ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On Certain Coxeter Lattices Without Perfect Sections

Anne-Marie Bergé

DOI: 10.1023/B:JACO.0000047289.61038.1f

Abstract

In this paper, we compute the kissing numbers of the sections of the Coxeter lattices \mathbb A n \frac n\text + 12 {\mathbb{A}}_n ^{\frac{{n{\text{ + }}1}}{2}} , n odd, and in particular we prove that for n ge 7 they cannot be perfect. The proof is merely combinatorial and relies on the structure of graphs canonically attached to the sections.

Pages: 5–16

Keywords: perfect lattice; kissing number; bipartite graph

Full Text: PDF

References

1 C. Batut and J. Martinet, “Radiographie des réseaux parfaits”, Experimental Math. 3 (1994), 39-49. 2 B. Bollobás, Modern Graph Theory, Graduate texts in Mathematics 184, Springer-Verlag, Heidelberg, 1998. 3 A.M. Bergé and J. Martinet, “ Symmetric groups and lattices”, Monatschefte f\ddot ur Math. 140(3) (2003), 179-195. 4 J.H. Conway and N.J.A. Sloane, “Low-dimensional lattices. III. Perfect forms”, Proc. Royal Soc. London A 418 (1988), 43-80. 5 J. Martinet, personal communication. 6 J. Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren 327, Springer-Verlag, Heidelberg, 2003. 7 J. Martinet and B. Venkov, “On integral lattices having an odd minimum,” Algebra and Analysis, Saint- Petersburg 16(3) (2004), 198-237.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition