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Abstract. This paper studies a random walk based on random transvections in SLn(Fq,) and shows
that, given 6 > 0, there is a constant c such that after n + c steps the walk is within a distance e
from uniform and that after n- c steps the walk is a distance at least 1 - e from uniform. This
paper uses results of Diaconis and Shahshahani to get the upper bound, uses results of Rudvalis to
get the lower bound, and briefly considers some other random walks on SLn(Fq) to compare them
with random transvections.
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1. Introduction

Diaconis and Shahshahani [3] have studied a random walk on Sn, the symmetric
group on n elements. This walk involves at each step picking two (possibly
nondistinct) elements at random and transposing them if they are distinct. The
techniques they used are relatively general, and Diaconis [2] suggested some other
processes to which this technique may be applied. The present paper studies
one such process, random transvections on SLn(Fq), and finds an unusually sharp
cutoff phenomenon.

SLn(Fq) is the group of nxn matrices with elements in Fq, a finite field with
q elements, and determinant 1. Suzuki [10] defined a transvection on SLn(Fq) as
an element which is not the identity but does fix all the points in a hyperplane
of (Fq)

n. An example of a transvection is I + aEij, where I is the identity,
a e F*q (the multiplicative group of Fq,), and Eij is an n x n matrix with the only
nonzero entry being 1 in the (i, j)th position. Transvections are basic building
blocks for working in matrix groups, just as transpositions are for permutations
(see [1] for an example). If n > 2, the transvections form a conjugacy class. The
transvections generate SLn(Fq,) (see [10]).

We wish to pick a transvection at random. We can do so even without
enumerating the transvections. A transvection can be represented as a linear
transformation L-» L + f(L)a, where A is in Fn

q, a is a nonzero vector in Fn
q,a
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is a nonzero linear transformation f : Fn
q -» Fq, and f(a) = 0. In coordinates a

transvection can be represented as I + bt a with a, b nonzero vectors in Fn
q such

that b at = 0. Note that if bta = bt at, then b = cb' and a' = ca for some c e F*q.
Thus picking such a and b at random enables us to pick a random transvection.

Pick m transvections with independent identical distributions each of which
is uniform over the transvections, and multiply them to get an element of
SLn(Fq). The Markov process consisting of multiplying a matrix in SLn(Fq) by a
random transvection is doubly stochastic and hence has the uniform distribution
on SLn(Fq) for its stationary distribution (see [6] for more details on Markov
processes). Thus if m is large enough and if there is no parity problem, then
the product of m random transvections will be nearly uniform on SLn(Fq). The
question we ask is how large does m (as a function of n) have to be for this
product to get close to uniform on SLn(Fq).

We define the variation distance of a probability distribution P on a finite
group G from the uniform distribution U on G by

It is easy to show that

Let P*m be the probability distribution of the product of m random transvec-
tions. The main goal of this paper is to show

THEOREM 1.1. There exist positive constants A and k such that

for sufficiently large n and for all c> 0, where c = m- n.

If n = 2, there are parity problems in the case q = 2. These problems do not
occur if n > 2.

A secondary goal is to prove

THEOREM 1.2. Given e > 0, there exists c > 0 such that || P*m - U ||> 1 - e for
m = n- c and sufficiently large n.

To prove Theorem 1.1, we use

UPPER BOUND LEMMA (Diaconis and Shahshahani).
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The lemma results from the Cauchy-Schwarz inequality and the Plancherel
theorem. This lemma is discussed further in [2], and [2] and [9] present some
background from representation theory of finite groups.

This paper uses the representation theory of GLn(Fq). We may draw conclu-
sions for the random walk on SLn(Fq) due to

LEMMA 1.1. The distance of the probability distribution of T1 ••• TmD from uniform
in GLn(Fq) equals the distance of the probability distribution of T1 • • • Tm from
uniform in SLn(Fq), where Tj, i = 1,..., m, are independent random transvections
and D is an n x n diagonal matrix with the lower-right-hand corner a random element
of F* and the other diagonal elements 1.

The proof of Lemma 1.1 is straightforward and is left to the reader.
Let P1 be the probability distribution of random transvections in GLn(Fq), let

Q be the probability distribution of D, and let R be the probability distribution
of T1 • • • TmD in GLn(Fq). Since P1 is constant on conjugacy classes, P\(p) is
a constant times the identity (see [2]). By taking the trace, we see that

135

*where the *of a matrix is its conjugate transpose, ^ means the sum over all nontrivial
irreducible representations p of G, dp is the degree of p, and P(p) is the Fourier
transform of p:

where xp(r) is the character of p on the transvections. We can express R in
terms of P1 and Q:

Thus we may conclude
(see [2]).

LEMMA 1.2.

To use this expression, we need to find XP(T) and dp. Using Macdonald's book
[7], we do so in Section 2. In Section 3 we deal with the factor Tr( $(p) $(p)*)-
In Section 4 we put some bounds on Xp(T)/dP, and in Section 5 we use these
bounds to prove Theorem 1.1. In Section 6 we prove Theorem 1.2. In Section
7 we consider some other random processes on £Xn(F9).
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2. The characters of GLn(Fq) on transvections

The characters of GLn(Fq) have been determined in earlier work. Both Green
[5] and Zelevinsky [11] have provided expressions which determine the value o1
characters of GLn(Fq) on transvections, but these expressions do not seem tc
be directly useful for the asymptotics we want. We shall develop a different
expression which works well with asymptotics. In doing so, our notation wil
follow that of Macdonald [7].

Let k be a finite field. Let P be the set of all irreducible monic polynomials
in k[t] except for the polynomial t. Each conjugacy class of GLn(k) corresponds
to a partition-valued function u on P such that

Furthermore, each partition-valued function u on P such that || u ||= n determines
a conjugacy class.

By using the Jordan canonical form for the matrix [7, p. 140], we car
determine which conjugacy class a given partition-valued function u corresponds
to.

If u corresponds to the conjugacy class of the identity, then

where f 1 = t - 1 ,
If n corresponds to the conjugacy class of a transvection, then

To see this, just note that

is a transvection and is in Jordan canonical form.
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Let kn be the unique extension of k of degree n in k, let Mn be the
multiplicative group of kn, and let Mn be the character group of Mn. Define
L = lim Mn. Observe that F : £ -» £q acts on L. Let O denote the set of F-orbits
in L. The irreducible characters of GLn(k) are in a bijective correspondence
with partition-valued functions A of O with

Let u correspond to the conjugacy class of the transvections, let A correspond
to an irreducible representation, let dL be the degree of the representation, and
let xL

u be the value of this representation's character on the transvections. We
wish to show

THEOREM 2.1.

where B(L) = {L1 : |L1(Pa)| = |L(Pa)|-l for some Pa e P of degree 1, L1(P) C L(P)
for all p € P, and || L1 || = || L || -1} and Pm(t) = Ilmi=1(1-t

i). (Do not confuse
the function ym(t) with elements of $.) As in Macdonald,

with

n(L) = E(i - l)Li, qp = qd(p), and HL(qp) = UxeL(qp
h(x)} -1) where h(x) is the

hook length of x.

To find this ratio, we shall use two results from [7, p. 151].
The degree of the irreducible representation is given by

where yn(q) = Un
i=1(q

i - 1).
Two symmetric functions are related by characters of GLn(Fq):
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where the symmetric functions are as in [7]; the conjugate u of u = E uuPu is
u := uupu .Since pu(x; t)Pv(x; t) = EL fL

uv(t)PL(x; t), where fL
uv e Z[t] (see [7,

p. 110]), uv = uv.
Let u correspond to the conjugacy class of the transvections. By definition,

where aL (q) and PL(x; t) are as in [7].
The transition matrix between the Hall-Littlewood functions and the Schur

functions gives

The functions W (21
n-2

)v(t) are given as follows:

LEMMA 2.1.

Proof. All cases except v = (ln) are shown in [7, p. 105], where it is shown that
the transition matrix is strictly upper unitriangular.

Let K(t) = M(s, P) be the transition matrix between the SL'S and the Pl'S.
(Note that here A is a partition. The boldface A denotes the partition-valued
functions.)

The wLu's are coefficients in M(P, s) = K ( t ) - 1 . Observe that K(t) and K(t) - 1

are strictly upper unitriangular.

Thus -K(21
n-2

)(l
n
)(t) = W(21

n-2
)(1

n
)(t).

By a theorem of Lascoux and Schutzenberger,

where the sum is over all tableaux T of shape L and weight u (see [7, p. 129]).
c(T) is the charge of T, which is defined as follows.



GENERATING RANDOM ELEMENTS IN SLn (Fq) BY TRANSVECTIONS 139

Fig. 1. Tableau illustrating the definition of a word.

One defines the word of a tableau by reading the numbers in the tableau
from right to left and then from top to bottom. For instance, the word of the
tableau displayed in Figure 1 is 2134... n. If w is a standard word, i.e., contains
the numbers 1 through n exactly once (and it will be so for all tableaux of shape
(21n-2) and weight (1n)), attach an index to each element of w. The number
1 has index 0. If r has index i, then r + 1 has index i or i + 1 according to
whether it lies to the right or left of r. c(w) is defined to be the sum of the
indices. Here it is n - 1 because the numbers 2 through n each have index 1.
Here c(T) is just defined to be c(w).

The upper-left corner of a tableau with shape (21n-2) and weight (1n) is
always 1. The upper-right corner can take on any value x between 2 and n. The
remaining n — 2 elements increase as one goes down the column, and no values
occur twice since the weight is (ln). The word is thus x12... x ...n, where x
means omit x. Thus c(w) = n — x + 1 = n - (x - 1). So K(21

n-2
)(1

n
) = Ei=1

n-1t=i •
This completes the proof of the lemma. D

Since sv = det(evi- i+j)1<i_ j<m, we may conclude

COROLLARY.

The following lemma describes the transition between en_1(f1)e1(f1) and SL:
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LEMMA 2.2.

where

and B(L) is as in the statement of Theorem 2.1.

Proof. By examining (2.1) and (2.2), observe that

Thus

Since (aSL1)(bSL2) = ab(SL1)(SL2,), we may conclude

There are q-1 partition-valued functions L2 such that || L2 ||= 1- Let Pa e P
be such that d(pa) = 1 and L 2 ( p a ) = 0. It is known that

To find the values CL
L1(pa)L2(pa), apply the Littlewood-Richardson rule. It says that

cL
L1(pa)L2(pa) is the number of tableaux T of shape L - L 1 ( p a ) and weight L2(p1)

such that w(T) is a lattice permutation. If |L| = |L1(pa)| +|L2(pa)| or L1(pa) <L.
then cL

L1(pa)L2(pa) = 0. Otherwise, since L2(pa) = (1), there is exactly one such
tableau.

Thus SL1,SL2 = ELEA(L1)SL, where A(L1)= {L : L(pa) D L1(Pa), |L1(pa)|-
|L1(pa)| = 1, and L1(p) = L(p) if p =pa}.

Lemma 2.2 follows from this statement. D

Theorem 2.1 follows from Lemma 2.2 and equations (2.3), (2.4), and (2.5).

3. Bounds on T r ( Q ( p ) Q(p)*)

The following two lemmas enable us to bound Tr( Q (p ) Q(p)*) from Lemma 1.2.
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LEMMA 3.1. If p is an irreducible representation of GLn(Fq) and Q is as in Section
1, then

Proof. Observe that p on the matrices M such that Q(M) > 0 may be viewed as
a representation on Fq*. Thus in some basis,

Because det(D) is uniform on F*q, ai e {0, 1} for i = 1, 2, ..., dp. The lemma
follows. D

For certain representations, we can improve the result:

LEMMA 3.2. If L(pa) = (1n) and L is nontrivial, then Tr( Q(A) Q(A)*) = 0.

Proof. It can be readily shown that in this case xL
u
 = dL = 1. From the

proof of Lemma 3.1, we see Q(A) = (a1), where a1 e {0, 1}. If Q(A) = 1,
then X(N) = (1) for all N e GLn(Fq) and A is trivial. Since A is nontrivial,
Q(A) = (0) and hence Tr( Q(A) Q(A)*) = 0. D

Combining Lemmas 1.2, 3.1, and 3.2, we conclude

LEMMA 3.3.

**
where £ means sum over all irreducible representations A except for A such that
A(pa) = (1n) for some paa€p with d(pa) = 1.

4. Preliminary bounds on xL
u/dL

The exact expressions for xL
u and dL are too cumbersome to substitute directly

in the right side of the inequality in Lemma 3.3 and get useful general results.
We wish to find bounds useful for asymptotics as n —» oo.
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Fig. 2. Tableau used in the proof of Lemma 4.1.

In the expression in Theorem 2.1 for xL
u/dL, the first term is positive and the

second term simplifies to -1/(qn-1 - 1). Thus

The following upper bounds will be useful:

LEMMA 4.1. If L(pa) = (ln) for all pa£ p with d(pa) = 1, then

where C(A, pa) = {(i, j) : (i, j) € L(pa), (i + 1, j) e A(pa), (i, j + 1) e A(pa)}.

COROLLARY. For the same A,

Proof of Lemma 4.1. By Theorem 2.1,

where B(A, pa) = {A1 : |L 1 (p a ) | = |A(pa)| - 1, A1(p) C A(P) for all p e $, and
II|| A1 || = || L ||-1}.
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Suppose one obtains L 1 ( p a ) from A(pa) by removing the element at the end
of row i (see Figure 2.) Then

If a1, ..., a,j_1 and b1 ..., bi-1 are hook lengths in A1(pa)'S row i and column j,
respectively, then

Note that

for positive integers x. If 1 < x < y, then (q - l)/(qx -1)>(q- l)/(qy - 1) and
hence

Thus we may conclude

Lemma 4.1 follows by substitution. D

5. Upper bound

In this section we show Theorem 1.1. First we show

LEMMA 5.1.

for some positive constants A1 and k1 and for sufficiently large n.

Proof. We know
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Furthermore,

Thus

and the result follows.

Next we show

LEMMA 5.2.

for some positive constants A2 and k2 and sufficiently large n and where F := {X :
(A(pa))1 < n - n0.6 for all p a e $ with d((pa) = 1}.

Proof. By Lemma 5.1, we need consider only A such that xL
u > 0. Thus we may

apply an even power to both sides of the inequality in the corollary to Lemma
4.1.

Let x(pa) = (A(pa)')1> where pae p with d(pa) = 1. Observe

where e < 1 for sufficiently large n and xmax = maxpa:d(pa)=1x(pa). The term
nqx(pa) comes from

We shall sum over values of n — x(pa). Consider

To bound this expression, we shall relate dL with dL, where X is a partition-valued
function with || A" ||= i. This relation is analogous to a technique used in the
problem involving random transpositions on Sn. The following two lemmas do
so for the random transvection problem.
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LEMMA 5.3. If (A(pa)')1 = n - i, then

where X is defined by A(p) = A(p) if p =pa and

In other words, A" is almost identical to A; the only difference is that the first
column is removed from A(pa).

Proof. This inequality comes from (2.1). One term comes from

Another term results from

where FirstCol(A) are the boxes in the first column of the Ferrers diagram of A.
Finally,

Lemma 5.3 follows. D

LEMMA 5.4. Given pae$ with d((pa) = 1,

for some constant C.

Proof. Each A" corresponds to a representation of SLi(Fq), and each X such that
(A(pa)')1 = n-i uniquely determines X So
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Note that there exists a positive constant C such that for all n and q,

Thus

Thus we conclude

D
Resuming the proof of Lemma 5.2, we see

Furthermore, since for i > n0.6, n(l + e) /q i - 1 < 1/2 for sufficiently large n,
and we may conclude Lemma 5.2. D

Now the only characters of concern are the characters A with n > (A(pa)')1 >
n - n0.6 for some pa with d((pa} = 1. If n is sufficiently large, there can be at
most one such pa for a given character. The following lemma considers such
characters.

LEMMA 5.5. // c > 2, then
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for some positive constants A3, and k3 and sufficiently large n.

Proof. By Lemma 5.1, we need consider only A such that xL
u > 0.

Examine Lemma 4.1, and pay special attention to the case j = 1 with
(i', j) € C(L, pa). This case corresponds to the first column of L (p a ) . Thus
i' = n — i. So this case corresponds to a term

where an < 1 + q-0.5n for n sufficiently large.
Let D>(A) = {(i', j, p) : (i', j) e C(A, p), where d(p) = 1 and j > 1 if

(p = pa}. Then

and for sufficiently large n

Thus

for sufficiently large n.
By Lemma 5.4, we conclude

where an := (1 + 2q
-0.5n). Note that a2n

n -»1 as n -» oo by a calculus exercise.
Thus
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for sufficiently large n

where C is a constant that does not depend on q. Thus Lemma 5.5 holds. D

The only representations not included in Lemmas 5.1, 5.2, and 5.5 are not
included in the sum in Lemma 3.3. Note also that the phrase "for sufficiently
large n" and the constants can be made independent of q. Thus we may
conclude Theorem 1.1 for c > 2. By increasing A if necessary, we may remove
the restriction c > 2 since || P*m -U||<1.

6. Lower bound

Theorem 1.2 is an immediate consequence of a result in [8].
Let G stand for a group, such as GLn(Fq), which may vary with n. Define

pG(k) to be the proportion of elements g e G such that dim(ker(g - I)) = k.
Define pG

00(k) = limn_>00pG(k). It is shown in [8] that

where Fq, has q elements, |GLm(q)| = qm
2ym(q), y 0(q) = 1, and ym(q) =

(qm - l)(qm-1 - 1) • • • (q - 1). The product of n - c transvections fixes a space of
dimension at least c.

If c > 3, then for all q,

Furthermore, the proportion of elements g of SLn(Fq) with dim(ker(g - I)) > c
is less than 4/qc-1. For a given value of e > 0, 4/qc-1 can be made less than e for
some c and all q. However, for all elements g e SLn(Fq) such that P*(n-c) > 0,
dim(ker(g -I)) > c. Thus

and Theorem 1.2 is proved.
Note that Theorems 1.1 and 1.2 show that this random process has a sharp

transition from having the distance from uniform being close to 1 to having the



GENERATING RANDOM ELEMENTS IN SLn (Fq) BY TRANSVECTIONS 149

distance from uniform being close to 0. Cutoff phenomena have been observed
in other random processes on finite groups.

7. Comparisons with other processes on GLn(Fq)

Diaconis and Shahshahani [4] have presented two other methods for generating
random matrices on GLn(Fq). One method is simply to choose each of the
n2 entries at random from Fq and use Gaussian elimination to see if the
determinant is 0. The check takes about 2/3n3 operations (multiplication and
addition). However, one may need to check several matrices before getting an
invertible one; the number of matrices is not sharp. The other method is to use
the subgroup algorithm. There about En

k=14k2=4/3n3 operations suffice, and
this number is sharp.

To multiply a random transvection by an arbitrary matrix as described in
Section 1 takes about 4n2 operations; so to get close to uniform takes about
4n3 steps. Although both this approach and the subgroup algorithm take O(n3)
steps, the latter seems to be slower by a factor of about 3. Note that the
estimate for random transvections does not take into account the fact that we
start with the identity matrix; one may be able to speed up a step or two by
such considerations.

Another process is random special transvections. A special transvection is a
matrix which is 1 along the diagonal and has exactly one nonzero off-diagonal
element. To multiply a special transvection by an arbitrary matrix takes no
more than 2n steps. How many random special transvections it takes to get
a probability distribution on SLn(Fq) which is close to uniform is still an open
question. O(n2/ log n) steps are necessary by entropy arguments. If the identity
is picked with probability 1/n2 and otherwise a random special transvection
is picked so that each special transvection is equally likely, then an argument
involving eigenvalues and random walks on graphs shows that O(n6) steps suffice;
however, this seems not to be the best bound. For a similar process, where
we restrict ourselves to lower unitriangular elements of SLn(Fq) and special
transvections contained in that subgroup, we can show that O(n2 log n) random
special transvections suffice to get close to uniform on the lower unitriangular
elements.
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