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Abstract Let Bn denote the centralizer of a fixed-point free involution in the symmetric group S2n.
Each of the four one-dimensional representations of Bn induces a multiplicity-free representation of
S2n, and thus the corresponding Hecke algebra is commutative in each case. We prove that in two
of the cases, the primitive idempotents can be obtained from the power-sum expansion of Schur's
Q-functions, from which follows the surprising corollary that the character tables of these two Hecke
algebras are, aside from scalar multiples, the same as the nontrivial part of the character table of
the spin representations of Sn.
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Schur's Q-functions are a family of symmetric polynomials QL(x1, x2,...) indexed
by partitions A with distinct parts. They were originally defined in Schur's 1911
paper [16] as the Pfaffians of certain skew-symmetric matrices. The main point
of Schur's paper was to prove that the Q-functions "encode" the characters of
the irreducible projective representations of symmetric groups, in the same sense
that Schur's S-functions encode the ordinary irreducible characters of symmetric
groups.

In the past 10 years, there have been a number of developments showing
that Schur's Q-functions arise naturally in several seemingly unrelated areas, just
as Schur's S-functions arise as the answer to a number of natural algebraic
and geometric questions. In particular, (1) Sergeev [17] has proved that the
Q-functions QL(x1,...,xm) are (aside from scalar factors) the characters of the
irreducible tensor representations of a certain Lie superalgebra Q(m); (2) Pragacz
[15] has proved that the cohomology ring of the isotropic Grassmanian Sp2n/Un

is a homomorphic image of the ring generated by Q-functions, and furthermore,
this homomorphism maps Q-functions to Schubert cycles; and (3) You [22] has
proved that the Q-functions are the polynomial solutions of the BKP hierarchy
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of partial differential equations.
Thus, including Schur's original analysis of the characters of projective repre-

sentations of symmetric groups, there are at least four "natural" settings where
the Q-functions arise. The purpose of this paper is to introduce a fifth setting for
Q-functions involving the primitive idempotents of a certain commutative Hecke
algebra.

To be more explicit, consider the hyperoctahedral group Bn (the Weyl group
of the root system of the same name), embedded in the symmetric group S2n

as the centralizer of a fixed-point free involution. Let p be one of the four
one-dimensional representations of Bn; i.e., 1, d, e, or de, where 1 denotes the
trivial representation, d the restriction to Bn of the sign character of S2n, and e
the composition of the sign character of Sn with the homomorphism Bn -> Sn.
In each of these four cases, the induction of p to S2n is multiplicity free, and
so the centralizer of this induced representation in the group algebra of S2n is
a commutative Hecke algebra Hn. Among these four Hecke algebras there are
two isomorphisms: H1

n = Hd and He
n = Hd

n; this is a consequence of the fact
that 6 is the restriction of a linear character of S2n (see Remark 1.1).

For the case p = 1, the commutativity of Hn = H1 is equivalent to the
well-known fact that (S2n, Bn) is a Gelfand pair. Furthermore, the primitive
idempotents of this algebra (or equivalently, the spherical functions of (S2n, Bn))
are known by a theorem of James [6] to be "encoded" by the power-sum
expansion of the zonal polynomials of the real symmetric matrices (see Section
7). Since Hn = Hd, it follows that the primitive idempotents for the case p = d
are essentially the same as for the case p = 1; however, we should note that
Macdonald has shown that the idempotents for this case are closely related to
the Jack symmetric functions with parameter a = 1/2 [12, §5].

The remaining pair of Hecke algebras, He
n and Hde, are the subject of this

paper.
Since the two Hecke algebras are isomorphic, it suffices to restrict our attention

to the case p = e. We prove (Corollary 3.2) that the dimension of He is the
number of partitions of n into odd parts, and that the primitive idempotents
of Hn, say EL, are naturally indexed by partitions A of n into distinct parts
(see Section 4). The main result (Theorem 5.2) shows that the expansion of
QL(x1 , x2 , . . .) into power-sum symmetric functions is essentially the same as the
expansion EL = Ewes2n EL(w)w of EL as a member of the group algebra of S2n.
Since Schur proved that the irreducible projective characters of Sn also occur as
coefficients in the power-sum expansion of the Q-functions, we thus obtain the
surprising conclusion (Corollary 6.2) that aside from scalar factors, the character
table of projective representations of Sn is essentially the same as the character
table of Hc

n.
The remainder of the paper is organized as follows. In Section 1, we give a

brief survey of the general theory of Hecke algebras, with special emphasis on
commutative Hecke algebras induced by one-dimensional representations of the
base group. We refer to these as "twisted Gelfand pairs" because they enjoy a
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theory quite similar to the theory of Gelfand pairs (cf. [3]). In Section 2, we
analyze the combinatorial structure of double cosets Bn\S2n/Bn; much of the
material in this section can be found in equivalent forms elsewhere (e.g., [1],
[12,§5]). In the seventh and final section, we rederive the connection between
zonal polynomials and the spherical functions of the Gelfand pair (S2n, Bn), in
order to contrast this with the twisted case we analyze in Sections 3 to 6.

1. Hecke Algebras

Let G be a finite group, H a subgroup of G, and e an idempotent of the
complex group algebra CH. The Hecke algebra of the triple (G, H, e) is the
CG-subalgebra

The Hecke algebra H is also isomorphic to the (opposite) algebra of endomor-
phisms of CGe that commute with the action of G [2, §11D].

In the following, let e denote the character of CHe as a representation of H,
and let £G denote the induced G-character; i.e., the character of CGe.

For each irreducible character x of G, let ex denote the primitive central
idempotent of CG indexed by x, so that

is the Wedderburn decomposition of CG as a direct sum of simple algebras. By
Schur's lemma, the centralizer of CGe is the direct sum of its projections onto
the Wedderburn components of CG, and these projections are matrix algebras
of degrees equal to the multiplicities in eG of each irreducible character x. It
follows that the Wedderburn decomposition of H is given by

where I£(G) = {x 6 Irr(G): ( e G , x ) = 0}. In particular, the primitive central
idempotents of H are of the form

for x € Ie(G). If x is not a constituent of £G(i.e., x & Ie(G)), then the projection
of H onto CGex will be zero, and thus

A further consequence of (1.1) is the fact that the irreducible characters of
H are restrictions of those of CG (cf. Theorem 11.25 of [2]); thus for w e G,
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is the trace of ewe in the representation of H afforded by eCGexe. Note that
since

it follows that

so one may determine dx from Ex, and vice-versa.

Remark 1.1. If 8 is a linear character of G, then there is an automorphism a -> a'
of CG in which w -> d(w)w. By restricting this automorphism to H = H(e), we
obtain an isomorphism H(e) -> H(e') of Hecke algebras. Thus, it follows that if
the CH-modules generated by two idempotents e and e' differ only by the action
of a linear G-character 6, then the idempotents, characters, and representations
of either Hecke algebra can be easily obtained from those of the other.

For the remainder of this section, we will assume that e is a linear char-
acter of H, and that e is the corresponding primitive idempotent; i.e., e =
|H|-1 Yx e H £ ( x - 1 ) x . Note that we have

for all x1, x2 € H and w € G, so it follows that if w1,...,w1 are a set of
representatives of the double cosets H\G/H, then H is spanned by {ew1e,...,ew1e}.
Furthermore, since ewie and ewje are supported on disjoint subsets of G (for
i = j), it follows that the nonzero members of {ew1e,...,ewle} form a basis for H.

Let L(G) denote the algebra of functions f: G —> C under convolution. The
mapping f -> Ew€G f (w - 1 )w defines an antiisomorphism L(G) —> CG. By (1.3),
it follows that H is antiisomorphic to the subalgebra of functions f e L(G)
satisfying

for all xi G H, w € G. The characters 6X form a basis for the center of this
subalgebra.

If e is the trivial character of H, then H is isomorphic to the subalgebra of H-
biinvariant functions in L(G). If in addition, H is commutative (or equivalently,
£G is multiciplity free), then (G,H) is known as a Gelfand pair and the characters
Bx are known as spherical functions [3]. If H is commutative, but e is merely
a linear (not necessarily trivial) character of H, then we refer to (G,H,e) as
a twisted Gelfand pair. (Perhaps it should be called a Gelfand triple.) The
characters 0X will be referred to as twisted spherical functions.
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The following result will be used in Sections 6 and 7 to prove the nonnegativity
of certain structure constants.

LEMMA 1.2. Let x € Irr(G). If e1 and e2 are central idempotents for two (possibly
distinct) subgroups of G, then x(e1e2) > 0.

Proof. Let p:G —>Un be a unitary representation of G with character x. If
K is some subgroup of G and ep is the primitive central idempotent for some
P E Irr(K), then

Since p ( x - 1 ) = p(x)* (where * = conjugate transpose), it follows that p(ep) =
p(ep)*. Thus, the primitive central idempotents of every subgroup of G are
represented as Hermitian matrices by p. In particular, p(e 1 ) and p(e2) are
Hermitian and idempotent, so

Thus, x(e1e2) is the trace of a positive semidefinite matrix.

The analogous result for three idempotents is false. A counterexample can
be obtained by taking idempotents from the three 2-element subgroups of S3.

COROLLARY 1.3. Let (G, H, e) be a twisted Gelfand pair. If f is a central idempotent
for some subgroup K of G, then there exist scalars cx > 0 such that

Proof. The idempotents {Ex: x 6 Ie(G)} form a basis for H, so efe is certainly
in their linear span. Since eG must be multiplicity free, it follows that Ex acts as
a rank-one idempotent in the xth Wedderburn component of CG, and as zero
on the other components. Thus, Cx = x(efe) = x(ef). Apply Lemma 1.2.

2. On the Gelfand Pair (S2n, Bn)

Let Bn denote the hyperoctahedral group, embedded in S2n as the centralizer of
the involution (1, 2) (3, 4) • • • (2n-1, 2n). Let Tn denote the subgroup (isomorphic
to Zn) generated by (1, 2),...,(2n - 1, 2n), and let Endenote the subgroup
(isomorphic to Sn) generated by the "double transpositions" (2i-1, 2j-1)(2i, 2j)
for 1 < i < j < n. Note that Bn is the semidirect product of Tn and Sn.
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There is a simple way to describe the double cosets of Bn in S2n (cf. [12, §5]).
Given w e S2n, construct a bipartite graph on 4n vertices x1, y1,...,x2n, y2n by
declaring xi adjacent to yi if and only if j = w(i). Now perform the series of
vertex identifications x1 = x2, y1 = y2, X3 = x4, y3 = y4,...., thereby obtaining a
2-regular bipartite graph F(w) on 2n vertices.

PROPOSITION 2.1. Let w1, w2 e S2n.

(a) F(W1) = F(w2) if and only if Tnw1Tn = Tnw2Tn.
(b) G(w1) = G(w2) if and only if BnW1Bn = Bnw2Sn.

Proof.

(a) For t e Tn, the operations w -> tw and w -> wt correspond to the interchanging
of identified vertices, and thus have no effect on G(w). Conversely, if
F(W1) = F(w2), it is easy to see that one can find t1, t2 E Tn such that
t1w1t2 = w2.

(b) For any double transposition x e Sn, the operations w -> xw and w -> wx
correspond to interchanging two vertices in the same half of the bipartition
of F(w), and thus do not affect the isomorphism class of F(w). Conversely,
since every permutation of the vertices (within a given half of the bipartition)
can be obtained by the interchanging of pairs of vertices, it follows that if
F(w1) = G(w2), then we can find x1, x2 € Sn such that F(x1w1x2) = G(w2).
The result now follows from a.

From this result it follows that the double cosets Bn\S2n/Bn are in one-to-one
correspondence with the isomorphism classes of 2-regular bipartite graphs on
2n vertices. Such graphs are disjoint unions of even-length cycles, and are thus
indexed by partitions of n. More precisely, we will say that w has coset-type
v = (v1 , v2,...) if the cycles of F(w) are of length 2v = (2v1, 2v2,...).

A further consequence of Proposition 2.1 is the fact that the double cosets
Bn\S2n/Bn are invariant under the map w -> w-1, and so by Gelfand's lemma
(e.g., [3]), we have

COROLLARY 2.2. (S2n, Bn) is a Gelfand pair.

Proof. Let e0 = |Bn|
-1 SxeBn x denote the idempotent associated with the trivial

character of Bn. Since G(w) = G(w -1), it follows that e0we0 = e0w
-1e0 for all

w e S2n. Therefore, since the set of inverses of w1Bnw2 is w - 1BnW - 1 , we have

for all w1, w2 € S2n. Thus, the Hecke algebra e0CS2ne0 is commutative.
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For each partition v of n, let zv denote the size of the Sn-centralizer of any
permutation having cycles of length v. Thus zv = Pimi!i

mi, if the multiplicity
of i in v is mi.

PROPOSITION 2.3 If w e S2n has coset-type v, then |BnwBn| = |Bn|2/z2v.

Proof. First consider the case w = (1, 2,..., 2n). Note that w has coset-type (n).
It is easy to see that Tn n wTnw

-1 = {id} (provided that n > 1), so \TnwTn\ = 22n.
By Proposition 2.1a, it follows that for any bipartite 2n-cycle F, there are 22n

permutations in S2n whose graph is F. Since there are a total of n!(n - 1)!/2
bipartite 2n-cycles, we may conclude that there are 22n-1n!(n - 1)! = \Bn\

2/2n
permutations with coset-type (n). This argument breaks down when n = 1, but
the formula \Bn\

2/2n remains correct.
Now in the general case, let X U Y denote the bipartition of the vertices in

G(w). Define a partition P of X by declaring two members of X to be in the
same block of P if they belong to the same cycle of F(w). Similarly define a
partition a of Y. Second, define a bijection between the blocks of P and a by
declaring A <-> B if A and B share vertices of the same cycle of F(w). Note that
any bijection between P and a that preserves the cardinality of blocks could arise
in this manner. Furthermore, if A and B are any such pair of corresponding
blocks with \A\ = \B\ = k, then the restriction of F(w) to A U B could have
arisen from any permutation of coset-type (k); from the above calculation, we
know that there are 22k(k!)2/2k such permutations.

Hence, one may obtain all w e S2n for which F(w) consists of cycles of
length 2v by first choosing P and a in (n!/Pivi!mi(v)!)2 ways, then choosing
the bijection P «-» a in P i m i ( v ) ! ways, and then for each pair of corresponding
blocks of sizes v1,v2,..., choosing permutations of coset-types (v1) ,(v2) , . . . in
Pi2

2vi(vi!)
2/2vi ways. Thus, we conclude that there are

3. A twisted Gelfand pair

Let e denote the linear character of Bn whose restriction to En is the sign
character, and whose restriction to Tn is trivial. Let e = \Bn\

-1 ExEBn e(x)x € CBn

denote the corresponding primitive idempotent.
In the following, we will need to specify representatives wv for each of the

double cosets of Bn in S2n. In order to avoid awkward developments later on,
these choices cannot be entirely arbitrary. First, for the case v = (n), we define

ON SCHUR'S Q-FUNCTIONS

permutations of coset-type v.
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Figure 1.

and then for the general case v = (v 1 , . . . , vl), we define

where the operation xoy (for x e S2i, y € S2j) denotes the embedding of S2i x S2j

in S2i+2j with S2i acting on {1,...,2i} and S2j acting on {2i + l,...,2i + 2j}.
Note that since F(w1 o w2) = P(W1) U F(w2) (disjoint union), it is clear that wv

does indeed have coset-type v.
Following the notation of Section 2, let XUY denote the bipartition of F(w).

By a well-known fact from graph theory, every regular bipartite graph on X U Y
can be partitioned into disjoint perfect matchings of X and Y (i.e., 1-regular
graphs). Furthermore, since \X\ = \Y\ = n, any perfect matching of X and
Y can be regarded as a permutation of n objects. In particular, any perfect
matching M has a well-defined sign sgn(M), relative to the "identity matching"
that arises from F( id) .

In the following, OPn denotes the set of partitions of n into odd parts.

LEMMA 3.1. Let w e S2n be of coset type v.

(a) If v € OPn and w = x1wvx2 (where x1, x2 e Bn) then every factorization of G(w)
into perfect matchings yields two matchings whose signs both equal E(x1x2).

(b) If v £ OPns then there exist x1,x2 € Bn such that x1wvx2 = wv and £(x1x2) = -1.

Proof.

(a) In the special case w = W(n), there is only one way to partition P(w) (a
2n-cycle) into two perfect matchings; these two matchings are displayed in
Figure 1. Note that the permutations defined by these matchings are the
identity permutation and an n-cycle. Assuming that n is odd, then both of
these are even permutations. Therefore, if v e OPn, then every partition of
r(wv) into two perfect matchings M1 and M2 yields two permutations that
are products of odd-length cycles and thus sgn(M1) = sgn(M2) = 1.
Now suppose that w = x 1 W v X 2 for some x1,x2 € Bn. Note that replacing w
with t1wt2, x1 with t1x1, and x2 with x2t2 (with t1, t2 e Tn) has no effect on
F(w) (Proposition 2.1.a) or e(x1x2), so it suffices to assume that x1, x2 £ £n.
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However, as discussed in the proof of Proposition 2.16, the effect on F(wv)
of left and right multiplication by EN is to permute the vertices in either half
of the bipartition of F(wv). This in turn induces an action M -> x1Mx2 on
perfect matchings M with the property that sgn(x1Mx2) = e(x1x2)sgn(M).
Therefore, if M1 U M2 is a partition of F(w) into disjoint perfect matchings,
then M'1 = x-1M1x2

-1 and M2 = x -1M2x2
-1 define a partition of F(wv)

into perfect matchings with the property that sgn(M1) = e(x1x2)sgn(M'1) and
sgn(M2) = e(x1x2)sgn(M'2). However, we have already noted that all such
partitions of F(wv) must have sgn(M'1) =sgn(M'2) = 1.

(b) Let F be a bipartite 2k-cycle, and let v be any vertex of F. There is
a bipartition-preserving automorphism of F that interchanges each pair of
vertices at distance i from v (1 < i < k), and fixes the unique vertex at
distance k from v. This automorphism is a product of k - 1 transpositions,
and is therefore odd if k is even. Hence, if some part of v is even, one can
find x1,x2 € Zn with e(x1x2) = -1 and G(x1wvx2) = F(wv). By Proposition
2.1.a, it follows that wv = t1x1wvx2t2 for some t1, t2 € Tn. Since e(t1t2) = 1.
the result follows.

Let He
n denote the Hecke algebra of the triple (S2n, Bn, e). For each partition

v of n, let us define

Clearly, the Kv's span Hn.

COROLLARY 3.2.

(a) If v E OPns then Kv = 0.
(b) If v € OPns then the coefficient of wv in Kv is z2v/|Bn|

2.
(c) {Kv: v € OPn} is a basis of He

n.
(d) (S2n,Bn, e) is a twisted Gelfand pair.

Proof.

(a) If x1, x2 € Bn satisfy wv = x1wvx2, then one has Kv = e(x1x2)Kv , by (1.3).
However by Lemma 3.1.b, if v E OPn, then there exist choices for x1 and x2

with e(x1x2) = -1. Thus Kv = 0 in such cases.
(b) In view of (3.1), the coefficient of wv in Kv is (aside from a factor of \Bn\-2)

the sum of e(x1x2), where x1,x2 € Bn range over all solutions to wv = x1wvx2.
By Lemma 3.1.a, all such solutions have the property that e(x1x2) = 1, so
this number is in fact equal to \Bn\

2/\BnwvBn\. Apply Proposition 2.3.
(c) Parts (a) and (b) imply Kv = 0 if and only if v £ OPn. Since the nonzero

Kv's must form a basis of He (cf. the discussion in Section 1), the result
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Figure 2.

follows.
(d) We claim that ewve = ew -1e for all partitions v. If v E OPn then both are

zero and there is nothing to prove. Otherwise, since a partition of F(wv)
into perfect matchings can be obtained by inverting a similar partition of
r(w - 1 ) , Lemma 3.1.a implies that w-1 = x1wvx2 for some x1,x2 € Bn with
e(x1 x2) = 1. Thus ewve = ew-1e, by (1.3). The commutativity of He

n now
follows by reasoning analogous to the proof of Corollary 2.2.

4. The twisted spherical functions of (S2n, Bn, e)

Let DP (resp., DPn) denote the set of partitions (resp., partitions of n) with
distinct parts. For each A 6 DPn, there is a corresponding partition A* of 2n
whose definition is best explained in terms of Young diagrams. One starts with
the shifted diagram of A, which consists of the cells D = {(i, j) € Z2:1 < i <
j < Li + i - 1}, and then one adjoins a shifted "transpose" of this diagram,
embedded as {(i, j - 1):(j, i) 6 D}. The union of these two sets defines the
(unshifted) diagram of the partition A*. For example, if A = (7, 5, 2, 1), then
A* = (8, 7, 5, 5, 2, 2, 1); see Figure 2.

The partitions A* occur in the following symmetric function identity due to
Littlewood [10, p. 238] (cf. also Example I.5.9 of [11])

where Su(x1, x2,...) denotes the Schur function indexed by u. Since the induction
of characters from a wreath product Sm I Sn to Smn corresponds to plethysm of
symmetric functions [11, p. 66], one may easily deduce that the induction of e
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from Bn = S2 I Sn to S2n has the decomposition

where Xu denotes the irreducible character of the symmetric group indexed by
U.

Let eu denote the primitive central idempotent of CSn corresponding to xu;
i.e.,

where HM = n!/deg(xu) denotes the product of the hook lengths of the Young
diagram of u [7, p. 56]. Since eS2n is evidently multiplicity free, (4.1) provides
another proof of the fact that (S2n, Bn, e) is a twisted Gelfand pair. It also
provides a basis of orthogonal idempotents for Hc

n; namely,

where A ranges over DPn.
Let £A denote the twisted spherical function associated with EL; i.e, the

function on S2n defined by £A(w) = xA'(ewe) = xA'(ew) (cf. Section 1). Since

for all x1, x2 e Bn, w e S2n, it follows that the £A's are determined by their values
on a set of representatives for Bn\S2n/Bn, and thus by the values £L(WV) = X A ' ( K v )
for v 6 OPn.

PROPOSITION 4.1. If A e DPns then

Proof. We know that {Kv: v e OPn} is a basis of Hs
n, so EL = EvEopn aL,VKv for

suitable scalars aL,v. Since the coefficient of wv in Ku is Z2vdu,v/\Bn\
2 (Corollary

3.2.b), it follows that Z2vaL,v/\Bn\2 is the coefficient of wv in EL. However,

so the coefficient of wv in EL is also equal to
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For any w £ S2n and a = E aww e CS2n, let [w]a = aw denote the coefficient
operator, and let a = Eaww denote complex conjugation. Since ewe = ew -1e
for all w € S2n (cf. the proof of Corollary 3.2.d), it follows that He

n is invariant
under the linear transformation of CS2n induced by w -> w-1, and hence we may
create an inner product on He

n by defining

Both the Kv's and the EL's are orthogonal with respect to this inner product.
To make this precise, consider the following.

PROPOSITION 4.2.

Proof.

(a) Since w and w-1 belong to the same double coset of Bn\S2n/Bn, it follows
that [id] KaKp = 0 unless a = B. In that case, [id] K2 is the sum of the
squares of the coefficients in Ka. By Corollary 3.2.b, these coefficients are
all equal to ±Z2a/\Bn\

2. Hence, by Proposition 2.3,

(b) Note that xL'(e) = XA'(K(1n)) = 1, since e acts as a rank-one idempotent on the
Wedderburn component of CS2n indexed by A*. We therefore have [ id]E L =
H-1, by Proposition 4.1. However, the EL's are orthogonal idempotents, so
ELEu = SL,uEL, and hence, [id]ELEu = HA

-1dA,u.
(c) Apply Proposition 4.1 and part (a).

In terms of the twisted spherical functions EL, the orthogonality of the E\'s
can be equivalently expressed as

We remark that the product-of-hook-lengths HL. can also be expressed in
terms of shifted hook lengths. To be more precise, choose some A e DPn with
l parts, let D denote the shifted diagram of A (as defined at the beginning of



ON SCHUR'S Q-FUNCTIONS 83

Figure 3.

this section), and let D* denote the (unshifted) diagram of A*. The shifted hook
lengths of A can be defined as the set of ordinary hook lengths of D* belonging
to cells of D (cf. Example III.7.8 of [11]). For example, the set of shifted hook
lengths for A = (5, 2, 1) are 7, 6, 5, 3, 2, 2, 1, 1, as illustrated in Figure 3. It is
not difficult to verify that the hook lengths of A* belonging to cells of D* - D
are nearly identical to those of D; the only difference is that the hook lengths
A1,...,Al in column l of D are replaced by the hook lengths 2A1,.., 2Al on the
main diagonal of D* - D (cf. Figure 3). Thus we have

where Hl denotes the product of the shifted hook lengths of A. Like the classical
hook length formula, the quantity n!/H' counts the number of standard shifted
Young tableaux of shape A [11, p. 135].

5. The main result

Let A = xn>0A
n denote the graded C-algebra of symmetric functions in the

variables x1, x2... [11], and let pr = pr(x1, x2,...) = x1 + xr
2 + ... denote the

rth power-sum symmetric function. For each partition v = (v1 , . . . ,v l), define
Pv = Pv1...Pvl. By the fundamental theorem on symmetric functions one knows
that the pr's are algebraically independent generators of A

Following [19], let O = ®n>0O
n denote the graded subalgebra of A generated

by 1 and the odd power sums P2r+1. Note that {pv:v € OPn} is a basis of On.
There is a convenient inner product [•,•] on O defined by

for all u, v e OP, where l(u) denotes the number of parts in u.
There is another useful set of generators q1,q2,q3,... for O; these can be
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defined by means of the generating function

It is easy to show that

so the qn's do generate O. If we define qL = qL1qL2 • • • for all partitions A, then
the qL's will span O; however, they are not linearly independent. In fact, it is not
hard to show that both {qL: L € DP} and {qL: L e OP} are bases of O [19,§5].

Schur's Q-functions are a family of symmetric functions QL (L e DP) that
form an orthogonal basis of O. They have several equivalent definitions: (1)
as generating functions for a certain type of shifted tableaux [19], (2) as Hall-
Littlewood symmetric functions Q L (x ; t ) with parameter t = -1 [11], (3) as
Pfaffians of certain skew-symmetric matrices defined over O [16], [20], and (4)
as ratios of certain Pfaffians defined over Z [ x 1 , . . . , x m ] [14].

For our purposes, we prefer to adopt the following definition of the Q-
functions; it is analogous to the definition of the Jack symmetric functions [12]
[18]. It is also similar to the definition of Q-functions used by Hoffman and
Humphreys [4].

THEOREM 5.1. The symmetric functions QL are the unique homogeneous basis of
O satisfying:

(a) [QL, Qu] = 2l(L)dL,V for L,u E DP.
(b) For any partition u, [qu, QL] = 0 unless A > u in the "dominance" partial order

(i.e., L1 + • • • + Li > u1 + • • • + ui for all i > 1).
(c) [QL, pn

1] > 0 for L e DPn.

It is clear that this result determines the Q-functions. Indeed, if there were
another basis Q'A with these properties, then the transition matrix between the
two bases would have to be unitary (by (a)) and triangular (by (b)), and thus
Q'L = cLQL for some cL e C with \cL\ = 1. Part (c) then forces cL = 1. It is also
clear that this result provides a simple algorithm for constructing the Q-functions:
one starts with the O-basis {qu: u e DP}, linearly ordered in a fashion compatible
with the dominance order, and then one applies the Gram-Schmidt algorithm
to create an orthogonal basis. What is not clear a priori is that the resulting
orthogonal basis has a transition matrix with respect to {qu: u e DP} that is not
merely triangular, but in fact satisfies the much stronger hypotheses of (b).

For a proof that the tableaux definition of the Q-functions satisfies Theorem
5.1, see Section 6 of [19]; for a proof starting from the Hall-Littlewood definition,
see Chapter III of [11].
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We now define the characteristic map ch:HE -> On to be the unique linear
isomorphism satisfying

for all v € OPn. This map is analogous to the Frobenius characteristic map
between the class functions on Sn and symmetric functions of degree n [11,§7].
Since z2a = 2l(a)za, Proposition 4.2.a implies that this map is essentially an
isometry; i.e.,

for all a, b e He.
It is also possible to impose a graded algebra structure on the space

so that the characteristic map is an algebra isomorphism. For this, it is convenient
to first extend the operation x o y of Section 3 bilinearly so as to define an
embedding of CS2i X CS2j in CS2i+2j. Also, to avoid ambiguity in what follows,
we write en for e, to emphasize the dependence on n. In these terms, one may
define the algebra structure of He by setting

for all a € He, b e He
J. Since eiei+j = ei+jei = ei+j, it follows that e iw1e i*e jw2e j =

ei+j(w1 o W2)ei+j for all w1 e S2i, w2 € S2j. In particular, Ku*KV = KuUv, where
uUv denotes multiset union of partitions, since wuowv and wuUv are Bn-conjugates.
Hence,

so the characteristic map is indeed an isomorphism of graded algebras.
We are now ready to state the main result.

THEOREM 5.2. For any L e DPn, we have

where gL = n!/H'L denotes the number of shifted standard tableaux of shape L.

As the first step towards the proof, we need to explicitly evaluate the twisted
spherical function EA in the case A = (n).

LEMMA 5.3. For v e OPn, we have £(n)(wv) = 2-(n-l(v)).

Proof. If A = (n), the L* = (n + 1,1n-1). Furthermore, the partition (n,1n) is
not of the form A* for any A € DPn, so the restriction of x(n,1n) to Hn is zero.
Thus we have e(n)(w) = x(ewe) = x(ew), where



86 STEMBRIDGE

By the Littlewood-Richardson rule [7] [11], one knows that x is the induction of
the outer tensor product of the trivial and sign characters from Sn x Sn to S2n,
or equivalently, the character of /\n(C2n), where S2n acts on C2" by permuting
some basis v1,..., v2n.

Let us take the vectors vi1 A • • • A vin with 1 < i1 < • • • < in < 2n as a basis of
An(C2n), and define

If the indices 2j — 1 and 2j both occur among i1,...,in, then the action of the
transposition t = (2j - 1, 2j) 6 Tn on vi1 A • • • A vin amounts to negation. Since
et = e, it follows that e(vi1 A • • • A vin) = 0 unless

In that case, it is easy to show that Et€Tnt(vi1 A • • • A vin) = u. Since xu = e(x)u
for x e En, we therefore have

whenever (5.3) is satisfied.
To compute the trace of wve acting on /\n(C2n), let (i1,...,in) be an n-tuple

satisfying (5.3), and consider the special case v = (n). Recall from Section 3
that W(n) = (1,2,..., 2n), so we have

The only basis vectors satisfying (5.3) that occur in this expression are v2 A v4 A
• • • A V2n and

Assuming n is odd, these vectors will both provide positive contributions to the
trace of W(n)e. In view of (5.4), this trace must be 2-(n-1).

For arbitrary v e OPn, we have wv = w(v1) o . . . o w(vl), so the action of wv on
u will produce 2l-basis vectors satisfying (5.3), each occurring with coefficient 1.
Thus by (5.4), we conclude that

COROLLARY 5.4. ch(E(n)) = 2n-1qn.

Proof. Since H(n+1,1n-1) = 2(n!)2, Proposition 4.1 and Lemma 5.3 imply
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On the other hand, exponentiating (5.1) yields

Proof of Theorem 5.2. For A e DPn, define YL e On by setting ch(EA) =
2n-l(L)gLyL. By proposition 4.2.b and (5.2), we have

However,

by (4.2), so [YL, yu] = 2l(L)dL,u. Thus the yL's satisfy part (a) of Theorem 5.1.
Now since the characteristic map is an algebra isomorphism, Corollary 5.4

implies

for any partition u = (u1,...,u1) of n. Therefore, to prove that YL satisfies part
(b) of Theorem 5.1, it suffices to show that

unless L > u.
If H is any subgroup of S2n, and e0 is an idempotent in CH that generates

a CH-module with character 6, then by (1.2) we have eae0 = 0 unless xa occurs
with nonzero multiplicity in 0s2n. Since

we may therefore establish (5.5) by proving that

unless L > u. (Here we are using x to denote the outer tensor product of
characters.)

To prove this, let D(v) denote the Young diagram of a partition v. The
Littlewood-Richardson rule implies that if a and B are partitions of n - k and
n, and if (r, 1k-T) is any hook-shaped partition of k, then

unless D(a) c D(B) and D(B) - D(a) is a disjoint union of border strips; i.e., a
subset of Z2 containing no 2 x 2 square. By the transitivity of induction, we may



88 STEMBRIDGE

iterate this result and conclude that (5.6) holds unless there exists a sequence
D0,...,Dl of Young diagrams satisfying

(1) 0 = D0 C • • • C Dl = D(L*),
(2) |Di|-|Di-1|=2ui,
(3) Di - Di-1 contains no 2 x 2 squares.

However, properties (1) and (3) imply that every cell of A must belong to the
union of the first i rows and columns of D(L*); there are a total of 2L1+... + 2Li
such cells in D(X*). On the other hand, property (2) implies that A contains
2u1 +...+ 2ui cells, so if XL* is a constituent of (x(u1)* x • • • x x(u1)*)s2n, we must
have

for all i > 1; i.e., A > u. Thus YL satisfies part (b) of Theorem 5.1.
To complete the proof, we need only to establish that YL satisfies part (c) of

Theorem 5.1. For this we claim

by successive applications of (5.2), Proposition 4.2.b, and (4.2).

6. Ramifications

Following [19], let Sn denote the double cover of Sn generated by elements
s1,...,sn-1 and a central involution -1, subject to the relations

Let Xn denote the subgroup of Sn that doubly covers the alternating group.
The irreducible representations of Sn can be divided into two families; one

consisting of representations in which -1 acts trivially (these are essentially
equivalent to representations of Sn), and the other consisting of representations
in which -1 acts as scalar multiplication by -1. The latter are known as the
spin representations of Sn, and were first considered by Schur in 1911 [16]. We
will briefly summarize here a few aspects of spin representations; for details and
proofs, see [19]. (Other sources include [4], [8].)

For each partition v of n, choose an element av e Sn whose Sn-image is of
cycle-type v. Every a e Sn will be conjugate to ±Sv for some v, so the character
p of any spin representation of Sn is completely determined by the values p(av).
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It turns out that av is conjugate to -av (and therefore P(Sv) = -P(Sv) = 0)
unless either v e OPn, or else n - l (v) is odd and v e DPn. Note that, in the
former case, one has av e An, whereas in the latter case, one has av e Sn - An.

The irreducible spin characters of Sn can be indexed by partitions A e DPn,
although the indexing is not entirely one to one. When n - l ( X ) is even, A
indexes a single-spin character pL; it is invariant under multiplication by the sign
character. In such cases one therefore has pL(a) = 0 for a g An, and px(Sv) = 0
only if v e OPn. When n - l(L) is odd, there are two characters indexed by A;
they differ only by multiplication by the sign character. Thus for v 6 OPn, we
may unambiguously write PA(Sv) for the common value of these two characters
at av. For v e DPn with n - l (v) odd, the two characters are both zero at av

unless v - A; in that case, the two values are

The main result of Schur's paper [16] is the following theorem, which shows
that the representatives av can be chosen so that the nontrivial part of the
character table of Sn (i.e., the values px(Sv) for L € DPn and v e OPn) is
encoded by the transition matrix between the Q-functions and the power sums.

THEOREM 6.1 (Schur). If A e DPn, then

where cL = R2 if n - l(L) is odd, and cL = 1 if n - l(L) is even.

On the other hand, Theorem 5.2 establishes that the transisition matrix
between the QL's and pv's is essentially £A(wv), aside from scalar factors. Hence,
the character tables of Sn and the Hecke algebra Hn are closely related. To
make this precise, we first note that

by successive applications of Theorem 5.2, Proposition 4.2.C and (4.2). However,
Theorem 6.1 implies that

and, in particular, since [QL , p1
n] = gL (cf. (5.7)), we have



Comparing the two expressions for [Q L , pv], we obtain

COROLLARY 6.2. If A e DPn and v e OPn, then

There is a combinatorial rule for explicitly evaluating the scalar products
[QL, Pv], and hence, for evaluating both spin characters and twisted spherical
functions. The first version of this rule was given by Morris [13], although the
formulation we will describe here is taken from [21].

Let D'(L) denote the shifted diagram of any A € DP, as in Section 4. A cell
(i, j) e D'(L) is said to belong to the kth diagonal if j - i = k. If D'(u) C D'(L),
then the difference D = D'(L) - D'(u) is said to be a border strip if it is rookwise
connected and contains at most one cell on each diagonal. The height h(D) is
the number of nonempty rows. We say that D is a double strip if it is rookwise
connected and the number of cells on the kth diagonal is a nonincreasing function
of k, starting with two cells on the 0th diagonal. We define the height h(D)
of a double strip to be |D - D0|/2 + h(Do), where D0 denotes the border strip
formed by the one-celled diagonals of D. For simplicity, we write h(L — u) for
the height of any border strip or double strip of the form D'(L) - D'(u).

THEOREM 6.3. If A e DPn, v e OPn-r and r is odd, then

90 STEMBRIDGE

where the first sum is restricted to those a for which D'(X) - D'(a) is a double strip,
and the second sum is restricted to those B for which D'(X) — D'(B) is a border strip.

A proof can be found in Section 5 of [21].
As a second remark, we mention that there is an analogue of the Littlewood-

Richardson rule for the multiplication of Q-functions [19]; i.e., there is a combi-
natorial rule for evaluating the structure constants [Q u Q V ,Q L ] , where A e DPn,
H e DPk, and v e DPn - k . In the context of spin characters, this amounts to a
rule for specifying the irreducible decomposition of the restriction of PA from
Sn to a double cover of Sk x Sn - k .

By Theorem 5.2, these structure constants also arise in the algebra Hs. Indeed,
we have

where
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by successive applications of Proposition 4.2.b, Theorem 5.2, and (4.2).
Since 2-VM+t(»))[QiiQ^Qx] is known to be a nonnegative integer [19, §8],

it follows that gxb^v is also a nonnegative integer. Although we are unaware
of any explanation of this intrinsic to Hecke algebras, we can deduce the
nonnegativity of bL

,v directly. Indeed, since eu* o ev* is a central idempotent for
the subgroup S2k x S2n-2k of S2n, Corollary 1.3 implies that the EL-expansion of
Eu * Ev = e(eu* o eV*)e is nonnegative.

7. Remarks on zonal polynomials

The spherical functions for the Gelfand pair (S2n, Bn) have been analyzed via
techniques similar to those we developed in Sections 3-5 (see especially [1], [6],
and [12, §5]). For the sake of comparison, we describe here the principal features
of this analysis; the details are somewhat simpler than the twisted case.

In the following, 1Bn denotes the trivial character of Bn, e0 = \Bn\ -1Ex€Bn x
denotes the corresponding idempotent of CBn, and Hn = e0CS2ne0 denotes the
Hecke algebra of the triple (S2n, Bn,e0).

Let Pn denote the set of partitions of n. The elements Cv: = e0wve0 € Hn (v €
Pn) clearly form a basis of Hn. On the other hand, the following well-known
Schur function identity due to Littlewood [10, p. 238] (cf. also [11])

implies the induction rule

and therefore the elements

form a basis of orthogonal idempotents for Hn. The spherical function 0A

corresponding to FA is given by

and the analogue of Proposition 4.1 is
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As in the twisted case, we may impose a graded algebra structure on H: =
®n>0Hn by defining a * b = e0(a o b)e0 for all a € Hi and b e Hj. In particular,
one has

so the product is evidently commutative and associative.
Since Hn is invariant under the linear transformation of CS2n induced by

w -> w-1, it follows that

defines an inner product on Hn, just as it does for He
n. The orthogonality

relations analogous to Proposition 4.2 are

for all partitions A, u, a, B of n.
One may define a characteristic map ch:H-> A by setting

By (7.2), this map is an isomorphism of graded algebras, and by (7.3a) one has

where {.,.}2 denotes the inner product on A defined by

The subscript "2" here is used to distinguish this from the usual inner product
on A in which (pa, PB) = 2ada,B.

The characteristics of the idempotents FL are the symmetric functions known
to statisticians as zonal polynomials. To be more explicit, let us define

for all partitions A of n. We may regard ZL as a polynomial function of an m x m
symmetric matrix A by treating ZL(A) as the value of Z\ at the eigenvalues x1,...,
xm of A (or equivalently, by identifying the power sum pT with the matrix function
tr(Ar)). On the other hand, the action A -> X A X t of GLm(R) on symmetric
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matrices extends to an action of GLm(R) on polynomial functions of symmetric
matrices. In these terms, the zonal polynomials ZL for l(L) < m are the unique
polynomials (up to scalar multiplication) that (1) are invariant under the action
of the orthogonal group, and (2) generate irreducible GLm(R)-modules. This is
essentially the content of Theorem 4 of [6].

There is also a characterization of the zonal polynomials analogous to Theorem
5.1; it is a consequence of the fact that zonal polynomials are the special case
a = 2 of the Jack polynomials [12] and [18]. Indeed, this was presumably one
of the motivations for the original definition of Jack polynomials [5].

To describe this characterization, let us first define

and more generally, Cu: = Cu1Cu2 ... for any partition u. Alternatively, one may
define Cn(x1, x2,...) as the coefficient of tn in Pi>1(1 - xit)

-1/2. It is not difficult
to show that {Cn: n > 1} is an algebraically independent set of generators for A,
so that {Cu: n € Pn} is a basis of An.

THEOREM 7.1. The symmetric functions ZL are the unique homogeneous basis of
A satisfying:

(a) (Z L ,Z u ) 2 = H2LdL,u for L,u e Pn.
(b) (Cu, ZL)2 = 0 unless L>u.
(c) (ZA, pn)2 > 0 for A € Pn.

Proof. Part (a) is a consequence of (7.3b) and the fact that the characteristic map
is (essentially) an isometry. For (b), observe that in the special case A = (n), x2A

is the trivial character of S2n, so x2x(Cv) = 1 for all v e Pn, and hence

Since the characteristic map is an algebra isomorphism, it follows that

for any partition u = (u1 , . . . , ul) of n. Therefore, to prove (b) it suffices to show
that

unless A > u. For this, let Ka,B denote the multiplicity of xa in the induction of
the trivial character from SB1 x SB2 x • • • to S2n. It is well-known (e.g., [11, p.
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57]) that Ka,B = 0 unless a > B. Thus by (1.2), we have (e(2u1) o • • oe(2u1))e2L = 0
unless 2A > 2u (or equivalently, A > u), and therefore,

unless A > u. Finally, to prove (c), note that by (7.3c),

Since (a) and (b) uniquely determine the zonal polynomials up to a linear
transformation that is both triangular and unitary, there can be only one basis
that also satisfies (c).

Unlike the twisted case discussed in Section 6, there is no known combinatorial
rule for the explicit evaluation of the spherical functions 6L (or equivalently, for
evaluating ( Z l , pv)2), nor is there any known rule for evaluating (Zu Zv, ZL)2,
although Stanley has a conjecture about Jack symmetric functions [18, §8] that
would imply that (Zu ZV, ZL)2 is a nonnegative integer.

We remark that the same reasoning used in Section 6 does show that
(Zu, ZV, ZL)2 is nonnegative. Indeed, aside from a (positive) scalar multiple,
these quantities also arise as the structure constants in the expansion

by Corollary 1.3, these must be nonnegative.
We should note that the nonnegativity of (Zu Zv, ZL)2 is also a direct conse-

quence of the interpretation of Z\ as a spherical function for the Gelfand pair
(GLm(R), Om(R)) [9].
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