ∗ | f (K ) = 0} ≤ U ∗ denote
the annihilator of K .

If φ : G → Aut U is a linear representation of a group G, then the composition φ∗ = ∗φ

is a linear anti-representation of G on U ∗. By Inv(φ) and Inv(φ∗) we denote the set of all φ-
and φ∗-invariant subspaces of these representations, respectively. Observe that ω induces
the anti-isomorphism of lattices ωφ : Inv(φ) → Inv(φ∗).

Lemma 6.1 LetB = {e1, e2, . . . , ed} be a basis of a vector space U andB∗ = {e∗
1, e∗

2, . . . ,

e∗
d} the dual basis of U ∗. For arbitrary bases {b1, b2, . . . , bk} and { f ∗

1 , f ∗
2 , . . . , f ∗

d−k} of
subspaces K ≤ U and M ≤ U ∗, respectively, let

Q = [ f ∗
i (e j )]

j=1,... ,d
i=1,... ,d−k ∈ F

(d−k)×d and B = [e∗
i (b j )]

j=1,... ,k
i=1,... ,d ∈ F

d×k .

Then M = ω(K ) if and only if Q B = 0 ∈ F
(d−k)×k .

Proof: It suffices to observe that the (s, t)th-element [Q B]s,t of the matrix Q B is

[Q B]s,t =
d∑

j=1

f ∗
s (e j )e

∗
j (bt ) =

(
d∑

j=1

f ∗
s (e j )e

∗
j

)
(bt ) = f ∗

s (bt ).

�

From now on we restrict our considerations to finite dimensional vector spaces over an
arbitrary prime field Zp, and are ready to consider the main topic of this section: If X
is a given connected graph and G ≤ Aut X a given subgroup of automorphisms, find all
G-admissible regular covering projections ℘ : X̃ → X , up to equivalence (or possibly, up
to isomorphism) of covering projections. This is almost intractable in general. A restricted
subproblem would be to find CG(℘0), where ℘0 is some known G-admissible covering. In
view of Theorem 4.4 we first find the setNG(℘0) (which could be difficult), and then use part
(b) of Proposition 4.1 to construct the corresponding coverings �(G,℘0)(K ) (K ∈ NG(℘0)).
However, finding the corresponding voltage assignments explicitly—that is, using a suitable
predefined presentation of the ‘abstract’ group CT(℘0)/K —may again not be easy. The
situation changes if we restrict to consider elementary abelian covers, which we now define.

A regular covering projection ℘ : X̃ → X is called elementary abelian if the group CT(℘)
is elementary abelian. If (N ; ζ ) is an associated Cayley voltage space we shall sometimes
regard the elementary abelian p-group N as a Z-module or as the additive group of a vector
space over Zp. (Hereafter, N will always denote an elementary abelian p-group.)
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As mentioned in Section 5, the commutativity of N enables us to consider the voltage
assignment as a linear mapping of Z-modules ζ : H1(X ) → N . Now even more holds.
Since the group N is of exponent p, the kernel Ker ζ contains the submodule pH1(X ), and
ζ factors through the module H1(X ; Zp). The induced linear mapping H1(X ; Zp) → N of
vector spaces over Zp will still be denoted by ζ . Conversely, any such mapping ‘extends’ to
a mapping defined on π (X, b), and this defines an appropriate elementary abelian covering.
Informally we say that the voltage assignment ζ can be viewed as defined on the first
homology group H1(X ; Zp). Also, we leave to the reader to formally adapt all the theorems,
propositions and corollaries stated thus far to fit into this context.

Now let ℘ : X̃ → X be a G-admissible elementary abelian regular covering projection,
and let (N ; ζ ) be an associated Cayley voltage space with N ∼= Z

d
p, where ζ is considered as

a Zp-linear mapping defined on H1(X ; Zp). As usual, # : G → Aut N is the corresponding
linear representation and �(G,℘) : Inv(#) → CG(℘) the anti-isomorphism of lattices. We
define �∗

(G,℘) : Inv(#∗) → CG(℘) as �∗
(G,℘) = �(G,℘)ω

−1
# , where ω# : Inv(#) → Inv(#∗) is

as above. Observe that �∗
(G,℘) is now a lattice isomorphism.

Theorem 6.2 With the notation and assumptions above, let ϕ : H1(X, Zp) → Z
r
p be the

isomorphism mapping a chosen basis C to 
r , and let Z = [ζ ; 
d , C].
(a) Let BK = {b1, b2, . . . , bk} be a basis for K ∈ Inv(#), and let B ∈ Z

d×k
p be the matrix

with columns b1, b2, . . . , bk. If Q ∈ Z
(d−k)×d
p is a matrix of rank d − k satisfying

Q B = 0 ∈ Z
(d−k)×k
p , then ℘N/K = �(G,℘)(K ) is associated with the Cayley voltage

space (Zd−k
p ; Q Zϕ).

(b) Let 
d = {e1, e2, . . . , ed} be the standard basis for N = Z
d
p, and let BM = { f ∗

1 , f ∗
2

, . . . , f ∗
m} be a basis for M ∈ Inv(#∗). Define

Q = [ f ∗
i (e j )]

j=1,... ,d
i=1,... ,m ∈ Z

m×d
p .

Then �∗
(G,℘)(M) is associated with the Cayley voltage space (Zm

p ; Q Zϕ).

Proof: We first prove (a). By Proposition 4.1 we can assume that X̃ K = Cov(N/K , qζ )
and that ℘N/K is the derived covering projection ℘qζ : Cov(N/K , qζ ) → X . Consider the
matrices B and Q as linear mappings Z

k
p

B−→ Z
d
p

Q−→ Z
d−k
p . Observe that K = Im B. For an

arbitrary element x + K ∈ N/K define τ (x + K ) = Qx . Since Qx = 0 for x ∈ K , the
mapping τ : N/K → Z

d−k
p is an isomorphism satisfying τq = Q. Observe that Zϕ = ζ .

Thus, τqζ = Q Zϕ, and (a) follows by Corollary 3.3.
We now prove (b). Let {b1, b2, . . . , bd−m} be a basis for K = ω−1(M) and {e∗

1, e∗
2, . . . , e∗

d}
the dual basis of 
d . Define B = [e∗

i (b j )]
j=1,... ,d−m
i=1,... ,d ∈ Z

d×(d−m)
p . By Lemma 6.1 we have

Q B = 0, and by part (a) of this theorem, �∗
(G,℘)(M) = ℘N/K is associated with (Zm

p , Q Zϕ).
�

Remark In practice, the rows of the matrix Q in (a) of Theorem 6.2 are computed by
solving the system of linear equations Bt x = 0.

As for part (b), the i th row of the matrix Q comprises the components of f ∗
i relative to

the dual basis 
∗
d . Hence the rows of Q can be computed by finding a basis of an invariant



84 MALNIČ ET AL.

subspace of the matrix group Gt , where G is a set of matrices which represent the elements
of G# relative to the standard basis 
d .

Theorem 6.2 gives rise to an algorithm which explicitly determines all members of the
set CG(℘) for an arbitrary G-admissible elementary abelian regular covering projection
℘. If ℘ is (Aut X )-admissible, then CAut X (℘) can be reduced to contain only pairwise
noisomorphic coverings.

Proposition 6.3 Let ℘ : X̃ → X be an (Aut X )-admissible elementary abelian regular
covering projection and #: Aut X → Aut CT(℘) the corresponding linear representation.
Further, let G ≤ Aut X and let #G be the restriction of # to G.
(a) Let K1, K2 ∈ Inv(#G). Then the covering projections �(G,p)(K1) and �(G,p)(K2) are

isomorphic if and only if there exists an automorphism α ∈ Aut X such that α#(K1) =
K2.

(b) Let M1, M2 ∈ Inv(#∗
G). Then the covering projections �∗

(G,p)(M1) and �∗
(G,p)(M2) are

isomorphic if and only if there exists an automorphism α ∈ Aut X such that α#∗
(M1) =

M2.

Proof: Part (a) is a direct consequence of Proposition 4.6. As for part (b), observe that
α#∗

(ω(K )) = ω(α#(K )), and the result follows. �

For a fixed prime p let C p
G(X ) ≤ CG(X ) denote the set of all equivalence classes of

G-admissible p-elementary abelian regular covering projections (that is, with the group
of covering transformations ranging over all elementary abelian p-groups; there are only
finitely many such groups corresponding to a given graph X as their dimension is bounded by
the requirement that the derived graphs are connected). This set can be explicitly determined
from the corresponding homological covering defined below.

A regular covering projection X̃ → X is p-homological if the group of covering transfor-
mations is isomorphic to the first homology group H1(X ; Zp). Such a covering projection
is generically denoted by �p : X̃ p

�
→ X since, by Proposition 6.4 below, it is uniquely

determined up to equivalence. Moreover, Proposition 6.4 also shows that its equivalence
class is the unique maximal element in the set C p

G(X ).

Proposition 6.4 Let �p : X̃ p
�

→ X be a p-homological covering projection. Then �p

is (Aut X )-admissible. Moreover, if ℘ : X̃ → X is a regular covering projection with
CT(℘) ∼= Z

d
p (for some d) then ℘ ≤ �p. In particular, �p is unique, up to equivalence.

Proof: Let (N�; ζ�) be a Cayley voltage space associated with �p. As ζ� : H1(X ; Zp) →
N� is an isomorphism, the group Aut X lifts by Proposition 5.1 (more precisely, by an
appropriate version of it).

To prove the second part, let (N , ζ ) be a locally transitive Cayley voltage space associated
with ℘. Since ζ� : H1(X, Zp) → N� is an isomorphism and ζ : H1(X ; Zp) → N is onto,
there exists an epimorhism τ : N� → N such that τζh = ζ . So by Theorem 3.2 (more
precisely, by an appropriate version adapted to the context of elementary abelian coverings)
there is an epimorphism α : X̃ p

�
→ X̃ such that ℘� = ℘α, and hence ℘ ≤ ℘�. �
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Corollary 6.5 Let X be a connected graph and G ≤ Aut X. Let #�p : G → Aut N� be the
linear representation of G relative to the p-homological covering projection �p : X̃ p

�
→ X.

Then the mapping �(G,�p) gives rise to a bijective correspondence between the set Inv(#�p )
and the set C p

G(X ). Moreover, the set C p
G(X ) can be found explicitly by the method of

Theorem 6.2.

As last remark we note that Theorem 6.2 generalizes Širáň’s method of finding all cyclic
Zp-covers [22]. The problem reduces to finding eigenvectors for Gt , where G is the natural
linear representation of the group G ≤ Aut X on H1(X ; Zp).

7. Examples

7.1. Finding minimal invariant subspaces

Let X be a connected graph, G a subgroup of Aut X and p a prime. The problem of con-
structing all pairwise non-equivalent G-admissible p-elementary abelian regular covering
projections of X is, by Corollary 6.5, reduced to finding all invariant subspaces of the linear
representation #�p of a group G. Clearly, finding such subspaces can be further reduced to
finding all common invariant subspaces of the images of generators from some generating
set of the group. To the reader’s benefit we recall some well known facts related to this
topic.

Let V be a vector space of finite dimension over a field F and let φ : G → Aut V
be a linear representation of a group G. Let α ∈ G, let A = φ(α), and let κA(λ) and
m A(λ) be the characteristic and the minimal polynomial of A, respectively. Let κA(λ) =
f t1
1 (λ) f t2

2 (λ) . . . f tk
k (λ) and m A(λ) = f s1

1 (λ) f s2
2 (λ) . . . f sk

k (λ) be the decomposition of the
characteristic and the minimal polynomial into irreducible factors, respectively, and let Vi =
Ker f si

i (A) be the kernel of the transformation f si
i (A), i ∈ {1, 2, . . . , k}. The subspaces Vi ,

i ∈ {1, 2, . . . , k}, are A-invariant and V is their direct sum:

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk .

Consider the restrictions AVi of A to Vi (i = 1, 2, . . . , k). The minimal polynomial of the
restriction AVi is m AVi

(λ) = f si
i (λ) (see [14, Chapter IV, Theorem 6]).

Now, let K be an arbitrary A-invariant subspace of V . The minimal polynomial m AK (λ) of
the restriction AK of A to K divides m A(λ) and is thus of the form m AK (λ) = f r1

1 (λ) f r2
2 (λ)

· · · f rk
k (λ), for some 0 ≤ ri ≤ si (i = 1, 2, . . . , k). By the same argument as above K

decomposes as

K = Ker f r1
1 (AK ) ⊕ Ker f r2

2 (AK ) · · · ⊕ Ker f rk
k (AK ).

Since ri ≤ si (i = 1, 2, . . . , k) we have Ker f ri
i (AK ) ≤ Ker f si

i (A)∩ K = Vi ∩ K , implying
that K ≤ (V1 ∩ K )⊕ (V2 ∩ K )⊕ · · · ⊕(Vk ∩ K ). On the other hand, the right-hand side is
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clearly contained in K and so

K = (V1 ∩ K ) ⊕ (V2 ∩ K ) ⊕ · · · ⊕ (Vk ∩ K ).

This shows that in order to determine all A-invariant subspaces of V it suffices to find all
A-invariant subspaces of Vi , for each i ∈ {1, 2, . . . , k}, and then take the direct sums of
some of them. This can be done by finding the (generalized) Jordan canonical form for each
of the linear transformations AVi and the corresponding variety of invariant subspaces. The
task can be simplified considerably in the following special case.

Suppose that the characteristic p of the field F does not divide the order of the transfor-
mation A. Then by Maschke’s Theorem the corresponding F〈A〉-module V is completely
reducible, which is by [14, Chapter IV, Theorem 5] equivalent to the fact that the minimal
polynomial m A(λ) is a product of distinct irreducible factors (with s1 = s2 = . . . = sk = 1).
If, in adition, ti = 1 for some i , then Vi itself is minimal, by [14, Chapter IV, Theorem
3; Chapter III, Theorem 2], and its dimension equals the degree of fi (λ). In particular, if
κA(λ) = m A(λ), then all invariant subspaces Vi are minimal, and each A-invariant subspace
of V is a direct sum of some of the subspaces Vi , i ∈ {1, 2, . . . , k}. These facts will be used
in the following concrete example.

7.2. Elementary abelian covers of prime-dipoles

Let q be an odd prime and let X = Dq be a q-dipole on two vertices and q links between
them. Then all minimal edge-transitive subgroups of Aut X are cyclic of order q, fix the
two vertices of X and permute regularly the edges of X . Moreover, they are all conjugate in
Aut X . Let G be such a group and let α be its generator. We shall construct all elementary
abelian covers of X such that G lifts. Since each edge-transitive subgroup of Aut X contains
a conjugate of G, each edge-transitive elementary abelian covering is isomorphic to one
obtained in this manner.

Choose a dart x and let xi = αi (x), for each i ∈ Zq . Let T be the spanning tree of X
containig the dart x0 and let bi = xi x

−1
0 (i = 1, 2, . . . , q − 1). See figure 1.

If p is a prime then C = {b1, b2, . . . , bq−1} is a basis of the first homology group
H1 = H1(X ; Zp). Let ζ� : H1 → Z

q−1
p be the voltage assignment on X mapping C to the

standard basis 
q−1, let � : X̃� → X be the derived p-homological covering projection,
and let # : G → Aut Z

q−1
p be the corresponding linear representation of G.

Figure 1. The q-dipole Dq .
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In order to find all G-admissible p-elementary abelian regular covering projections we
have to find, by Theorem 6.2(b), all invariant subspaces of the transpose of the matrix

R = [α#; 
q−1, 
q−1] =




−1 −1 −1 · · · −1

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0




.

Observe that m Rt (λ) = κRt (λ) = λq−1 + λq−2 + · · · + 1. By the remarks at the beginning
of this section we need to decompose the above polynomial into irreducible factors in the
polynomial ring Zp[λ]. There are two cases to be considered according to whether p �= q
or p = q .

Suppose that p �= q . Let E (q) denote the set of primitive q-roots of unity in the splitting
field of λq −1 over Zp. The multiplicative group Z

∗
q acts on E (q) in the natural way according

to the rule ξ �→ ξ r , for r ∈ Z
∗
q and ξ ∈ E (q). Let p̄ ∈ Z

∗
q be the residue class of the prime p

modulo q , and let o be the order of the group P = 〈 p̄〉 ≤ Z
∗
q . Furthermore, let ξ1, ξ2, . . . ξm ,

where m = (q − 1)/o, be the representatives of the orbits of the action of P on E (q). For
i ∈ {1, 2, . . . , m}, let

fi (λ) = (λ − ξi )
(
λ − ξ

p̄
i

)(
λ − ξ

p̄2

i

) · · · (λ − ξ
p̄o−1

i

)
.

Note that the coefficients of fi (λ) belong to Zp and that

λq−1 + λq−2 + · · · + 1 = f1(λ) f2(λ) · · · fm(λ)

is the decomposition of m Rt (λ) into irreducible factors in Zp[λ]; in particular, m Rt (λ) is
irreducible if and only if p̄ is a generator of Z

∗
q (see [15, Theorem 2.47]).

Since the minimal and the characteristic polynomial of Rt coincide, all invariant sub-
spaces of Rt are obtained as direct sums of the minimal invariant subspaces Mi = Ker fi (Rt )
(i = 1, 2, . . . , m), each being of dimension o. The above shows that there are exactly m
non-equivalent minimal G-admissible p-elementary abelian regular covering projections
over X , with the group of covering transformations isomorphic to Z

o
p. We shall now prove,

using Proposition 6.2, that they are pairwise isomorphic.
To this end, pick i ∈ {1, 2, . . . , m} arbitrarily, and let k ∈ Z

∗
q be such that ξ k

i = ξ1. The
mapping of the darts of X defined by βk(xi ) = xki extends to an automorphism βk ∈ Aut X .
It is easy to check that βαβ−1 = αk , and so the matrix Sk = [β#; 
q−1, 
q−1] satisfies
S−t

k Rt St
k = (Rt )k . Therefore,

S−t
k M1 = S−t

k Ker f1(Rt ) = Ker f1((Rt )k).
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Note that the above computation holds for an arbitrary k ∈ Z
∗
q . However, by our particular

choice of k we have

f1(λk) = (λk − ξ1)
(
λk − ξ

p̄
1

)(
λk − ξ

p̄2

1

)
. . .

(
λk − ξ

p̄o−1

1

)
= (

λk − ξ k
i

)(
λk − ξ

p̄k
i

)(
λk − ξ

p̄2k
i

)
. . .

(
λk − ξ

p̄o−1k
i

)
= (λ − ξi )g0(λ)

(
λ − ξ

p̄
i

)
g1(λ) . . .

(
λ − ξ

p̄o−1

i

)
g(o−1)(λ)

= fi (λ)g(λ)

for some polynomial g(λ) ∈ Zp[λ]. This implies

Mi = Ker fi (Rt ) ⊆ Ker f1((Rt )k) = S−t
k M1.

Moreover, since Sk in invertible the above inclusion is in fact equality, and by Proposition 6.3
the covering projections �∗

(G,℘�)(Mi ) and �∗
(G,℘�)(M1) are isomorphic.

Finally, suppose that p = q . Now, the minimal polynomial decomposes as m Rt (λ) =
(λ−1)q−1, and so the Jordan canonical form of Rt is just a single elementary Jordan matrix.
It is easy to see that the nontrivial invariant subspaces of Rt are then

Ker (Rt − I ) ⊆ Ker (Rt − I )2 ⊆ · · · ⊆ Ker (Rt − I )q−1 = Z
q−1
p .

In particular, Ker (Rt − I ) is 1-dimensional with (1, 2, . . . , q − 1)t as its base vector.
Hence the covering projection corresponding to Ker (Rt − I ) is associated with the voltage
assignment ζ (xi ) = i (i = 0, 1, . . . , q − 1) valued in Zp. The derived covering graph is
isomorphic to the complete bipartite graph K p,p.

Let τ ∈ Aut Dq be the automorphism switching the two vertices and fixing all edges.
Then any subspace of Z

q−1
p is invariant under the action of −I = [τ #; 
q−1, 
q−1]. So

regardless of whether p �= q or p = q, the automorphism τ lifts along any G-admissible
p-elementary abelian regular covering projection. Thus, the corresponding covering graphs
are arc-transitive.

To close the example we consider two interesting special cases, namely, q = 3 and q = 7,
p = 2.

Special case q = 3. If p = 3 then m Rt (λ) = (λ − 1)2, and the only nontrivial and non-
homological G-admissible p-elementary abelian regular covering projection of X is, up
to equivalence, the cyclic Z3-cover defined by ζ (x0) = 0, ζ (x1) = 1 and ζ (x2) = 2. The
corresponding covering graph is isomorphic to K3,3.

If p ≡ −1 (mod 3) then the minimal polynomial m Rt (λ) = λ2 +λ+ 1 is irreducible, and
the only nontrivial p-elementary abelian G-admissible cover of X is the homological one.

If p ≡ 1 (mod 3) then there is a nontrivial element ξ ∈ Zp satisfying ξ 3 = 1, and the
minimal polynomial decomposes as m Rt (λ) = (λ− ξ )(λ− ξ 2). The kernels of Rt − ξ I and
Rt − ξ 2 I are, respectively,

Ker (Rt − ξ I ) = 〈(1, −ξ 2)t 〉 and Ker (Rt − ξ 2 I ) = 〈(1, −ξ )t 〉.

So apart from the trivial and the homological covering projection there are two additional
non-equivalent G-admissible p-elementary abelian coverings, namely, the cyclic Zp-covers



ELEMENTARY ABELIAN COVERS OF GRAPHS 89

Figure 2. The minimal covers of D3 in case p ≡ 1(mod 3).

derived from the voltage assignments shown in figure 2:

ζ1(x0) = 0, ζ1(x1) = 1, ζ1(x2) = −ξ 2,

ζ2(x0) = 0, ζ2(x1) = 1, ζ2(x2) = −ξ.

As already discussed above these two covering projections are isomorphic; in particular,
the derived graphs are isomorphic.

We remark that along the above two covering projections no subgroup of Aut D3 acting
2-transitively on the set of edges lifts. For otherwise, an automorphism fixing an edge and
swapping the other two would lift. To see that this is not possible is left to the reader.

Special case q = 7, p = 2. In this case the minimal polynomial m Rt (λ) decomposes as

m Rt (λ) = (λ3 + λ + 1)(λ3 + λ2 + 1).

So apart from the trivial and the homological covering projection, there are also two G-
admissible p-elementary abelian regular covering projections, with the group of covering
transformations isomorphic to Z

3
2, obtained from the kernels

Ker ((Rt )3 + Rt + I ) = 〈 (1, 0, 0, 0, 1, 1)t ,

(0, 1, 0, 1, 1, 1)t ,

(0, 0, 1, 1, 0, 1)t 〉 and

Ker ((Rt )3 + (Rt )2 + I ) = 〈 (1, 0, 0, 1, 1, 1)t ,

(0, 1, 0, 1, 1, 0)t ,

(0, 0, 1, 0, 1, 1)t 〉.
The respective non-equivalent but, however, isomorphic covering projections are associated
with the Cayley voltage space defined by the voltage assignments below.

x0 x1 x2 x3 x4 x5 x6

ζ1




0

0

0







1

0

0







0

1

0







0

0

1







0

1

1







1

1

0







1

1

1




ζ2




0

0

0







1

0

0







0

1

0







0

0

1







1

1

0







1

1

1







1

0

1



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Figure 3. The minimal covers of D7 for p = 2.

The intriguing point of this example is the fact that all 2-elementary abelian mini-
mal G-admissible covers of D7 are in fact 2-arc transitive. To this end, observe that
the above minimal invariant subspaces of Rt are invariant for [γ #; 
6, 
6]t , where γ =
(x1x2)(x3x6)(x−1

1 x−1
2 )(x−1

3 x−1
6 ) ∈ Aut D7. Thus γ has a lift. Now the group 〈α, γ 〉 is iso-

morphic to PSL(3, 2) and acts 2-transitively on the set of edges of D7, and the claim
follows.

7.3. Semisymmetric elementary abelian covers of the Heawood graph

Edge-transitive graphs and more specifically, semisymmetric graphs (regular edge- but
not vertex-transitive graphs), have recently received a wide attention. Regular covers, and
elementary abelian in particular, have proved to be very useful in this context. Let us call
a covering projection ℘ : X̃ → X vertex-transitive (edge-transitive), if a vertex-transitive
(edge-transitive) subgroup of AutX lifts along ℘. If ℘ is edge- but not vertex-transitive, then
℘ is called semisymmetric. Observe that the derived graph of a semisymmetric covering
projection is a good candidate for a semisymmetric graph. Namely, the only additional
condition such a graph has to satisfy is that the fibres are blocks of imprimitivity of its full
automorphism group.

In this subsection we compute, up to isomorphism of covering projections, all those
(connected) semisymmetric p-elementary abelian regular covering projections ℘ : X̃ → H,
where H is the Heawood graph. (We acknowledge the use of Magma [?].) Recall that the
vertex set of the Heawood graph H can be identified with the set Z7 × Z2 in such a way
that, for each i ∈ Z7, the vertex (i, 0) ∈ V (H) is adjacent to vertices (i + 1, 1), (i + 2, 1),
and (i + 4, 1). The automorphism group AutH is isomorphic to the group PGL(2, 7) (of
order 336), and can be generated by the following permutations:

ρ : (i, j) �→ (i + 1, j), i ∈ Z7, j ∈ Z2,

σ : (i, j) �→ (2i, j), i ∈ Z7, j ∈ Z2,

τ : (i, j) �→ (−i, j + 1), i ∈ Z7, j ∈ Z2,

ω = ((1, 0), (5, 0))((4, 0), (6, 0))((0, 1), (5, 1))((3, 1), (6, 1)).

Moreover, AutH contains precisely one conjugacy class of minimal edge-transitive sub-
groups (which are also semisymmetric), with the group H = 〈ρ, σ 〉 of order 21 as its
representative. The group H is maximal in the maximal semisymmetric subgroup of AutH
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(isomorphic to PSL(2, 7)). Further, there is exactly one minimal arc-transitive subgroup of
AutH containing H , namely its normalizer G = NAutH(H ) = 〈H, τ 〉 in AutH. The order
of G is 42 and moreover, G is a maximal subgroup of AutH. In order to find, up to isomor-
phism, all (connected) edge-transitive elementary abelian regular covering projections of the
Heawood graph it suffices to compute all H -admissible elementary abelian coverings—for
a covering projection is edge-transitive if and only if some minimal edge-transitive group
lifts, H is unique up to conjugation, and covering projections along which two conjugate
groups lift are isomorphic. Moreover, by identifying those H -admissible covering projec-
tions which are not τ -admissible, all semisymmetric elementary abelian regular covering
projections of the Heawood graph are obtained. Namely, if some vertex-transitive subgroup
lifts, then there is an arc-transitive group containing H which lifts. So G would have to lift,
a contradiction. That it is enough to require that τ does not lift follows from the fact that H
is of index 2 in G. We may now proceed with the computations. Let T be the spanning tree
of H induced by the edges

{(i, 0), (i + 1, 1)}, i ∈ Z7 \ {5}, and {(i, 0), (i + 2, 1)}, i ∈ Z7.

This tree is shown in Figure 4, with a simplified vertex notation i = (i, 0) and i ′ = (i, 1).
Further, let the dart (5, 0) → (6, 1) be denoted by a7, and for each i ∈ Z7, let ai denote
the dart (i, 0) → (i + 4, 1). For simplicity reasons we let the symbol a j , j ∈ {0, 1, . . . , 7},
denote also the element of the homology group H1(H; Zp) induced by the dart a j relative
to T . Let B be the (ordered) basis of H1(H; Zp) containing the elements a7, a0, a1, . . . , a6

(in this order). Let ζ� : H1(H; Zp) → Z
8
p be the voltage assignment on X mapping B to

the standard basis 
8 of Z
8
p, and let � : H̃� → H be the derived p-homological covering

projection. Further, let # : AutH → Aut Z
8
p be the corresponding linear representation of

AutH.
By Corollary 6.5, in order to find all H -admissible p-elementary abelian regular covering

projections, we have to find all common invariant subspaces of matrices R = (ρ#)t = ρ#∗

Figure 4. Two drawings of the Heawood graph with a chosen spanning tree.
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and S = (σ #)t = σ #∗
. A direct computation shows that

R =




1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

−1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0




S =




0 −1 −1 −1 −1 −1 −1 −1

0 −1 0 −1 0 −1 0 0

0 0 0 −1 0 −1 0 −1

0 0 −1 0 0 −1 0 −1

0 1 0 1 0 1 1 0

0 1 0 1 0 1 0 1

0 −1 0 0 −1 0 −1 0

1 −1 0 −1 0 0 −1 0




We start by determining the (minimal) R-invariant subspaces. First, the characteristic
and the minimal polynomial of the matrix R over the field Zp are κ(x) = (x − 1)(x7 − 1)
and m(x) = (x7 − 1), respectively. Let F denote the splitting field of m(x) over Zp, and let
ξ be a primitive 7th root of unity in Zp. In F, the polynomial m(x) factorizes as

m(x) =
6∏

k=0

(x − ξ k),

while the factorization of m(x) over Zp depends on the congruence class of p modulo 7. To
express these factorizations explicitly, let us define α1 = ξ + ξ 2 + ξ 4, α2 = ξ 3 + ξ 5 + ξ 6,
β1 = ξ 1 + ξ 6, β2 = ξ 2 + ξ 5 and β3 = ξ 3 + ξ 4 By [?, Theorems 2.47 and 2.14] we have
the following cases:

(i) p ≡ 1 (mod 7). Then ξ ∈ Zp and m(x) factorizes into linear factors

m(x) =
6∏

k=0

(x − ξ k).

(ii) p ≡ 2 or 4 (mod 7). Then ξ �∈ Zp but α1 ∈ Zp and α2 ∈ Zp, and m(x) decomposes as
m(x) = (x − 1)

(
(x − ξ )(x − ξ 2)(x − ξ 4)

)(
(x − ξ 3)(x − ξ 5)(x − ξ 6)

)
, or

m(x) = (x − 1)(x3 − α1x2 + α2x − 1)(x3 − α2x2 + α1x − 1).

(iii) p ≡ 3 or 5 (mod 7). Then the polynomial x6 + x5 + x4 + x3 + x2 + x +1 is irreducible
and so m(x) decomposes as

m(x) = (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1).

(iv) p ≡ 6(mod 7). Then ξ �∈ Zp while βi ∈ Zp, for i ∈ {1, 2, 3}, and the polynomial m(x)
decomposes as m(x) = (x −1)

(
(x −ξ )(x −ξ 6)

)(
(x −ξ 2)(x −ξ 5)

)(
(x −ξ 3)(x −ξ 4)

)
, or

m(x) = (x − 1)(x2 − β1x + 1)(x2 − β2x + 1)(x2 − β3x + 1).

(v) p = 7. Then the polynomial m(x) decomposes as

m(x) = (x − 1)7.
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Detailed computations are given solely for the case p ≡ 1(mod 7). The other cases can be
carried out in a similar fashion. In view of Section 7.1 and by direct computation it follows
that the minimal R-invariant subspaces are:

Ki = Ker (R − ξ i I ) = 〈(0, 1, ξ i , ξ 2i , ξ 3i , ξ 4i , ξ 5i , ξ 6i )t 〉, i ∈ {1, 2, . . . , 6},

and the 1-dimensional subspaces of

K0 = Ker (R − I ) = 〈(1, 0, 0, 0, −1, −1, 0, 0)t , (0, 1, 1, 1, 1, 1, 1, 1)t 〉.

In order to find the minimal 〈R, S〉-invariant subspaces we now consider the action
of S on the above R-invariant subspaces. First observe that S acts on the set {Ki | i ∈
{0, 1, . . . , 6} as the permutation S : (K0)(K1, K2, K4)(K3, K6, K5). This immediately im-
plies the following: There are exactly two minimal 〈R, S〉-invariant subspaces contained in
K1 + K2 + · · · + K6, namely

W1 = K1 + K2 + K4 , and W2 = K3 + K5 + K6 .

As for the subspace K0, which is invariant for S as well, it can be minimal or not, depending
on the congruence class of the prime p modulo 3. Indeed, K0 is a minimal S-invariant
subspace in case p ≡ 2 (mod 3), and there are exactly two S-invariant 1-dimensional
subspaces of K0 in case p ≡ 1 (mod 3). If λ is a root of the polynomial x2 + x +1 ∈ Zp[x],
then these subspaces are

L1 = 〈(λ + 3, 1, 1, 1, −λ − 2, −λ − 2, 1, 1)t 〉,
L2 = 〈(λ2 + 3, 1, 1, 1, −λ2 − 2, −λ2 − 2, 1, 1)t 〉.

We conclude that the minimal 〈R, S〉-invariant subspaces are K0, W1 and W2 in case p ≡
2 (mod 3), and L1, L2, W1 and W2 in case p ≡ 1 (mod 3). Other invariant subspaces are
obtained by taking direct sums of the minimal ones, that is, K0 +W1, K0 +W2 and W1 +W2

in case p ≡ 2 (mod 3), and if p ≡ 1 (mod 3), we also have L1 + W1, L1 + W2, L2 + W1,
L2 + W2, L1 + W1 + W2 and L2 + W1 + W2.

We would now like to keep only those subspaces which give rise to pairwise noniso-
morphic semisymmetric covers. To find all H -admissible p-elementary abelian regular
covering projections which are not G-admissible we need to indetify those 〈R, S〉-invariant
subspaces, which are not invariant for the matrix

T = (τ #)t = τ #∗ =




−1 0 0 0 0 0 0 0
−1 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0

−1 0 0 0 0 −1 0 0



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Direct computation shows that T preserves the subspaces L1, L2 (and hence K0), and
interchanges W1 and W2. Consequently, W1+W2, L1+W1+W2 and L2+W1+W2 are also T -
invariant while K0+W2 = T (K0+W1), L1+W2 = T (L1+W1) and L2+W2 = T (L2+W1).
The list of semisymmetric covers thus reduces to those arising from the subspaces W1 and
K0 + W1 in case p ≡ 2 (mod 3), and if p ≡ 1 (mod 3), then we also have L1 + W1 and
L2 + W1.

In order to further reduce the list of these covering projections to the list of pairwise
nonisomorphic ones we proceed to find the orbits of the action of (AutH)#∗

on the above
invariant subspaces. To this end we need to compute the matrix

O = (ω#)t = ω#∗ =




−1 0 −1 1 −1 −1 1 −1
−1 1 0 1 0 0 1 0
−1 0 0 1 −1 0 0 0
0 0 0 0 −1 0 0 −1
1 0 0 −1 0 1 −1 0
1 0 0 −1 1 0 −1 0
0 0 −1 0 0 −1 0 0

−1 0 0 0 0 −1 1 0




One can check directly that none of the above spaces is invariant under the action of O .
Consequently, H is the maximal group that lifts along any of the respective semisym-
metric covering projections. Indeed, if there were an automorphism g ∈ AutH, g �∈ H
which had a lift, then 〈H, g〉 would be semisymmetric and hence contained in the max-
imal semisymmetric subgroup M ∼= PSL(2, 7). Since H is maximal in M , the group M
would lift, a contradiction since ω ∈ M . This also shows that the above semisymmet-
ric covering projections are pairwise nonisomorphic. Indeed, let U1 and U2 be two of the
above 〈R, S〉-invariant subspaces such that for some g ∈ AutH we have g#∗

(U1) = U2

(actually, {U1, U2} = {L1 + W1, L2 + W1} because this is the only pair having the same
dimension). Then, for each h ∈ H we have (g−1)#∗

h#∗
g#∗

(U1) = U1. So g−1hg has a
lift. As H is the maximal group that lifts, we have g−1hg ∈ H . Thus, g belongs to the
normalizer G = 〈H, τ 〉. Clearly, g �∈ H . Consider τ−1g. Since H is of index 2 in G we
have τ−1g ∈ H . Consequently, (τ−1)#∗

g#∗
(U1) = U1 and hence τ #∗

(U1) = U2, implying
τ #∗ {U1, U2} = {U1, U2}. On the other hand, τ #∗ {U1, U2} = τ #∗ {L1 + W1, L2 + W1} =
{L1 + W2, L2 + W2} �= {U1, U2}, a contradiction.

So if p ≡ 1 (mod 7), then the only connected, pairwise nonisomorphic, semisymmetric
p-elementary abelian regular covering projections onto the Heawood graph arise from the
subspaces W1 and K0 + W1 when p ≡ 2 (mod 3), and if p ≡ 1 (mod 3), then we also have
projections arising from L1 + W1 and L2 + W1. This concludes the analysis of case (i).

Cases (ii)–(v) can be carried out analogously, as well as finding all arc-transitive coverings.
The results of the semisymmetric case are recollected in Theorem 7.1. (Note that the basis
for W1 was conveniently changed in order not to involve ξ but, rather, one of the elements
α1, α2 which are the roots of the polynomial x2 + x + 2.)

Theorem 7.1 Let p be a prime, let H be the Heawood graph, and let ζ, a0, . . . , a6 and
a7 have the same meaning as at the beginning of this subsection. Then:
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If p ≡ 3, 5, or 6 (mod 7), then there are no connected semisymmetric p-elementary
abelian regular covering projections onto H;

If p ≡ 0, 1, 2, or 4 (mod 7), then the isomorphism classes of connected semisymmetric
p-elementary abelian regular covering projections onto H are given in the following table:

Semisymmetric elementary abelian regular covering projections of the Heawood graph.

Row ζ (a7) ζ (a0) ζ (a1) ζ (a2) ζ (a3) ζ (a4) ζ (a5) ζ (a6) Condition

1


0

0
0





1

0
0





0

1
0





0

0
1





 1

α + 1
α





 α

−1
−1





 −1

−1
−α − 1





−α − 1

−α

1


 p ≡ 1, 2, or

4 (mod 7);
α2 + α + 2 = 0

2




1
0
0
0
0







0
1
0
0
0







0
0
1
0
0







0
0
0
1
0







0
0
0
0
1







α

−1
−α

1
α + 1







α

−α − 1
1
1
α







−1
−α

1
α + 1
−1




p ≡ 1, 2, or
4 (mod 7);

α2 + α + 2 = 0

3




λ + 3
0
0
0







1
1
0
0







1
0
1
0







1
0
0
1







−λ − 2
1

α + 1
α







−λ − 2
α

−1
−1







1
−1
−1

−α − 1







1
−α − 1

−α

−1




p ≡ 1, 2, or
4 (mod 7),

and
p ≡ 1 (mod 3);

α2 + α + 2 = 0,

λ2 + λ + 1 = 0

4




λ2 + 3
0
0
0







1
1
0
0







1
0
1
0







1
0
0
1







−λ2 − 2
1

α + 1
α







−λ2 − 2
α

−1
−1







1
−1
−1

−α − 1







1
−α − 1

−α

−1




p ≡ 1, 2, or
4 (mod 7),

and
p ≡ 1 (mod 3);

α2 + α + 2 = 0,

λ2 + λ + 1 = 0

5




1
0
0
0
0
0







0
1
0
0
0
0







0
0
1
0
0
0







0
0
0
1
0
0







0
0
0
0
1
0







0
0
0
0
0
1







6
1
2
3
4
5







6
5
4
3
2
1




p = 7

6




1
0
0
0
0
0







0
1
0
0
0
0







0
0
1
0
0
0







0
0
0
1
0
0







0
0
0
0
1
0







0
0
0
0
0
1







3
1
2
3
4
5







2
5
4
3
2
1




p = 7

7




1
0
0
0
0
0







0
1
0
0
0
0







0
0
1
0
0
0







0
0
0
1
0
0







0
0
0
0
1
0







0
0
0
0
0
1







0
1
2
3
4
5







5
5
4
3
2
1




p = 7



96 MALNIČ ET AL.

Added in proof

Recently, a number of papers dealing with the problem of lifting automor-phisms along
elementary abelian regular covering projections have appeared or have been submitted for
publication [3, 6–8, 9, 16, 17, 21]. In particular, an algorithm which differs from the one
presented in this paper appeared in [6]. We also point out that fast randomized algorithms
for computing invari-ant subspaces of matrix groups are available, for example Meataxe
[13, 19], which are also computer implemented (for reasonably small primes) [2, 20]. As
for most recent work on semisymmetric graphs see [3, 4, 17, 26].
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