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Abstract. Weights of 1 or 0 are assigned to the vertices of the n-cube in n-dimensional Euclidean
space. Such an n-cube is called balanced if its center of mass coincides precisely with its geometric
center. The seldom-used n-variable form of P61ya's enumeration theorem is applied to express the
number Nn,2k of balanced configurations with 2k vertices of weight 1 in terms of certain partitions of
2k. A system of linear equations of Vandermonde type is obtained, from which recurrence relations
are derived which are computationally efficient for fixed k. It is shown how the numbers Nn,2k

depend on the numbers An,2k of specially restricted configurations. A table of values of Nn,2k and
An,2k is provided for n = 3, 4, 5, and 6. The case in which arbitrary, nonnegative, integral weights
are allowed is also treated. Finally, alternative derivations of the main results are developed from
the perspective of superposition.

1. Introduction

The enumeration of various types of Boolean functions has its origins over 100
years ago in the work of Clifford [1] (see Jevons [5, pp. 134-146] for a summary).
The quaint terminology of these early references is not easily understood, the
methods are laborious, and only a few simple cases are considered. The problems
of Clifford and Jevons were recast in a more accessible form by Polya [8], who
viewed the logical propositions as distributions of marks of two sorts, say, T
and F for true and false, on the 2n vertices of an n-cube. Polya then derived
efficient formulas which permitted him to correct Clifford's errors and verify
some results of Jevons. For example, a problem of Jevons asks for the number
of certain "consistent" logical propositions in four variables. Polya interpreted
these as colorings of the vertices of a fixed 4-cube with two colors, say, black and
white, such that no face has all of its vertices black, and he used the method of
inclusion and exclusion to derive a simple formula that applies to any dimension.

Several papers have been written since [8] which extend and refine P61ya's
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results. See, for example [3], [4], [6], [7], and [11].
In this paper we are concerned with 2-colorings of the vertices of a fixed,

geometric n-cube. We regard the black vertices as having weight 1 and the
whites as having weight 0, and we seek to determine the number Nn,2k of these
configurations with 2k black vertices whose center of mass is identical to the
geometric center of the n-cube. We apply the seldom-used n-variable form of
P61ya's theorem for counting combinations and obtain a formula for Nn,2k which
depends on the partitions of 2k. This formula then leads us to a system of linear
equations of Vandermonde type from which effective recurrence relations can
be derived. We also investigate the number An,2k of antiantipodal colorings,
that is, balanced colorings in which no two black vertices are antipodal. These
bear a straightforward relationship to the Nn,2k 's from which the An,2k's can
be calculated. The numerical results suggest that An,2k= 0 when n > 3 and
k = 22n-2 - 1, a fact which is then confirmed by a combinatorial argument.

2. Definitions

The set V of vertices of the geometric n-cube Qn consists of the 2n points in
n-dimensional Euclidean space, each of whose coordinates is +1 or -1, i.e.,
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Two vertices are adjacent if they differ in exactly one coordinate. Thus the
distance between them is 2.

A 2-coloring of the vertices of Qn is a function f from V into the set {black,
white}. Thus / assigns colors to the vertices. The weight of f, denoted w(f), is
the number of black vertices, i.e., the black vertices have weight 1 and the white
vertices have weight 0. The center of mass of a coloring f with w(f) = 0 is the
point whose coordinates are given by

where the sum is over all black vertices. If w(f) = 0, we take the center of mass
to be the origin. A coloring is balanced if its center of mass is the origin. The
balance condition is easily expressed in terms of the faces Fi and -Fi, where Fi

contains all 2n-1 vertices for which ei = +1 and — Fi is the complement. To be
balanced a coloring of weight 2k must have k black vertices in Fi and k black
vertices in -Fi for each i = 1, ..., n. Since no coloring of odd weight can be
balanced, only even weights are considered.

Two vertices of maximum rectilinear distance 2n, v and —u, are said to be
antipodal. A coloring is antipodal if every two antipodal vertices are assigned
the same color. It is antiantipodal (with respect to black) if it is balanced and
contains no antipodal pair of black vertices.

For definitions not included in this paper, we refer the reader to [2].
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3. Counting Formulae for 2-Colorings

The antipodal colorings are obviously balanced. Each antipodal pair of vertices
may be colored both black or both white. The number of these with 2k
black vertices is just the coefficient of y2k in (1 + y2)2n-1, which we denote by
[y2k](l + y2)2n-1. Thus the number of antipodal colorings is

Let Nn,2k be the number of balanced colorings of the n-cube with exactly 2k
black vertices. The partitions of 2k are denoted by vectors (j) = (ji, ..., j2k),
where

Finally, we let

THEOREM 3.1. The number Nn,2k of balanced colorings of the n-cube with 2k black
vertices is

where the sum is over all partitions (j) of 2k,

and

Proof. We use the form of P61ya's enumeration theorem which counts combina-
tions by weight. Our "figure-counting series" is the polynomial in the variables
x1, ..., xn defined by
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The 2n monomials in the expansion of the product of (6) correspond precisely
to the vertices of the n-cube. For each i = 1 to n the ith coordinate of any
vertex is +1 if and only if xi is a factor of its monomial. For example, when
n = 5 the vertex (1, -1, 1, 1, -1) corresponds to the monomial x1x3x4.

The colorings of the n-cube with 2k black vertices correspond to 2k-subsets
of the 2n monomials in c(x1, ...,xn). We call the product of the monomials in
such a 2k-subset the weight of the subset. Suppose the weight of a 2k-subset
is x1

t1...xn
tn. Then for each i = 1 to n the corresponding coloring has exactly Ti

black vertices for which the ith coordinate is +1. Then N n 2 K is just the number
of 2K-subsets of weight xK

1x
k
2

 ... xk
N because for each i = 1 to n, k of the black

vertices have ith coordinate +1 and the other k have the ith coordinate -1.
The counting series for these 2K-subsets by weight is obtained by applying the

form of Polya's theorem used to count combinations by weight (see [2, p. 48]).
The desired series takes the following symbolic form:

which means that each variable si in the cycle index difference Z(A2k - S2k) =
Z(A2k)-Z(S2k) of the alternating and symmetric groups is replaced by c(x i

1 , . . . , xi
n).

It remains to determine the coefficient of xK ... xk in expression (7) for each
partition (j) = (ji

 ....j2k) of 2k. Therefore consider the term

After substitution, we interchange the two products and obtain

Thus the coefficient we seek is

Now formula (3) of the theorem follows from the identity

where (j) is summed over all partitions of 2k (see [2, p. 36]).

We now show how to find a recurrence relation satisfied by Nn,2k for each
fixed k. First, note that Nn,0 = 1 for all n > 0. For n > 0 the sum in formula (3)
over all partitions (j) of 2k can be confined to those terms for which N(( j ) ) > 0.
Let a1 , . . . , am be the distinct, nonzero values of N((j)) over partitions of 2k.
Define the numbers C1 , . . . , Cm by
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Then the following corollary gives the recurrence relation.

COROLLARY 3.1. For n > m

Proof. It follows from Theorem 3.1 that Nn,2k can be expressed as

for appropriate b1, ..., bm and n > 0. Thus

where O(x) is a polynomial of degree at most m. The recurrence follows by
multiplying (15) by the right-hand side of (12) and observing that the coefficient
of x" in the resulting convolution is 0 when n> m. D

We illustrate the procedure with the example k = 2. Consider the partition
(j) = (4, 0, 0, 0) of 2k = 4. Since j1 = 4,

The results for the other partitions are summarized as follows:

Arbitrarily, we choose a1 = 2 and a2 = 6 and observe that

Thus C1 = 8 and C2 = -12, and therefore for n > 2
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This relation is solved explicitly below in (51). For n = 3 the number of evenly
balanced colorings of Q3 is N3, 4 = 8(1) — 12(0) = 8. Continuing to use equation
(16), we find N4,4 = 8(8) - 12(1) = 52 and N5,4 = 8(52) - 12(8) = 320.

We emphasize that most of the entries in Table 1 for Nn,2k were computed
by using formula (3) of Theorem 3.1. The condition n > m in the hypothesis
of Corollary 3.1 requires n > 7 when 2k = 8. Even if 2k = 6, there are m = 4
different values for N ( ( j ) ) , and so in Table 1 only N5,6 and N6,6 can be obtained
from the recurrence relation for Nn,6.

Theorem 3.1 can also be used to determine the number An,2k of balanced
colorings with 2k black vertices but no antipodal pair of black vertices, i.e.,
antiantipodal colorings. Note that An,0 = 1 for all n > 1 and that An2k = 0
unless 2k < 2n-1.

COROLLARY 3.2.

Proof. For each i = 0 to k an antiantipodal coloring with 2i black vertices has
2n-1 - 2i pairs of antipodal white vertices. On selecting k - i of these pairs
and coloring their 2(k - i) vertices black, we obtain a balanced coloring with
2i + 2(k -i) = 2k black vertices. Therefore the number of these for each i is

The numbers Nn,2k and An,2k are displayed in Table 1 for n - 3, 4, 5, and 6
and 2k < 2n-1. If the colors of any 2-coloring of two vertices of the n-cube are
switched, we obtain the complementary coloring, or the complement. Clearly, the
complement of a balanced coloring is also balanced. Hence

and so the numbers of balanced colorings with 2k > 2n-1 have been omitted
from Table 1.

Note that when 2k = 2n-l - 2, An,2k = 0 for 3 < n < 6. We have found this
to be the case in general.
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Proof. When k = 1 there are only two black vertices, which must be antipodal
in order to achieve balance. However, such a configuration is not antiantipodal
with respect to black.

Table 1. Balanced colorings of the n-cube

An.2k

\

0

2

1
0
24
0
8

1
0

200
864
3980
4512
3920
0

222

1
0

1440
38400
873400

11225024
94406496
505093760
1756793620
3910422720
5526259040
4765836160
2428563760
645500160
92788160

0
807980

for n = 3, 4, 5, and

Nn,2k

1

4
8

1
8
52
152
222

1
16
320
3824
27640
123600
353120
657520
807980

1
32

1936
83680

2452080
49585440
712645616
7472934880
58431976800
346729813920
1583599024656
5629885328736
15718244056816
34699914166560
60880399587440
85186889390304
95259103924394

6.

2k

0
2
4

0
2
4
6
8

0
2
4
6
8
10
12
14
16

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32

n

3
3
3

4
4
4
4
4

5
5
5
5
5
5
5
5
5

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

THEOREM 3.2. An,2k = Q for n > 3 and k = 1 or k = 2n-2 - 1.
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Now, if n > 3, then 6 must be even, so that u and v take the same value at the
ith coordinate. Since this is true for all i with 1 < i < n and since u, v e Fn, we
conclude that u — v, which is a contradiction. D

We also observe in Table 1 that A4,8 = N3,4 = 8, A5,16 = N4,8 = 222, and
A6,32 = N5,16 = 807980. This turns out to be the case in general.

THEOREM 3.3. An,2k = Nn - 1 , k for n>2 and k = 2n-2.

Proof. Here is a sketch of a simple combinatorial argument that verifies this fact.
Consider a balanced coloring of dimension n - 1 and weight 2n-2. If it has 2j
antipodal pairs of vertices with one vertex black and the other white, then there
must be 2n-3 -j antipodal pairs for which both vertices are black and there must
be the same number of antipodal pairs for which both vertices are white. Use
this to make face Fn of an n-dimensional coloring. The white vertices of face
-Fn are antipodal to the black vertices of Fn. This guarantees that the coloring
being constructed will be antiantipodal. The remaining 2n-2 vertices of Fn are
colored black.

Now consider the sum of the ith coordinates of the black vertices of the
new configuration. If t = n, then the sum is zero because there are 2n-2 black
vertices in face Fn and the same number in face -Fn. If i < n, first consider all
2j antipodal pairs of different-colored vertices in face Fn. Their ith coordinates
sum to zero because they come from the balanced antiantipodal portion of the
original configuration. Similarly, the corresponding 2j black vertices of face -Fn

also have ith coordinates that sum to zero. Now consider any pair of antipodal
black vertices in the original coloring. Each pair has ith coordinates that sum to

264

For k = 2n-2 -1 we proceed by contradiction, so fix on a particular antiantipo-
dal balanced coloring of the n-cube which contains exactly 2n-1 - 2 black vertices.
Each of the complementary faces Fn and -Fn must contain exactly 2n-2 -1 black
vertices in order to achieve balance with respect to the nth coordinate en. The
opposing vertices must all be white, which accounts for 2n-2 - 1 vertices each in
Fn and -Fn. Let u and v be the other two vertices in Fn, i.e., the two which are
white and for which -u and —v are also white.

Now consider balance with respect to some other coordinate, say, ei, for
1 < i < n. Let r denote the number of black vertices in Fi n Fn, so that
(-Fi) n Fn contains exactly 2n-2 -1 - r black vertices. Let b be the cardinality
of {u, v} n Fi which is 2, 1, or 0. Then the number of white vertices in
(Fn - {u, v}) n Fi is 2n-2 -r -6, and the number in (Fn - {u, v}) n (-Fi) is
r-1 + 6. These are precisely the vertices antipodal to black vertices in -Fn, so
that the total number of black vertices in Fi is r + (r - 1 + 8) and in -Fi is
(2n-2 - 1 - r) + (2n-2 - r - 6). The balance condition for e, requires these totals
to be equal, which gives
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zero in both the original coloring and the new one. Each of these pairs gives rise
to a complementary pair in face -Fn which also has ith coordinates that sum to
zero. Hence the new configuration is balanced. It should be straightforward for
the reader to check that this correspondence is a bijection. D

4. Counting Formulae for Integer Weightings

A 2-coloring can be viewed as an assignment of weights in {0, 1}, with 0
corresponding to white and 1 to black. The weight of a coloring is then the
sum of the weights in that assignment. Suppose now that nonnegative integral
values or weights are assigned to the vertices of the n-cube so that the sum of
the weights is 2k. Thus we allow b < 2k black vertices and their weights range
from 1 to 2k, but they must sum to 2k. The other 2" - 6 white vertices have
weight 0. To be a balanced configuration, the sum of the weights of all the black
vertices with ith coordinate +1 must be equal to the sum of the weights of the
black vertices with ith coordinate -1 for each i = 1 to n. The number of these
is denoted by TNn,2k. Note that the number b of black vertices is no longer
necessarily even. The derivation of the appropriate formulae for computation
closely follows the pattern above for Nn,2k.

THEOREM 4.1. The number TNn,2k of balanced colorings of the n-cube with
nonnegative integral weights of total 2k is

where the sum is over all partitions (j) of 2k.

The proof is similar to that of Theorem 3.1, and so we shall just observe
some of the crucial differences. First, we use Z(S2 k) instead of Z(A2k - S2k)
in equation (7). The reason is that we want to choose 2k black vertices with
repetition instead of a 2k-subset. Then (19) follows from (10) and the fact that
h((j)) is the coefficient of II2k=1 si

i in Z(S2k).
As for Corollary 3.1, one simply replaces N by TN:

COROLLARY 4.1 For n > m

Note that this means the recurrence relations for TNn,2k are identical to those
for Nn,2k. Only the initial conditions are different. For example, from (16) we
have for n > 3



5. Superposition Approach

There is another way to count balanced colorings of the n-cube. One can use
the superposition approach to enumeration that was pioneered by Redfield [10]
and Read [9]. See [2, chap. 7] for another description of this method.

Let GI and GI be permutation groups of degree m. As before, we denote a
partition of m by (j) = (j1, j2, ..., jm), where ji is the number of parts equal to i.

The proof is similar to that of Corollary 3.2. One observes that any balanced
coloring can be uniquely expressed as an antiantipodal coloring of weight 2j with
the remaining weight of 2k - 2j accounted for by a selection with repetition of
k — j pairs of antipodal vertices.

The first instance of an antiantipodal coloring whose black vertices do not all
have the same weight occurs in Table 2 for n = 4 and k = 3. Since A4,6 = 0
and TA4,6 = 16, each of the 16 configurations must have some black vertices of
different weights. In fact, there is just one unlabeled antiantipodal configuration
of weight 6; we leave its construction to the reader.

266 PALMER, READ AND ROBINSON

but we must use

Hence TN3,4 = 8(3)-12(1) = 12. Continuing to use (21), we find TN4,4 = 8(12)-
13(3) = 60,TN5,4 = 8(60) - 12(12) = 336, and TN6,4 = 8(336) - 12(60) = 1968.

Thus to the results given in Table 1 we can add those in Table 2, which gives the
corresponding numbers of weighted, balanced n-cubes, where nonnegative integer
weights are allowed for the vertices. It can be shown quickly by combinatorial
means that TN2,2k = k + 1, and so these values have been omitted from the
table.

Theorem 4.1 can also be used to find the number TAn,2k of balanced colorings
with nonnegative integral weights but no antipodal pair of black vertices. Note
that for all n > 1, TAn,2k = An,2k for k = 0, 1, 2. Hence there is some duplication
in Table 2. The binomial coefficient in Corollary 4.2 below simply counts the
number of ways to select k - j items from a set of 2n-1 with repetitions allowed.

COROLLARY 4.2.
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Then the cycle indices of G1 and G2 can be written in terms of the indeterminates
s1, s2, s3, ... as follows:

and

where the sums are over all partitions (j) of m. Now we denote by

the polynomial

where again the sum is over all partitions (j) of m and where h((j)) is defined
by equation (5). The superposition operator * is commutative and associative and
can be extended by associativity to any number of operands; thus

Table 2. Balanced colorings of the n-cube with nonnegative integral weights for n = 3,4,5, and 6.

TAn,2k

1
0
2
0
2

1
0

24
16

128

1
0

200
1184

11972

1
0

1440
42560

1293560

TNn2k

1
4

12
28
57

1
8

60
328

1450

1
16

336
5200

61992

1
32

1968
94624

3468160

2k

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

n

3
3
3
3
3

4
4
4
4
4

5
5
5
5
5

6
6
6
6
6
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If P(SI, s 2 , . . . , sm) is a polynomial in the variables s1, s2, s3,..., sm, we denote
by N(P) the sum of the coefficients of P. Thus

Also, we use M(P) to stand for the number obtained when each si of P is
replaced by (-1)i+1, that is,

Then if P is a cycle index or a cycle index sum, M(P) is similar to N(P) but
counts negatively the terms corresponding to odd permutations.

THEOREM 5.1. Let G1, G2,
 ... Gn be permutation groups of degree m, and let P

be the polynomial

Then N(P) is the number of orbits of superpositions under Sm x G1 x ... x Gn,
where Sm permutes columns and Gi permutes the ith row for i = 1, ..., n. Likewise,
M(P) is the number of such orbits in which no representative has a column-odd
automorphism, i.e., one in which the column permutation is odd.

Proof. That N(P) is the number of orbits of superpositions under Sm x G1 x... x Gn

is the classical Redfield-Read superposition theorem (see [2], [9], and [10]). Two
superpositions, say, a' and a", are called equivalent if they are in the same orbit,
and in this case we write a' ~ a".

Recall that the cycle index of the symmetric groups Sm can be written as

where the sum is over all partitions (j) of m and Z((j)) denotes the cycle type
of a permutation with disjoint cycle decomposition (j), i.e.,

Now consider the polynomial

and observe that N(P) = N(P1). In fact, P = P1, The reason is that for the term
corresponding to Z((j)) in P1, for any (7), the additional factor of h ( ( j ) - l from
the superposition operation is precisely cancelled by the coefficient of Z((j)) in
Z(Sm).
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Now let N(P) - A + B, where A is the number of superpositions that
have no odd automorphisms and B is the number of those which do have odd
automorphisms. Note that an automorphism of a superposition a is simply an
element (c, g1, ..., gn) of Sm x G1 x

 ... x Gn such that

For this to be the case we must have

for some partition (j) of m. The automorphism is column-odd if and only if

in which case we say that Z((j)) is of odd type. The function a((j)) is defined
by equation (4).

Now consider the polynomial

We claim that

Consider the orbit O(a) of some superposition a with respect to the group
Sm x G1 x

 ... x Gn. This orbit contributes 1 to N(P1). Since Am x G1 x
 ... x Gn

has index 2 in Sm x G1 x
 ... x Gn, 0(a) must consist of either a single orbit over

Am x G1 x
 ... x Gn or else the union of two such orbits. Thus O(a) contributes

1 or 2, respectively, to N(P2). For each a we now determine which alternative
applies.

Variants of a obtained by acting on it with an even permutation v are
equivalent because C belongs to Am. Also, any two variants obtained by acting
on a by odd permutations V1 and v2 are also equivalent because V l V 2

- 1 belongs
to Am. Now let a' = (v, e, ..., e)a, where V is odd and e denotes the identity
permutation. If a' and a are equivalent under Am x G1 x

 ... x Gn, then we will
have

for some C in Am, g1 in G1, ..., gn in Gn. So

from which it follows that (vv, g1 , . . . , gn) is an element of Aut(a), the auto-
morphisms of a. This implies that Aut(a) contains an odd permutation since vv
is odd.

Conversely, if Aut(a) does contain an odd permutation, then a ~ va for any
v in Sm. This can be seen by reading the above computation in the reverse
direction.



270 PALMER, READ AND ROBINSON

Thus O(a) is split into two orbits in Am x G1 x
 ... x Gn precisely if a has no

odd automorphisms. Hence the claim (39).
Now we have

As may be seen in (11), the coefficient of Z((j)) in Z(Am) - Z(Sm) is

so the effect of the factor Z(Am) - Z(Sm) is simply to multiply by -1 for every
term Z((j)) of odd type in P of (31). So A = M(P). D

We shall now apply Theorem 5.1 to obtain an alternative derivation of the
results previously given and to obtain some extensions. Suppose 2k vertices of
the n-cube are to be colored. Then consider a range set consisting of k + 1's
and k - 1's with the group Sk x Sk acting to permute the +l's and -1's among
themselves in all possible ways. A superposition of n copies of this range set
gives a set of 2k columns. Each column is an n-vector of +l's and —1's, and
each thus represents a particular vertex of the n-cube.

If the 2k columns of the superposition a are distinct, then the 2k vertices
which they represent form a balanced coloring of the n-cube because in any one
of the n coordinates there are k columns with value +1 and k with value —1.
However, the number of superpositions giving distinct columns in this case is

where the superposition operation has length n. This makes use of the fact that

It also relies on the observation that a sequence of columns admits a column-odd
automorphism in s2k x (Sk x Sk) x... x (Sk x Sk) if and only if some two columns
are identical.

COROLLARY 5.1.

where the superposition operator involves n factors.

Proof. As may be seen above, each superposition counted corresponds to a
balanced coloring of the n-cube with exactly 2k black vertices. Conversely, any
such balanced coloring of the n-cube can be converted to a unique superposition
of the sort counted by regarding the black vertices as a set of column vectors. D
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To illustrate, let us consider the case n = 3 and k = 2. Then we let

and from the definition of the superposition operator we find

Hence

which is, by (46), equal to N3,4 (see Table 1). Furthermore, it is easy to see
from (48) that for any n > 3

Thus we have the following solution of the recurrence relation in equation (16):

Recall that TNn,2k is the number of balanced assignments of weight 2k, where
nonnegative integral values are assigned to the coordinates of the n-cube and
their sum is the total weight.

COROLLARY 5.2.

where the superposition operator involves n terms.

Proof. Balance simply requires that the values of vertices having ith coordinate
+ 1 sum to k and hence that the values of those having ith coordinate -1 also
sum to k, for i = 1 to n. Such a balanced assignment corresponds uniquely to a
superposition under s2k x (S0k x Sk) x ... x (Sk x sk) by forming a set of columns
with each vertex of the n-cube represented v times if its value is v. n

As an example, if n = 3 and k = 2, we use P from (47) and find

Further, for any n > 1

Note that Corollary 5.1 provides an expression for Nn,2k which differs in appear-
ance from that of Theorem 3.1. However, the two expressions have the same
meaning in the sense that they lead to the same sequence of computations for
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Several questions arising from the above results remain to be investigated. The
numerical data suggest that for each n, Nn,2k is unimodal with the maximum
at k = 2n-2, and we ask for a proof of this. More generally, we ask for the
asymptotic behavior of Nn,2k and An,2k as n -> oo.

The earlier results all assume the n-cube to be fixed in place (labeled). We
ask for the number of equivalence classes of balanced colorings under the full
automorphism group of the n-cube (order n!2n), the rotation subgroup (order
n!2n-1), the reflection subgroup (order 2n), or the permutation subgroup (order
n!). The complications entailed by these refinements seem to be considerable.

The balance condition for a coloring / could be interpreted as independence
of coordinate projections from color. In choosing a random vertex v of Qn, let
Ft denote the event v e Fi and let B denote the event f(v) = black. Then
/ is balanced if and only if F, is independent of B for each i = 1, ..., n. A
more stringent notion of balance is obtained by requiring also that Fi n Fi be
independent of B for 1 < i < j < n. We ask for an effective enumeration of
such colorings.

Finally, the concept of antiantipodal colorings touches on decompositions of
colorings. Define a proper decomposition of a balanced coloring / of Qn to be
a set {f1, ..., fm} of balanced colorings of Qn such that m > 2, w(fi)> 0 for
1 < i < m, and each black vertex of / is assigned to black by exactly one of the
factor colorings fi for 1 < i < m. A balanced coloring of positive weight having
no proper decomposition is termed irreducible, and we ask for an enumeration
of such colorings. Note that the smallest irreducible colorings have weight 2, the
two black vertices being antipodal. It is seen that An,2k is simply the number of
balanced colorings of weight 2k having no decomposition with a factor of weight
2. It follows that the colorings enumerated by An,4 and .An,6 are irreducible.

6. Related Problems

evaluating Nn,2k once the various definitions are traced through. Likewise, Corol-
lary 5.2 provides an expression for TNn,2k which is computationally equivalent
to that of Theorem 4.1.
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