ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On Cubic Graphs Admitting an Edge-Transitive Solvable Group

Aleksander Malnič , Dragan Marušič and Primož Potočnik

DOI: 10.1023/B:JACO.0000047284.73950.bc

Abstract

Using covering graph techniques, a structural result about connected cubic simple graphs admitting an edge-transitive solvable group of automorphisms is proved. This implies, among other, that every such graph can be obtained from either the 3-dipole Dip 3 or the complete graph K 4, by a sequence of elementary-abelian covers. Another consequence of the main structural result is that the action of an arc-transitive solvable group on a connected cubic simple graph is at most 3-arc-transitive. As an application, a new infinite family of semisymmetric cubic graphs, arising as regular elementary abelian covering projections of K 3,3, is constructed.

Pages: 99–113

Keywords: symmetric graph; edge transitive graph; cubic graph; trivalent graph; covering projection of graphs; solvable group of automorphisms

Full Text: PDF

References

1. W. Bosma, C. Cannon, C.Playoust, and A. Steel, “Solving problems with MAGMA,” School of Mathematics and Statistics, University of Sidney, Australia, 1999.
2. I.Z. Bouwer, “An edge but not vertex transitive cubic graph,” Bull. Can. Math. Soc. 11 (1968), 533-535.
3. I. Z. Bouwer, “On edge but not vertex transitive regular graphs,” J. Combin. Theory B 12 (1972), 32-40.
4. I.Z. Bouwer (Ed.), The Foster Census, Charles Babbage Research Centre, Winnipeg, 1988.
5. M.D.E. Conder, A. Malni\check c, D. Maru\check si\check c, and P. Poto\check cnik, “A census of cubic semisymmetric graphs on up to 768 vertices,” submitted.
6. D. Goldschmidt, “Automorphisms of trivalent graphs,” Ann. Math. 111 (1980), 377-406.
7. J. Folkman, “Regular line-symmetric graphs,” J. Combin. Theory 3 (1967), 215-232.
8. J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
9. M.E. Iofinova and A.A. Ivanov, “Biprimitive cubic graphs,” Investigations in Algebraic Theory of Combinatorial Objects (Proceedings of the seminar, Institute for System Studies, Moscow, 1985) Kluwer Academic Publishers, London, 1994, pp. 459-472.
10. A.V. Ivanov, “On edge but not vertex transitive regular graphs,” Ann. Discrete Math. 34 (1987), 273-286.
11. M.H. Klin, “On edge but not vertex transitive graphs,” Coll. Math. Soc. J. Bolyai, (25. Algebraic Methods in Graph Theory, Szeged, 1978), Budapest, 1981, pp. 399-403.
12. A. Malni\check c, D. Maru\check si\check c, \check S. Miklavi\check c, and P. Poto\check cnik, “Semisymmetric elementary abelian covers of the Moebius-Kantor graph,” submitted.
13. A. Malni\check c, R. Nedela, and M. \check Skoviera, “Lifting graph automorphims by voltage assignments,” Europ. J. Combin. 21 (2000), 927-947.
14. A. Malni\check c, D. Maru\check si\check c, and P. Poto\check cnik, “Elementary abelian covers of graphs,” J. Algebr. Combin., to appear.
15. A. Malni\check c, D. Maru\check si\check c, and C.Q. Wang, “Cubic edge-transitive graphs of order 2 p3,” Discrete Math. 274 (2004), 187-198.
16. A. Malni\check c, D. Maru\check si\check c, P. Poto\check cnik, and C.Q. Wang, “An infinite family of cubic edgebut not vertex-transitive graphs,” Discrete Math. 280 (2004), 133-148.
17. D. Maru\check si\check c and R. Nedela, “Maps and half-transitive graphs of valency 4,” Europ. J. Combin. 19 (1998), 345-354.
18. J.J. Rotman, An Introduction to the Theory of Groups, 4th ed., Springer-Verlag, New York, 1995.
19. P.M. Neumann and C.E. Praeger, Cyclic Matrices and the Meataxe, in Groups and Computations, III (Columbus, OH, 1999), 291-300, Ohio State Univ. Math. Res. Inst. Publ., 8, de Gruyter, Berlin, 2001.
20. W.T. Tutte, “A family of cubical graphs,” Proc. Cambridge Phil. Soc. 43 (1948), 459-474.
21. H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition