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Abstract. Irreducible covariant tensor modules for the Lie supergroups GL(m/n) and the Lie
superalgebras gl(m/n) and sl(m/n) are obtained through the use of Young tableaux techniques.
The starting point is the graded permutation action, first introduced by Dondi and Jarvis, on VO1.
The isomorphism between this group of actions and the symmetric group Sl enables the graded
generalization of the Young symmetrizers, and hence of the column relations and Garnir relations,
to be made. Consequently, corresponding to each partition of l an irreducible GL(m/n) module may
be obtained as a submodule of V®l. A basis for the module labeled by the partition A is provided by
GL(m/n)-standard tableaux of shape A defined by Berele and Regev. The reduction of an arbitrary
tableau to standard form is accomplished through the use of graded column relations and graded
Garnir relations. The standardization procedure is algorithmic and allows matrix representations of
the Lie superalgebras gl(m/n) and s l(m/n) to be constructed explicitly over the field of rational
numbers. All the various steps of the standardization algorithm are exemplified, as well as the
explicit construction of matrices representing particular elements of gl(m/n) and sl(m/n).

Keywords: Young tableaux, Lie superalgebras, modules

1. Introduction

With the recent success of techniques involving Young tableaux and Garnir
relations in obtaining irreducible modules of the classical groups and their Lie
algebras [3], [9], [10], attention is turned here to the Lie supergroups GL(m/n)
and Lie superalgebras gl(m/n) and sl(m/n). As with the classical groups,
partitions have a key role [1], [2], [4], [6] in the classification of the irreducible
representations (and modules) of the supergroups and superalgebras.

The partition of the positive integer l into p positive integer parts A1, A2, ..., Ap

with A1 + A2 + • • • + Ap = l and A1 > A2 > • • • > Ap > 0 is denoted by A =
(A1, A 2 , . . . , Ap). It is understood that if i > p, then Ai = 0, since two partitions
are equal only if their nonzero parts are equal. It is sometimes convenient to use
an index to denote a repeated part; for example, (3, 3, 3, 2, 1, 1) = (33, 2,12).
Partitions will always be denoted by lowercase Greek letters. Let P(l) denote the
set of all partitions of l. Each partition A e P(l) specifies a regular Young diagram
FA consisting of l boxes arranged in p left-adjusted rows. The number of boxes
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in the ith row is Ai for i = 1, 2, . . . , p. Let q = y1. Then for j = 1, 2, . . . , q let
yj be the length of the jth column of FA. This defines A = (A1, A2, ..., Aq), the
partition conjugate to A. Consequently, the Young diagram FA is obtained from
Fx by reflection in the main diagonal, that is, interchanging rows and columns.
If n and v are partitions of u and v, respectively, then v is said to be contained
in n, denoted v < n, if vi < mi for each i = 1, 2, ... . If v < n, the skew Young
diagram Fm/v consisting of u - v boxes is defined as that diagram resulting from
the removal of the v boxes of Fv from Fm. A (skew) Young tableau results from
the filling of the boxes of a (skew) Young diagram with entries, often integers,
from a specified set.

If V serves as a module for the defining representation of any of the classical
groups, the l-fold tensor product module V®l is fully reducible. In the case
of GL(m), the inequivalent irreducible representations appearing as submodules
of V®l are naturally labeled by partitions with each denoted by {A} for some
partition A of l with A1 < m.

In the case of GL(m/n), once more V®l is fully reducible [4]. Each inequiv-
alent irreducible submodule of V®l is again labeled by a partition A of l, and
the corresponding representation is denoted by {A}, but now An+1 < m. The
purpose of this paper is to construct each of these irreducible covariant GL(m/n)
modules and the explicit matrix representations {A}. It should be noted that this
class of representations contains both typical and atypical cases; the former are
those that are labeled by partitions A for which Am > n or, equivalently, An > m,
whereas the latter are such that Am < n and An < m [2].

The importance of partitions in the classification of the irreducible represen-
tations of these groups derives from the representation theory of the symmetric
group and the dual centralizing action of this group and the group in question on
V®l [4], [7]. The Young symmetrizer Yx (see [3], [9], [10]), suitably normalized,
is a specific primitive idempotent of the symmetric group associated with the
partition A of l and may, in the classical case, be used to project submodules
out of V®l. In this way certain symmetrized tensors, which are identified with
symmetrized Young tableaux, arise [9]. These objects span MA, the irreducible
GL(m) submodule of V®l corresponding to {A}. They are not, in general, linearly
independent. The most useful identities between them, the column relations and
the Garnir relations, may be used to express an arbitrary symmetrized Young
tableau in terms of GL(m)-standard tableaux, which thus serve as a basis for
M* [8], [9].

In the case of GL(m/n), the above formalism requires the role of the
symmetric group to be generalized. The appropriate construction of a Z2-graded
symmetric group action on V®l was considered in [1], [4], [6] and is elucidated
in Section 2. In Section 3 the graded analogues of the Young symmetrizers are
constructed, and graded versions of the column relations and Garnir relations
arise naturally. These are then shown to be sufficient to construct the irreducible
graded GL(m/n) modules along lines similar to those of the construction of
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covariant GL(m) modules. The basis for each GL(m/n) module is provided
by the set of (m, n) semistandard tableaux of Berele and Regev [4], which, for
consistency, are here referred to as GL(m/n)-standard tableaux. In Section 3
the algorithm used to write an arbitrary grade-symmetrized tableau in terms of
GL(m/n)-standard tableaux is obtained as a modification of that used in the
GL(m) case. In general, arbitrary rational numbers arise in the decomposition.
This is a consequence of the graded role of the symmetric group.

Section 4 demonstrates that the same techniques may be used to construct
irreducible modules of the Lie superalgebras gl(m/n) and sl(m/n). It contains
a number of examples of the use of the standardization algorithm presented in
Section 3, as well as the construction of explicit matrices for certain elements of
irreducible representations of gl(2/2) and g l (2 /1) having dimensions 32 and 8,
respectively.

2. The supergroups GL(m/n)

Much of the following account has been extracted from [5]. Define B = FBL
to be the exterior algebra of {C1, C2, • • • , CL} over the field F, where L is taken
to be arbitrarily large. B is known as a Grassmann algebra, and its elements
are referred to as Grassmann parameters. B has dimension 2L. Let the exterior
product Ci1, ACi2 A .• • Ai1 e B be denoted by Ci1i2....il• Then Ci2i1 = -Ci1i2, and, more
generally, if a € Sl, Cia(1)iA(2)...ia(l) = (-l)aCi1i2...il. Denote by Bl the subspace of B
whose basis is the set of l-fold exterior products of the generators {C1, C2, • • •, CL}-
Thus Be has a basis {Ci1i2...il : 1 < i1 < i2 < • • • < il < L} and B0 has basis
{1 € F}. Let B0 = B0 ® B2 © B4 ® • • •, and let BI = B1 @ B3 © B5 © • • •.
Then B = B0@ B1 with both B0 and B1 having dimension 2L-1. The following
properties are immediate from the definitions:

for all f0, g0 e B0 and f1 g1 e B1.
The properties of the Grassmann algebra are typical of a structure with a Z2

grading. In view of (2.1), the Z2-graded subspaces of B, B0 and B1, are known
as the even and odd subspaces, respectively. Their elements are known as even
or odd Grassmann parameters, respectively. Each element b e B may be written
b = b0 + b1, where b0 € B0 is even and b1 € B1 is odd. If b = 0 and either b0 = 0
or b1 = 0, then b is said to be a homogeneous element of B. In such a case the
degree of b, denoted deg b, is defined to be

Let Bm,n be the vector space BOm ® BOn. A typical element of Bm,n is
X = (X0, X1) = ( X 1 , X2, ..., Xm, Xm+1 ,..., Xm+n). where each Xi € B0 and
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each Xi € B1. It is convenient to define the index sets Z0 = {1, 2, ..., m},
Z1 = {m + 1, m + 2, ..., m + n}, and I = Z0 U Z1. Bm,n is naturally Z2 graded
because it has a Z2 graded basis {ei : i e I}. A typical element of Bm,n may
thus be expressed as X = (X0, X1) = EieI)Xiei, where deg Xi = 0 if i e I0 and
deg Xi = 1 if i € Z1.

In view of the above, the following notation is useful for the grading of an
index:

Thus, if X = EieIXiei e Bm,n, then Xi € B(i). A further useful notation assigns
to the symbol

the value (-1)((a11)+(a21)+...+(ay1l)((a12)+...+(ay22))...((a1y1)...), that is, -1 to the power of
the product of the column sums of the respective gradings (which may all be
taken mod 2). By using this notation, (2.1) may be written faAgb = [ab]gb Af a ,
where fa e B(a) and gb <= B(b).

The supergroup GL(m/n) is the group of invertible endomorphisms of Bm,n.
Thus A € GL(m/n) may be realized by a matrix of the form

where P, Q, R, and S are submatrices of sizes m x m, m x n, n x m, and n x n,
respectively, with Pi j e B0 , Qi ke B1, Rlj e B1, and Slk € B0 for 1< i, j < m
and 1 < k, l < n. In the notation defined above, A e GL(m/n) if Ai j £ B(i)+(j),
where the sum is taken mod 2. Note that

Let V = Bm,n. Its l-fold tensor product V®l has a Z2-graded basis {ei1i2...il :
ik € J for k = 1, 2, ..., l}, where ei1i2...il = ei1 ® ei2 ® • • • ® eil and
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If A e GL(m/n), then A has a corresponding diagonal action X e End V®l given
by

This defines V®l as a GL(m/n) module.
Schur (see [7]) has shown that the irreducible modules occurring as submodules

of V®l may be obtained by considering the algebra which centralizes this module
action. To this end it is necessary to define [4], [6] the graded action of the
symmetric group Sl on V®l. First, the action of the symmetric group Sl on the
basis of V®l is defined, for a e Sl, by a : ei1i2...il = eia-1(1)ia-1(2)...ia-1(l) The graded
action a on V®l is then defined by (see [6])

The set of actions a for a e Sl constitutes a group which will be called the graded
symmetric group and will be denoted Sl. This defines V®l, by linear extension,
to be an Sl module and also a ZSl module. It is not difficult to show that if
p, a E Sl and T = pa, then r = pa. Therefore, ZSl is isomorphic to ZSl in its
action on V®l. Thus, like ZSl, ZSl may be written as a direct sum of simple
two-sided ideals labeled by P(l), the set of partitions of l.

LEMMA 2.1. GL(m/n) and ZSl commute in (heir actions on V®l.

Proof. Let A € GL(m/n) and a e Sl. Then
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On the other hand,

Then, since

the theorem is proved.

This theorem implies, since irreducible representations of Sl, and hence of
Sl, are labeled by partitions A of /, that, as in the case of GL(m), the finite-
dimensional irreducible representations of GL(m/n) may be labeled by partitions.
In fact, [4] provides a stronger statement:

THEOREM 2.2. The irreducible covariant representations of GL(m/n) may be labeled
by the set P(m, n, l) c P(l), where A e P(m, n, l) if X is a partition of l such that
ym+1 < n.

This theorem is known in [4] as the "hook theorem" because, if A e P(m, n, l),
the Young diagram Fx lies in a hook with leg width n and arm width m.

The irreducible covariant GL(m/n) modules are obtained by means of the
graded analogue of the Young symmetrizer FA, which generates the simple ideal
of ZSl corresponding to the partition A of l.

3. Irreducible covariant GL(m/n) modules

This section concerns the construction of the irreducible GL(m/n) modules
in terms of Young tableaux and Garnir relations in a direct extension of the
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techniques presented in [8] and [9] for the construction of irreducible covariant
GL(m) modules.

The irreducible covariant GL(m/n) module MA is constructed by means of
graded Young symmetrizer YA associated with the partition A. Fill the Young
diagram Fx with the integers 1,2, ..., l placed consecutively in the boxes of FA

first passing down the leftmost column and then down subsequent columns taken
in turn from left to right. Designate the Young tableau so obtained by tx. For
example, if A = (4, 3, 1), then

Define the column group CA c Sl as that group which preserves the column of
each integer within tx. Similarly, the row group Rx c Sl is that which preserves
the row of each integer within ty The graded Young symmetrizer FA e ZSl is
then defined as

where (-1)a is the parity or signature of the permutation a € Sl.
Each basis element w = ei1i2...il of V®l is conveniently identified with the tableau

TA obtained from tx by replacing each integer entry k by ik for k = 1, ..., l. For
example, with A = (4, 3, 1) as before and w = e41234325,

Following from the action of Si on w, Sl acts on Tx by place permutation
together with a sign factor associated with the grading of Sl. For each tableau
TA, denote by {TA}~ the grade-symmetrized tableau {TA}~ = FATA which is
identified with the grade-symmetrized tensor Yxw. The GL(m/n) module MA is
then defined as the span of {TA}~, where TA is any tableau of shape Fy filled
with entries from the set I = {1,2, ..., m + n}.

The analysis of [4] leads to

THEOREM 3.1. Each irreducible covariant tensor GL(m/n) module may be labeled
by a partition X for which Am+1 < n. The GL(m/n) module MA is irreducible.
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The grade-symmetrized tableaux {TA}~ are not linearly independent since
there exist graded analogues of the column relations and the Garnir relations.
The first of these takes the form:

LEMMA 3.2. For any tableau Tx and r e Cy

Proof. By the definition of FA in (3.2),

where the isomorphism between ZSl and ZSl has been used. Therefore, YAr =
(-1)TPA, which proves Lemma 3.2. D

Lemma 3.2 implies that if TA has an entry from the set J0 repeated in any
column, then {TA}~ vanishes. However, because of the grading property, this
is not the case for a repeated entry from the set I1 Nevertheless, (3.4) allows
{TA}~ to be expressed as ±{T'A} for some tableau T'A in which the entries are
nondecreasing down each column and strictly increasing on the set J0. Such
a tableau is termed column superstrict. To illustrate the use of Lemma 3.2,
consider the GL(2/2) module M ( 2 , 2 , 1 ) where

The Garnir relations have the following graded analogue:

LEMMA 3.3. For i < j let X and y be subsets of the entries in the ith and jth
columns, respectively, of tA such that #(Xuy) > yi. Let S(X), S(y), and S(Xuy)
be the subgroups of Sl preserving X, y, and X U y, respectively. Then, if G(X, y)
is a set of right coset representatives for S(X) x S(y) in S(X u y),

Proof. Let G x
, y = EneG(x,y)(-1)nn The ungraded Garnir relation (see [8], [9])

implies that Y X G y
, y = 0, whereupon, once more, the isomorphism between ZSl

and ZSl proves the lemma. D
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As an example, consider the grade-symmetrized tableau {TA}~ in the GL(2/3)
module MA, where TA and A are as in (3.3). Then, with i = 1, j = 2, X = {2, 3},
and y = {4, 5}, an appropriate set of coset representatives produces the identity

It should not be assumed that the occurrence of identical entries in the same
column implies that the term vanishes. For example, the fourth term in (3.4) is
not identically zero.

For each irreducible covariant representation of GL(m/n) a favored set of
tableaux has been introduced by Berele and Regev [4]:

Definition 3.4, Let I - I0 U1, where Z0 = {1, 2, ..., m} and I1 = {TO +
1, ..., m + n}. TA is GL(m/n)-standard if and only if

(i) each entry is taken from the set J;
(ii) the entries from the set J0 form a tableau TM, for some m < A, within TA;
(Hi) the entries from the set J0 are strictly increasing from top to bottom down

each column of Tm;
(iv) the entries from the set J1 are nondecreasing from top to bottom down each

column of TA/M;
(v) the entries from the set J0 are nondecreasing from left to right across each

row of Tm;
(vi) the entries from the set J1 are strictly increasing from left to right across

each row of TA/m.

As will be seen, the systematic application of the column identities in (3.4), and
the Garnir relations in (3.6) permit an arbitrary grade-symmetrized tableau {TA}~

to be reduced to a linear combination of grade-symmetrized GL(m/n)-standard
tableaux. That this procedure is algorithmic may be shown by using an ordering
on the set of all tableaux. Such an ordering is provided by

Definition 3.5. Let tb be the sum of the entries in the 6th column of Tm for
b = 1, 2, . . . , q, where q = A1. Define |Tm| to be the equivalence class of all
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tableaux which have their sequences of column sums identical to that of TA; that
is, TA e |TA| if tb = tb for b = 1, 2 , . . . , q. A total order on the set of equivalence
classes of tableaux is defined by |TA| > |TA| if, for some k < q, tku < tkv with
tbu = tbv for each b = 1, 2, ..., k - 1. It is convenient to write TA > TA when this
strict inequality is true of the equivalence classes to which TA and TA belong
and to say in such a case that TA is higher than TA.

The following standardization algorithm is a grade-symmetrized version of
that used in the construction of irreducible convariant GL(m) modules by James
and Kerber [8] and reproduced and used in [9]. Rearrange the entries of a
grade-symmetrized tableau by using Lemma 3.2 to form {TA}~, where TA is
column superstrict. If TA is not GL(m/n)-standard, then either condition (v)
or condition (vi) of Definition 3.4 is violated and, in particular, is violated by a
neighboring pair of entries. With Tm,j the entry in the ith row and jth column
of TA, let a and b be such that this neighboring pair is TAb and Tmb+1. Then
Tm,b >Tmb+1 witn equality implying that TA,b e Z1. Let X be the set of positions
below and including Tm,b in the bth column, and let y be the set of positions
above and including TAb+1 in the (b + l)th column. The relevant entries of TA

are then as follows :

Since, with X and y so defined, #(X u y) = yb + 1, Lemma 3.3 may be used to
express {TA}~ in terms of other tableaux.

Consider first the case for which TAb > Tmb+1. With n e G(X, y) and
n g S(X) x S(y), TA = nTA has necessarily been formed from TA by swapping
the columns of at least one pair of elements from X u y. Since the entries at
positions y are all smaller than those at positions X, TA > TA. Hence, in this
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case the algorithm allows {TA}~ to be written in terms of higher tableaux, the
coefficients of which are all integral. To illustrate this case, let

Then, in the GL(3/2) module M(2,2,2) the following identity arises when the
above procedure is used with X = {2, 3} and y = {4, 5}:

By rearranging, using (3.4), and collecting terms, this yields

where each of the tableaux on the right side is higher than that on the left.
For the case for which Tm

b = Tm
b+1 e J1 the same technique produces

a similar sum of terms. However, as may be seen by considering the coset
containing the permutation which swaps the two identical entries, the original
grade-symmetrized tableau is repeated in this identity. Since both of these entries
are of odd grade, the signs of these two terms are the same and thus do not
cancel. The possibility that the entries immediately below Tm

b or immediately
above Tm

b+1 are identical to these two is not excluded. If this entry occurs c
times in the 6th column and d times in the (b + l)th column, then, by considering
coset representatives which permute these entries among themselves, it can be
seen that the original grade-symmetrized tableau occurs with a multiplicity of
(c+ d)!/c!d! in the Garnir identity resulting from the selection of X and y given
above. Again, all of these terms have the same sign. The previous argument
shows, once more, that the remaining terms in the expression are higher than
the original. Therefore, in this case {TA}~ may be expressed in terms of higher
tableaux, the coefficient of each being rational. This case is exemplified by the
following example in the GL(2/2) module M(2,2,1):
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whereupon

As a further example, consider the GL(2/2) module M(23,16) where the above
process results in

As with (3.9), a single application of the above procedure may result in
further nonstandard terms. However, the process may be iterated until solely
GL/(m/n)-standard tableaux result. That this procedure terminates is guaranteed
by the ordering on the set of all tableaux of shape Fx and their finite number.
Since the number of GL(m/n)-standard tableaux equals the dimension of the
irreducible representation {A}, the existence of this reduction process implies

THEOREM 3.6. {{TA}~ : TA is a GL(m/n)-standard tableau} is a basis for the
irreducible GL(m/n) module MA. If Y is a partition of l, then MA is isomorphic to
V®l modulo the relations (3.4) and (3.6).

4. Lie superalgebras and explicit representations of gl(m/n) and sl(m/n)

This section applies the techniques developed in Section 3 to the Lie superalgebras
gl(m/n) and sl(m/n). However, the relationship between Lie supergroups and
Lie superalgebras is more subtle than that in the classical case, and, indeed,
some Lie supergroups do not possess a corresponding Lie superalgebra. In view
of this, the notion of a Lie superalgebra will be briefly outlined.
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A general Lie superalgebra Ls is a Z2-graded vector space over C with a
generalized product satisfying

and

for all homogeneous a, b, c e Ls and a,b e C. A representation of Ls assigns
to each a 6 Ls a square matrix F(a) for which

for each homogeneous a, b e Ls. These matrices then satisfy (4.1).
As in Section 3, let V = Bm,n be a Z2-graded vector space with Z2-graded

basis {e1, e2, ..., em+n} so that deg ei = (i). For a,b e I let Ea
b be the operator

for which

Ea
 b may then be realized as an (m + n) x (m + n) matrix with a 1 at the

intersection of the ath row and 6th column and zeros elsewhere. In view of
(4.3), deg Ea

 b = (a) + (6) mod 2, and, in accordance with (4.2),

The elements Ea
b for a, b = 1, 2, ..., m + n form a basis for the (m + n)2-

dimensional Lie superalgebra gl(m/n). By taking linear combinations of these
elements with the coefficient of each element a Grassmann parameter of the
same grading, a Lie algebra is generated by virtue of (4.4). It is this Lie algebra
which forms the tangent space at the identity of GL(m/n). The diagonal action
of GL(m/n) on V®l given in (2.7) then leads to the following diagonal action of
the basis elements of gl(m/n) on V®l:
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Lemma 2.1 then implies that this action commutes with that of the graded
symmetric group Sl. This enables the action of Eab on the basis elements {TA}~

of MA to be found.
Let TA be a GL(m/n)-standard tableau and, for j = 1, 2,.. .l , let Ta be the

entry of TA at the position corresponding to j of tA Let p be the number of
times the index b occurs in TA, and form p distinct tableaux TA by replacing a
single index b in position j of TA with a for all appropriate positions j of TA.
Then the action of Eab on {TA}~ results in

Any nonstandard tableau appearing on the right-hand side may then be expressed
as a linear combination of GL(m/n)-standard tableaux by using the techniques
described in Section 3.

In precisely this way, the action of Ea b e gl(m/n) on each grade-symmetrized
GL(m/n)-standard tableau {TA}~ gives

The coefficients {A}(Ea b)vv, which are rational numbers, are the matrix elements
of Eab in the representation {A}.

As an example, consider the gl(2/2) odd generator E32 in the 32-dimensional
gl(2/2) module MA with A = (23, 1) and the gl(2/2)-standard tableau

By virtue of (2.6), TA and {TA}~ are of even grade. By (4.6), E32 acts on the
basis element {Tx}~ of MA, according to
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Using (3.6) with X = {2, 3, 4} and y = {5, 6} gives the identity

which, by using (3.4) and collecting terms, gives

so that
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Hence,

The calculation need not be so involved, as the following two examples make
clear:

Similar calculations, when carried out for each of the 32 GL(2/2)-standard
tableaux in MA, yield the following explicit representation {23, 1}(E32) of E32:
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where each zero has been replaced by a dot. The three calculations carried
out above give the entries in the 13th, 23rd, and 28th columns of this matrix,
respectively. Notice that this matrix has the block diagonal nature associated with
an odd grading. This structure is ensured by the odd grading of the element E32

and the adoption of an ordering of the GL(2/2)-standard tableaux such that all
those of even grade occur first. The algorithmic nature of the above construction
lends itself to computer implementation. The above matrix has been produced in
this way, together with similar matrices for the remaining generators of gl(2/2)
in the same irreducible representation {23, 1}. As a check of the calculations it
has been confirmed that the resulting matrices satisfy the commutation relations
(4.4).

As a second example, consider the eight-dimensional GL(2/1) module M(2,1)
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for which the GL(2/l)-standard tableaux are

where they have been ordered in such a way that the four even tableaux are
first. Calculations involving the use of relations (3.4) and (3.6) give, by means of
(4.7), the following set of explicit representation matrices for the basis elements
of gl(2/1):
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along with the diagonal elements

Notice that, once more, these matrices possess the block diagonal structure
associated with the gradings of the elements of gl(2/1) that they represent.

The Lie superalgebra gl(m/n) is not simple, having s l(m/n) as a graded ideal.
If n > 0, let

Then the (m + n)2 -1 dimensional Lie superalgebra sl(m/n) has a basis consisting
of the elements Hii for i = 1, ..., m + n — 1 and the elements Ei j for i, j =
1, ..., m + n and i = j.

Consider g l (2 /1) once more. In accordance with (4.8), let H1 1 = E11 + E3 3

and H22 = E2
2 + E33. Then H11 and H22 form a basis for the Cartan subalgebra

of the often studied eight-dimensional simple basic Lie superalgebra s l(2/1); the
other basis elements may be taken to be E12, E21, E13, E31, E23. and E32,
as above. M(2,1) then serves as an sl(2/l) module and the corresponding
representation matrices are obtained directly from those given for gl(2/1).

Notice that the highest-weight vector of the sl(2/l) module M(2,1) is

for which

demonstrating that its highest weight is (2, 1).
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5. Conclusion

The techniques presented here extend those previously used in the explicit
construction of irreducible tensor modules of the classical groups to the case
of irreducible covariant tensor modules of GL(m/n), gl(m/n), and sl(m/n).
Significantly, this class of modules encompasses both typical and atypical cases.

Like that of classical cases, the construction is based on the natural combina-
torial objects appearing in the theory of tensor representations of GL(m/n): the
GL(m/n)-standard tableaux. The one major deviation from the classical cases
is the appearance of arbitrary rational numbers in the reduction of an arbitrary
symmetrized Young tableau to standard form. Despite this, the algorithm readily
lends itself to computer implementation, and the explicit matrices of the rep-
resentation may be generated; the rational numbers appear as entries in these
matrices.

Although only purely covariant tensor GL(m/n) modules are dealt with in
this paper, the techniques described may equally be applied to the fully reducible
contravariant GL(m/n) module (V*)®l to obtain the purely contravariant tensor
GL(m/n) modules. However, the mixed tensor GL(m/n) module (V*)®u ® V®u

is totally different in that it is not fully reducible. Therefore, the techniques
presented in [9] do not lead to irreducible mixed tensor GL(m/n) modules
analogous to those constructed for GL(m).
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