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Abstract. We give a construction of (n - s)-surjective matrices with n columns over Zq using Abelian
groups and additive s-bases. In particular we show that the minimum number of rows msq(n, n — s)
in such a matrix is at most ssqn-s for all q, n and s.
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1. Introduction

We say that an m x n matrix A over Zq is s-surjective if it has the following
property: if we choose any a columns i1, · · · ,i s and any s-tuple (a1,···,as) of
integers modulo q then there is a row of A which has aj in the column ij for every
j = 1,···,s. In this paper we study the question what is the smallest possible
number msq(n,s) of rows in an s-surjective matrix over Zq with n columns.
For an application of s-surjective matrices to coding for memories with defects,
see [7].

Trivially msq(n, 1) = q and it is easy to see that msq(n, n -1) = gn-1 (take as
rows all the (a1, • • •, an) E Znq for which a1 +···+ an = 0). In general

msq(n, s) > qs. (1)

If equality holds in (1) then there exists a qs x n matrix such that every s-tuple
of integers modulo q appears exactly once in any given s columns, that is, there
exists an orthogonal array of size qs, n constraints, q levels, strength a and index
1 [17, p. 328]. For s = 2 the existence of such an orthogonal array is equivalent
to the existence of n - 2 mutually orthogonal Latin squares of order q; see, e.g.,
[3, Theorem 5.2.1]. It is known-see [12, Ch. 13] or [3, Ch. 5]-that there are
two mutually orthogonal Latin squares of every order q = 2, 6, and therefore
msq(4,2) = q2 for all q = 2, 6.

If q is a prime power then by [17, p. 329] the rows of a linear orthogonal array
A of size qs, n constraints, q levels, strength a and index 1 (with the elements
of A from GF(q)) are the codewords of an [n, s] maximum distance separable
(MDS) code over GF(q) and conversely. It is known (see [17, p. 327-8]) that
there exists an [n, s] MDS code over GF(q) for all 1 < s < q and n < q + 1.



From number theory we know that for every E > 0 there is an n0(e) such that
for all n > n0(e) there is a prime in the interval (n, (1 + e)n) [11, p. 88]. These
two facts together imply that

msq(n, s) ~ qs for fixed n and a as q —> I.

A trivial upper bound on msq(n, s) is
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Many bounds on msq(n, s) can be found in [6], [15] and [19]. It is known that

msq(n, s) = O(log(n)) for fixed q and s as n -> I,

see [15] and [19]. For an explicit construction in the case q = 2, see [1]. For
a table of lower and upper bounds on ms2(n, s) for small values of n and s,
see [19].

For q = 2 the exact values of msq(n, s) have also been determined for a =
2, see [4], [15] (alternatively see [2, Chapter 5]) and for s = n - 2 by Roux [19].
For s = n - 2 the result is

ms2(n,n-2)= [2n/3]

(for a short proof, see [14, Theorem 6]). More generally, it is shown in [19] that

where W = {w | 0 < w < n,w = a(mod s + 1)} for any a = 0,1,• • •,s (take all
the rows on which the number of 1's belongs to W, i.e., all the rows whose weight
belongs to W).

The purpose of this paper is to consider the function msq(n, n - s) for a fixed
s, and show in Theorem 1 how (3) can be generalized to this case. In order to
do that we generalize the concept of weight in an interesting way by labelling the
letters of the alphabet Zq by elements of an additive basis in a larger Abelian
group. Using Theorem 1 we show in Theorem 4 that

which shows that for any fixed s we have

where q and n tend to infinity independently of each other. For specific values
of s we can often improve on (4), see Corollary 3 and Examples 1 and 2.

In [9] Graham and Sloane give interesting lower bounds for binary constant
weight codes, see also [16]. For an excellent survey on constant weight codes,
see [5]. Our construction resembles the constructions in [9] and [16], but is in
a sense dual to that.
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2. A construction using Abelian groups

THEOREM 1. Assume that G is an additive Abelian group with g elements and
Q CG is a q-element subset of G such that every element of G can be written as a
sum of exactly s (not necessarily distinct) elements of Q. Then

Proof. Let r : Zq —> Q be a bijection. We show that a matrix having as rows the
elements of the set

Ca = {(c1, c2, • • •, Cn) e Zn
q | r(C1) + r(c2) + • • • + r(cn) = a}

for any fixed a e G, is (n-s)-surjective. We show that for any indices i1,• • • ,in-s

and any b1, • • •, bn-s E Zq there is an element (c1, • • •, Cn) e Ca such that cik = bk

for all k = 1, • • •, n - s. W.l.o.g. i1 = s + 1,i2 = s + 2, • • •, in-s = n. Because
every element of G can be represented as a sum of exactly s elements of Q, we
can choose b1, • • •, bs E Zq in such a way that

r(b1) + r(b2) + • • • + r(bs) = a - r(bs+1) r(bn).

Then (b1, • • •, bn) e Ca is as required.
The set Zn

q is the union of the g sets Ca,a e G. Hence at least one of the
sets Ca contains at most q n / g elements. D

If h and k are positive integers, an additive h-basis of size k for n is a set
A = {a0 = 0,a1 = 1,a2,a3,···,ak} of integers such that every integer i with
0 < i < n can be expressed as a sum of exactly h (not necessarily distinct)
elements of A. The largest integer n for which there exists an h-basis of size
k is denoted by f(h,k). The function f(h,k) has been extensively studied (see
e.g., Mathematical Reviews, Section 11B13). Any lower bound on f(h,k) can
be used in Theorem 1 to obtain upper bounds on msq(n, n - s) (we choose
G = Zn, n = 1 + f ( s , q - 1), in Theorem 1).

COROLLARY 2. msq(n, n-s) < 1/
1+f(s,q-1)q

n.

For example, from [13] we obtain the following corollary.

COROLLARY 3. msq(n,n - 2) < 1/
1+5(q-1)2/18q

n < 18
/5 (q)2 < q n - 2 .

Example 1. For q = 3,4 and 5 and s = 2, we can choose Q = {0,1,3} C
Z5, {0,1,3,4} C Z9 and {0,1,3,5,6} C Z13 respectively, to obtain
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ms3(n, n - 2) < 9
/5 3n-2 for all n,

ms4(n, n - 2) < 16
/9 4n-2 for all n,

ms5(n,n - 2) < 25 5n-2 for all n.

For specific values of q, n and s the sets Ca(a E G) in the proof of Theorem 1
can of course be of different sizes. For example, in the case q = 3, s = 2, n = 4,
the sets C0,C1,C2,C3,C4 have 17, 14, 19, 14 and 17 elements respectively thus
yielding the upper bound ms3(4,2) < 14 (the true value is 9 as mentioned in the
introduction).

In general, we can take any Abelian group instead of a cyclic group. The
following simple theorem shows that, interestingly, for any fixed a there is a
constant ss such that msq(n,n - s) < ssqn-s for all q and n where qn-s is the
trivial lower bound on msq(n, n - s). A similar result can also be proved using
cyclic groups and a result of Rohrbach [18]; in fact the proof of Theorem 4 is
essentially from [18, pp. 24-25]. From the proof we also see that constructing
such matrices is easy for fixed s.

THEOREM 4. msq(n, n-s) < ssqn-s.

Proof. Suppose q - 1 = as + b, where 0 < b < s. We choose in Theorem 1
the group G = Zb

a+2 © Zs-b
a+1 and Q = {(c1, c2, • • •, cs) | ci = 0 for at most one i}.

Then |Q| = 1 + b(a + 1) + (s - b)a = q, and every element of G can clearly be
written as a sum of exactly s elements of Q. Now |G| = (a + 2)b(a + 1)s-b >
(a + 1)s = ([(q- 1)/s] + 1)s > (q/s) s and the result follows from Theorem 1. D

COROLLARY 5. msq(n, n - s) = O(qn - s) for fixed s as q, n —> I. D

In Corollary 5 we can assume that q —> I and n -> I independently of each
other. For a fixed value of q, the result of Corollary 5 is trivial because always
msq(n, n - s) < qn = qs • qn - s; likewise for a fixed n, the result would trivially
follow from (2).

In the case q = 2 Theorem 1 and its proof give the result 2.6 of [19, p. 25].
If there exists a binary linear code C of length q - 1 and dimension q — 1 - k

with covering radius s then the columns of the k x (q - 1) parity check matrix of
C together with the zero element of Zk

2 have the property that every element of
Zk

2 can be represented as a sum of exactly s of them (see [8]), and consequently,
by Theorem 1 we then have

msq(n, n - s) < 1
/2k q

n for all n.

For tables of linear covering codes, see e.g., [10].
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Example 2. There exists a binary linear code of length 23, dimension 12 and
covering radius 3, and therefore,

which is much better than the estimate ms24(n,n-3) < 27 x 24n-3 of Theorem 4.
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