ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On Negative Orbits of Finite Coxeter Groups

Sarah B. Perkins and Peter J. Rowley

DOI: 10.1023/B:JACO.0000047290.27248.c8

Abstract

For a Coxeter group W, X a subset of W and agr a positive root, we define the negative orbit of agr under X to be { w ; agr | w isin X} cap PHgr -, where PHgr - is the set of negative roots. Here we investigate the sizes of such sets as agr varies in the case when W is a finite Coxeter group and X is a conjugacy class of W.

Pages: 17–31

Keywords: Coxeter group; root system

Full Text: PDF

References

1. B. Brink and R.B. Howlett, “A finiteness property and an automatic structure for Coxeter groups,” Math. Ann. 296 (1993), 179-190.
2. J.J. Cannon and C. Playoust, An Introduction to Algebraic Programming with MAGMA [draft], Springer-Verlag, 1997.
3. R.W. Carter, “Conjugacy classes in the Weyl group,” Compositio. Math. 25 (1972), 1-59.
4. J.E. Humphreys, “Reflection groups and coxeter groups,” Cambridge Studies in Advanced Mathematics 29 (1990).
5. S.B. Perkins and P.J. Rowley, Coxeter Length, J. Algebra 273(1) (2004), 344-358.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition