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Abstract. We continue the study of the family of planar regions dubbed Aztec diamonds in our
earlier article and study the ways in which these regions can be tiled by dominoes. Two more
proofs of the main formula are given. The first uses the representation theory of GL(n). The
second is more combinatorial and produces a generating function that gives not only the number of
domino tilings of the Aztec diamond of order n but also information about the orientation of the
dominoes (vertical versus horizontal) and the accessibility of one tiling from another by means of
local modifications. Lastly, we explore a connection between the combinatorial objects studied in
this paper and the square-ice model studied by Lieb.
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5. Grassmann Algebras

The resemblance between the formula

given in Section 4 and the Weyl dimension formula for representations of GL(n)
is not coincidental. In fact, the identity

*Part I of this paper appears in Journal of Algebraic Combinatorics, Vol. 1, No. 2, September
1992, 111-132.
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can be proved by pure representation theory. The idea is to relate the rules
for consecutive rows in Gelfand triangles to the decomposition of GL(n)-
representations as GL(n - 1) x GL(1) representations.

Let V be a finite-dimensional vector space, let A i(V) be the ith exterior power
of V, and let

be the exterior algebra generated by V (regarded here as a module, not an
algebra). It is elementary that if V and W are finite-dimensional vector spaces,

We now recall the Cartan-Weyl theory of weights of irreducible representations
of Lie groups in the case of GL(n) (due to Schur); for more details, see
[5]. If V = Cn, then GL(V) = GL(n,C) contains the group T of diagonal
matrices diag(x1 , . . . , xn). The analytic homomorphisms T —> C* are precisely
the Laurent monomials x1

a1 • • • xn
an, ai e Z. If p is a finite-dimensional (analytic)

representation of GL(n, C), its restriction to T is a direct sum of 1-dimensional
analytic representations (called weights) and the restriction of the trace of p
to T is a Laurent polynomial in the xi; we represent a weight of p by the
sequence of exponents occurring in the corresponding Laurent monomial in
tr(p|T). For instance, the trace function of the identity representation is the
sum of the diagonal elements, x1 +...+ xn, so the weights are the basis vectors
(0,.. . , 0,1, 0,..., 0). The operations of linear algebra can be translated into
operations on trace polynomials. Thus the trace of a direct sum of representations
is the sum of the traces, the trace of a tensor product is the product of traces,
the trace of the kth exterior power is the kth elementary symmetric function
of the constituent monomials, and so on. The irreducible representations p of
GL(n, C) are indexed by dominant weights y = (y1, ..., yn), where yi e Z and
Y1 <

 ... < Yn; among all weights that occur in P|T and satisfy this inequality,
A has the greatest norm. For instance, the dominant weight of the identity
representation is (0, 0, ..., 0, 1).

We set ai = yi + i, so the finite-dimensional irreducible representations of
GL(n, C) are indexed by (a1, ..., an), where ai e Z and a1 <

 ... < an. The Weyl
character formula for GL(n) says that the trace function for p(a1 , ..., an) is
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The numerator of this expression can be written

Subtracting x1
ai+1-aitimes row i from row i + 1, for i = n - l , n — 2, ..., 1, we

obtain

The trace functions for the representations V, A2(V), and G(V) (that is, for the
action of GL(n) on these spaces induced by the action of GL(n) on V) are
given by E1<i<nxi, E1<j<i<nX iX j , and E1<j<i<n(l + x i X j ) , respectively. The trace
function for P(a1, ..., an) ® G(V) is therefore

this is equal to

where

Viewing GL(n - 1, C) as the subgroup of GL(n, C) consisting of all matrices of
the form
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we can restrict p ( a 1 , . . . , an) ® G(Cn) to GL(n - 1). At the level of traces on the
diagonal, this amounts to setting x1 = 1 to obtain

(As in Section 4, the notation E* indicates a sum where the endpoints are
counted with multiplicity 5.) This is visibly the sum of the traces of the
GL(n - 1)-representations

counted with appropriate multiplicities. In fact, since two representations of
GL(n - 1) are the same if and only if their trace polynomials coincide, this
gives a formula for the restriction of the representation p(a1 , ..., an) ® G(Cn)
to GL(n - 1). Iterating this process, we see that W(l, 2, . . . , n) (as defined in
Section 4) is the value obtained by substituting x1 = x2 = ... = xn — 1 in the
trace function of G(Cn) viewed as a GL(n)-representation or, in other words, the
trace function of G(Cn) on GL(0) = 1, which is simply the dimension of G(Cn).

6. Domino Shuffling

The even (or standard) coloring of the Aztec diamond, as defined earlier, is
the black-white checkerboard coloring in which the interior squares along the
northeast border are black. In this section it will be convenient to also consider
the other checkerboard coloring, which we call odd. We will continue to call a
vertex of a checkerboard-colored region even if it is the upper-left corner of a
white square, and we will call it odd otherwise, only now this notion depends on
the checkerboard coloring chosen as well as on the coordinates of the vertex.

In general, a union of squares in a bicolored checkerboard will be called even
if the leftmost square in its top row is white, and it will be called odd if that
square is black. Thus the left half of Figure 12 shows an even Aztec diamond,
an even 2-by-2 block and two even dominoes (along with an even vertex), and
the right half of Figure 12 shows odd objects of the same kind. Hereafter, a
2-by-2 block will be called simply a block.

Given a tiling of a colored region by dominoes, we may remove all the odd
blocks to obtain an odd-deficient tiling. In general, an odd-deficient domino tiling
of a region in the plane is a partial tiling that has no odd blocks and that can
be extended to a complete tiling of that region by adding only odd blocks. An
odd-deficient tiling of the Aztec diamond of order n with its even coloring is
uniquely determined by the heights of its even vertices, as recorded in the matrix
B of Section 3; thus these odd-deficient tilings are in one-one correspondence
with alternating-sign matrices of order n + 1.
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Figure 12. Even things and odd things.

Given a partial tiling T of the plane, let UT be the union of the dominoes
belonging to T. Observe that if T is odd-deficient, then the boundary of UT has
corners only at odd vertices.

The functions v(T) and r(T) defined earlier can be expressed in the form

and

for suitable functions v(.) and r(.) on the set of dominoes, which we now define.
If the domino d is horizontal, let v(d) = r(d) = 0; if d is vertical, let v(d) = 1/2
and let r(d) be assigned according to the location of the center of d following
the pattern set down in Figure 13 for the case n = 3. (More formally, we
may declare that if d is the vertical domino with upper-left corner at (i,j), then
r(d) = (-1)i+j+n(i + n+ 1).) Clearly, v(T) is the sum of v(d) over all dominoes
deT. As for r(T), note that

also note that a move that increases h(T) by 1 either creates two vertical dominoes
d1, d2 that satisfy r(d1) + r(d2) = 1 or annihilates two vertical dominoes d1,d2 that
satisfy r(d1) + r(d2) = -1. Thus by induction r(T) = EdeTr(d) for all tilings T.
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Figure 13. r-weights of vertical dominoes.

Figure 14. Directions for shuffling dominoes.

We therefore have

We now prove

by using a process called domino shuffling, which is a certain involution on the
set of odd-deficient tilings of an infinite checkerboard. If d is a domino on
a colored region, we define S(d), the shuffle of d, as the domino obtained by
moving d one unit to the left or up if it is even and one unit to the right or
down if it is odd (see Figure 14). Graphically, one can place an arrow joining
the two noncorner vertices on the boundary of d, pointing from the even vertex
to the odd vertex; this indicates the direction in which d will shuffle.

Clearly, S is an involution on the set of dominoes on an infinite checkerboard.
Two dominoes form an odd block if and only if each is the shuffle of the other;
if d and S(d) are horizontal, then r(d) + r(S(d)) = 0 whereas if d and S(d) are
vertical, then r(d) + r(S(d)) = -1.

Given a partial tiling f we define S(T), the shuffle of T, to be the collection
of all S(d) with d e T.

LEMMA. Domino shuffling is an involution on the odd-deficient tilings of an infinite
checkerboard.



Figure 15. Four domino positions.

Figure 16. Three pairs of impossible dominoes.

Proof. Let T be an odd-deficient tiling of the plane, with T an extension to a
true tiling of the plane. We first show that S(T) is a partial tiling, that is, that
no two dominoes of S(T) overlap. Assume otherwise, and suppose that a white
square a is covered by two dominoes in S(T). That is, S(T) contains two of the
four dominoes a, 6, c, d shown in Figure 15 (with arrows indicating the directions
in which they shuffle). There are six cases to be considered and ruled out:

(i) a, b e S(T): T must contain the dominoes S - 1 (a) = S(a) and S - l ( b ) =
S(b), but S(a) and S(b) overlap (see Figure 16(a)).

(ii) c, d e S(T): Same reasoning as in case (i).
(Hi) a, c e S(T): S(a), S(c) € T (see Figure 16(b)). The full tiling T must cover

s but cannot include 6 or d (since T already includes S(a) and S(c), which
conflict with those two dominoes); hence T must include a or c. However,
in the former case a e T forms an odd block with S(a) e T, so that S(a) e T
after all; the case c e T leads to a similar contradiction.

(iv) b, d e S(T): Same reasoning as in case (iii).
(v) a, d e S(T): Same reasoning as in cases (iii) and (iv), though the geometry

is somewhat different (see Figure 16(c)).
(vi) b, c € S(T): Same reasoning as in case (v).

Hence a white square cannot be covered by two dominoes of S(T). The
proof for black squares is similar. Therefore, S(T) is a partial tiling of the
checkerboard.

We must also show that S(T) is odd deficient. S(T) cannot contain any odd
blocks because the inverse shuffle (which is the same as the shuffle) of an odd
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block is an odd block. It remains to show that the boundary of US(T) has corners
only at odd vertices. Let v be an even vertex. It is easily checked that v is
a corner of UT, if and only if UT. contains unequal numbers of black squares
and white squares adjacent to v (and similarly for US(T)). A domino d e T may
cover, of the four squares adjacent to v, one black square, one white square, or
one square of each color. In these three cases S(d) covers one white square, one
black square, or no squares at all, respectively. Thus the even vertex v could be
a corner of US(T) only if it was already a corner of UT. However, we assumed

T was odd deficient, so that its only corners were at odd vertices. D

Assume now that T is an odd-deficient tiling, not of the entire plane, but of
the order-(n - 1) Aztec diamond. We can use the above to show that S(T) is
an odd-deficient tiling of the order-n diamond. It is clear that for every domino
d e T, S(d) lies in the order-n diamond; what is less pictorially obvious is that
the complement of S(T) relative to the order-n diamond must be a union of odd
blocks. One way to see this is to tile the complement of the order-(n - 1) Aztec
diamond with horizontal dominoes and thereby obtain an odd-deficient tiling T
of the entire plane. Then, by the lemma, S(T ) is an odd-deficient tiling of the
plane; some of its missing odd blocks lie in two semi-infinite strips of height 2
to the left and right of the order-n diamond, and all the others must lie strictly
inside the order-n diamond. None of these blocks crosses the boundary of the
order-n diamond, so if we add these blocks to S(T), we get a complete tiling of
the order-n diamond.

Consider now an odd-deficient tiling T of the order-(n - 1) Aztec diamond,
with Tyert equal to the set of vertical tiles of T; let

and

(recall that v(d) = r(d) = 0 for all horizontal dominoes d). Let

where the sum is over all tilings T that extend T; we have

where the sum is over all partial tilings T of the order-(n - 1) Aztec diamond.
Say that T is missing m odd blocks, so that it gives rise to 2m distinct complete
tilings T; then it is easily seen that



ALTERNATING-SIGN MATRICES AND DOMINO TILINGS 227

S(T) is an odd-deficient tiling of the order-n Aztec diamond with its odd coloring,
missing m + n odd blocks. Therefore, relative to the even coloring, we have

The product in the right-hand side of the above equation can be rewritten as

However, substitution of n for n - 1 and xq2 for x in (8) yields

Hence

Since every odd-deficient tiling of the order-n Aztec diamond with odd coloring
is of the form S(T) for some odd-deficient tiling of the order-(n — 1) Aztec
diamond with even coloring, we can sum both sides of the preceding equation
over all T, obtaining

The general formula for AD(n; x, q) follows immediately by induction.
Although this proof made no mention of alternating-sign matrices, they are

very much involved in determining the exact locations of the various 2-by-2
blocks. Specifically, let T be a domino tiling of the Aztec diamond of order
n - 1, and let A be the (n - l)-by-(n - 1) alternating-sign matrix determined by
T as in Section 3. Then the locations of the odd blocks in T are given by the
1's in A, and the locations of the odd blocks in 5(T) are given by the -1's.

Latent within the proof of the formula for AD(n; x, q) is an iterative bijection
between domino tilings of the order-n Aztec diamond and bit strings of length
n(n + l)/2. Say we are given a bit string of length 1 + 2 + ... + n, and suppose
we have already used the first 1 + 2 + ... + (k - 1) bits to construct a domino
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tiling of the order-(k - 1) diamond. Impose the even coloring on this Aztec
diamond, and locate the odd blocks, of which there are m. Pick up these odd
blocks in some definite order (of which we will say more shortly), and put them
elsewhere, retaining their order. Shuffle the dominoes in the remaining partial
tiling of the Aztec diamond of order k-1. The resulting partial tiling of the
order-k; Aztec diamond has m + k holes in it; fill these holes (again in some
definite order) with the m blocks that were removed before, followed by k other
blocks whose orientations (horizontal versus vertical) are determined by the next
k bits of the bit string. In this way one obtains a complete tiling of the Aztec
diamond of order k. Note that no information has been lost; the procedure
is fully reversible. Thus iteration of the process gives a bijection between bit
strings of length n(n + l)/2 and domino tilings of the order-n Aztec diamond.
Moreover, every 0 (respectively, 1) in the bit string leads to the creation of two
horizontal (respectively, vertical) dominoes in the tiling, so it is immediate that
the number of tilings of the Aztec diamond with 2v vertical dominoes is

The preceding construction requires a pairing between the m missing odd
blocks of an odd-deficient tiling of the order-(k - 1) Aztec diamond and m of
the m + k missing odd blocks of an odd-deficient tiling of the order-n Aztec
diamond. There is a canonical way of doing this pairing. Recall that these two
kinds of blocks correspond to the -1's and +l's in an alternating-sign matrix A,
so it suffices to decree some sort of pairing between the -1's and a subset of the
+ l's (which will leave n + 1's left over). However, this is easy: simply pair each
-1 with the next +1 below it in its column. In terms of shuffling, this means
that the odd blocks of T drift southeast until they find a hole in S(T) into which
they can fit; this leaves n holes near the upper-left border of the order-n Aztec
diamond, which the n new 2-by-2 blocks exactly fill.

It would be nice to have a "shuffling" proof of the product formula for W.
It would also be nice to have a procedure for randomly generating monotone
triangles according to the (uneven) probability distribution given by the weights
W( .).

7. Square Ice

It is worthwhile to point out a connection between the combinatorial objects
investigated in this paper and a statistical-mechanical model that has been studied
extensively since the 1960's. Recall that an n-by-n alternating-sign matrix can be
represented by its skewed summation, as in Figure 17(a). Replace each entry
in the matrix by a node, and put a directed edge between every two adjacent
entries, pointing from the smaller to the larger. Then one has a directed graph
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Figure 17. Alternating-sign matrices to square ice.

Figure 18. Labeling the vertex configurations.

in which the circulation around every square cell is 0 (that is, each cell has
two clockwise edges and two counterclockwise edges); see Figure 17(b). Finally,
rotate each of these edges 90° counterclockwise about its midpoint. The result
is a configuration like the one shown in Figure 17(c), with divergence 0 at each
node (that is, each node has two incoming arrows and two outgoing arrows). This
is exactly the square-ice model of statistical mechanics, with the special boundary
condition of incoming arrows along the left and right sides and outgoing arrows
along the top and bottom. (For discussion of this and related models, see [1]
and [14].)

In the general square-ice model, one associates a Boltzmann weight wi (i =
1 to 6) with each of the six possible vertex configurations shown in Figure 18; then
the weight of a configuration is defined as w1

k1w2
k2 ... w6

k6, where ki is the number
of vertices in the lattice of type i and the partition function associated with the
model (denoted by Z) is the sum of the weights of all possible configurations. Z
has an implicit dependence on the lattice size and the boundary conditions. It
is customary to impose periodic boundary conditions, but we instead impose the
"in-at-the-sides, out-at-the-top-and-bottom" condition on our n-by-n grid. Call
this the Aztec boundary condition.

To recast our work on domino tilings of the Aztec diamond in terms of
square ice, it is convenient to rephrase domino-tilings as dimer arrangements,
or 1-factors. Specifically, we define a graph G' whose vertices correspond to the
cells of the order-n Aztec diamond with an edge between two vertices of G' if
and only if the corresponding cells are adjacent. Then a domino tiling of the
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Figure 19, A 1-factor and an ice state.

Aztec diamond corresponds to a 1-factor F of G (a collection of disjoint edges
covering all vertices).

There is a general method for writing the number of 1-factors of a planar
graph as a Pfaffian [8]. Indeed, if one assigns weight w(e) to each edge e of a
planar graph on N vertices and defines the weight of a 1-factor as the product
of its constituent weights, then the sum of the weights of all 1-factors of the
graph is equal to the Pfaffian of an antisymmetric N-by-N matrix whose (i, j)th
entry is ±w(e) if the graph has an edge e between i and j and 0 otherwise. (The
delicate point is the correct choice of signs.) This method has been applied to
the problem of counting 1-factors of m-by-n grids (equivalently, domino tiling of
m-by-n rectangles); see [7], [2], [10]. The Pfaffian method provides yet another
route to our result on tilings of the Aztec diamond, though we have omitted the
calculation here; see [23].

It is convenient to rotate the graph G' 45° clockwise, as in Figure 19(a). Call
a cell of G' even or odd according to the parity of the corresponding vertex
of G (under the standard coloring), so that the four extreme cells of G' are
even. Every even cell is bounded by four edges, of which two, one, or none
may be present in any particular 1-factor; the seven possibilities appear at the
top of Figure 20, where a bold marking indicates the presence of an edge. If we
replace each even cell by the corresponding ice junction given at the bottom of
Figure 20, it is easy to check that the result is a valid ice configuration satisfying
our special boundary conditions and that every such configuration arises in this
way. The process is exemplified in Figure 19(b). Note that the transformation
from 1-factors to ice configurations is not one-to-one; it is, in fact, 2ks -to-one,
where k5 is the number of vertices of type 5 in the ice pattern. That this
transformation is equivalent to the more roundabout operation of converting the
1-factor to a domino tiling can be checked by using the heights of the even
vertices to form an n-by-n alternating-sign matrix and then turning the matrix
into an ice pattern as in the first paragraph of this section.

Let T be a tiling of the Aztec diamond, and let F be the associated 1-factor
of G'. Note that every domino in T corresponds to an edge in F and that
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Figure 20. Correspondence between 1-factors and ice states.

this edge belongs to a unique even cell of G'. Hence if we assign the weights
x, x, 1, 1, 1, x2, and 1 to the respective cell figures, the product of the weights
of the cell figures appearing in F is equal to x2v(T). Thus if we set

then the partition function Z coincides with the generating function

Note that k5 - k6 = n for all order-n ice configurations with Aztec bound-
ary condition (corresponding to the fact that the number of 1's in an n-by-n
alternating-sign matrix must be n more than the number of — 1's). Hence replac-

ing w5 and w6 by Sl + x2 merely divides the partition function by (1 + x2)n/2 .
Furthermore, k1 + k2 +

 ... + k6 = n2, so multiplying all the Boltzmann weights
by a factor b merely multiplies the partition function by bn2 . Writing a = bx
and c = bSx2 + 1 = Sa2 + b2, we see (after an easy calculation) that for the
square-ice model with Aztec boundary condition and with Boltzmann weights

satisfying a2 + b2 = c2 the partition function is given by Z = cn2.
It should be noted that this family of special cases of the ice model (given

by a, b, c satisfying a2 + b2 = c2) is also the family that corresponds to the
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free-fermion case and is precisely the case in which the model has been solved
by the method of Pfaffians. (See [1, pp. 151, 270-271] and [4]). This leads
us to suspect that domino shuffling may, in fact, arise from some combinatorial
interpretation of the Pfaffian solution.

We must emphasize the role played by the Aztec boundary conditions in the
foregoing analysis, since it adds an element essentially foreign to the physical
significance of the ice model. In particular, Lieb's solution of the ice model in
the case w1 = w2 =

 ... = w6 = 1 [9] tells us that there are asymptotically

order-n ice configurations with periodic boundary conditions; on the other hand,
if the conjecture of Mills et al. [12], [13] is correct, the number of order-n ice
configurations with Aztec boundary conditions should asymptotically be only

Clearly, there are more constraints on a domino tiling near the boundary of an
Aztec diamond than there are near the middle; this accounts for at least some
of the drop in entropy. It would be interesting to know in a more quantitative
way how the entropy of a random tiling is spatially distributed throughout a large
Aztec diamond.

8. Epilogue

There have been many combinatorial transformations in this article, so it may
be useful to review them. First, we have

(i) tilings,
(ii) height functions associated with tilings, and

(iii) the order ideals associated with those height functions.

We saw how to go from (i) to (ii) (Thurston's marking scheme), from (ii) to (iii)
(see the construction of the poset P in Section 3), and from (iii) back to (i) (the
stacked cubes).

Then we have

(iv) alternating-sign matrices,
(v) height functions associated with alternating-sign matrices,
(vi) the order ideals associated with those height functions,

(vii) monotone triangles, and
(viii) states of the square-ice model (or, equivalently, its dual).
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We saw the correspondence between (iv) and (v) and between (v) and (vi) in
Section 3, between (iv) and (vii) in Section 4, and between (v) and (viii) in
Section 7. Further correspondences can be made. For instance, to get from (iv)
to (viii) directly, in a given alternating-sign matrix we replace a 1 by a vertex
configuration of type 5, we replace a -1 by a vertex configuration of type 6, and
we replace each 0 by the unique vertex configuration of type 1, 2, 3, or 4 which
fits in the pattern (note that arrows "go straight through" configurations of types
1-4 without reversing).

Then there are the mappings between (i)-(iii) and (iv)-(viii) under the cor-
respondence between domino tilings and compatible pairs of alternating-sign
matrices. We saw in Section 3 how to pass between (ii) and (v) and between
(iii) and (vi). Other connections can be made, and the reader might find it
instructive to try to establish them.

There are actually even more incarnations of alternating-sign matrices than
have been discussed here: 3-colorings of certain graphs (subject to boundary
constraints), 2-factors of some related graphs, and tilings of various regions in
the plane by shapes of two kinds. These other structures may be discussed in
a future paper. Then there are other combinatorial objects which seem (but
have not been proved) to be equinumerous with the alternating-sign matrices,
namely, descending plane partitions and self-complementary totally symmetric
plane partitions. See [16] for details.

AD(n) is a perfect square when n(n + l)/2 (one-fourth of the number of
vertices) is even, and it is twice a perfect square when n(n + l)/2 is odd. More
generally, Jockusch [6] has shown that if G is any bipartite graph in the plane
with no crossing edges, such that G has 4-fold rotational symmetry and rotation
by 90° exchanges the two parts of G, then the number of matchings of G is
a square or twice a square, according to whether the number of vertices of G
(necessarily divisible by 4) is divisible by 8 or is not.

Stanley (private communication) has discovered that our two-variable generat-
ing function for tilings of the order-n Aztec diamond is actually a specialization
of a 2n-variable generating function. A proof of this identity by means of the
shuffling method of Section 6 is described in [23].
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