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Abstract The purpose of this paper is twofold. First we aim to unify previous work by the first
two authors, A. Garsia, and C. Reutenauer (see [2], [3], [4], [5] and [10]) on the structure of the
descent algebras of the Coxeter groups of type An and Bn. But we shall also extend these results
to the descent algebra of an arbitrary finite Coxeter group W. The descent algebra, introduced by
Solomon in [14], is a subalgebra of the group algebra of W. It is closely related to the subring of
the Burnside ring B(W) spanned by the permutation representations W/WJ, where the WJ are the
parabolic subgroups of W. Specifically, our purpose is to lift a basis of primitive idempotents of the
parabolic Burnside algebra to a basis of idempotents of the descent algebra.

Keywords: Coxeter groups, idempotents, descent algebra.

1. Introduction

Let (W, S) be a finite Coxeter system. That is, W is a finite group generated by
a set 5 subject to the defining relations

where msr are positive integers and mss = 1 for all s e S.
As is well known, W is faithfully represented in the orthogonal group of

an inner product space V, which has a basis II = {aa\s e S} in bijective
correspondence with S. The inner product is given by

and the action of W by

for all T,s € S and v e V. Thus s acts as the reflection in the hyperplane
orthogonal to as and, consequently V is called the reflection representation of W.
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One easily checks that for all s, r e S we have aT = ±w(as) in V if and only if
r = wsw-1 in W.

We call the set P = {w(a)|w e W, a e II} the root system of W, and P the
set of fundamental roots. It is well known (see [7]) that P can be decomposed
as $ = $+ t±)$~, where every element of P+ (resp. P-) is a linear combination
of fundamental roots with coefficients all nonnegative (resp. all nonpositive).
Moreover, if w e W and l(w) denotes the length of a minimal expression for
w in terms of elements of S, then l (w) equals the cardinality of the set N(w),
where

Note that l(vw) = l (v ) + l (w) if and only if N(vw) = w - 1 ( N ( v ) ) W N(w).
For each J C P, the standard parabolic subgroup WJ is the subgroup of W

generated by

Then (WJ, SJ) is also a Coxeter system. If Vj is the subspace of V spanned by J,
then the W-action on V yields a WJ-action on VJ, which can be identified with
the reflection representation of WJ. The root system of Wj is $J = P n VJ; and
we write $+ for £+ n VJ for PJ and P- n VJ. It is easily shown that N(w) C P+

if and only if w e WJ.
In this paper we study the descent algebra (or Solomon algebra) £(W) of a

Coxeter group W, If w € W, then the descent set of w is defined to be

In terms of the generating set 5 this corresponds to {s e S\£(ws) < £(w)}. If
J C P, let

and let

Define £(W) to be the subspace of Q(W) spanned by all such elements xj

(which are clearly linearly independent).
It has been shown by Solomon [14] that £(W) is a subalgebra of Q(W).

More precisely, Solomon has shown that

where

In Section 2 we shall prove these facts using techniques that will be developed
further in later sections. It is easily shown (Solomon [14]) that the xK's are
linearly independent; thus they form a basis of £(W).
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In [10] A. Garsia and C. Reutenauer have given a decomposition of the
multiplicative structure of the descent algebra of the symmetric group (the Coxeter
group of type An). This decomposition exploits the action of the symmetric group
on the free Lie algebra in a manner reminiscent of the Poincare-Birkhoff-Witt
theorem. In [2] and [5] we showed that a similar decomposition, as well as
related results, also holds for the hyperoctahedral group (type Bn). The object
of this paper, and ongoing work, is to extend these results to the descent algebra
of any finite Coxeter group.

For a general descent algebra £(W) we shall exhibit a new basis consisting
of elements ek, K C P, which are scalar multiples of idempotents, and satisfy
£K c PuK eK = 1 for certain positive constants u$. Furthermore, for all J, M C
II, when CJ€M is expressed as a linear combination of the eK's the only nonzero
coefficients correspond to subsets K of M that are equivalent to J, in the
sense that J = w(K) for some w € W. As a consequence we obtain a set of
idempotents EL = EKEL VPKeK indexed by equivalence classes A of subsets of II,
such that

and £AEA = 1. In fact, the EX'S form a decomposition of the identity into
primitive idempotents, and hence the right ideals of S(W) which they generate
are a full set of indecomposable projective right modules for s(W). Furthermore,
the EX'S induce a decomposition of the action of J(W) on Q(W) by left
multiplication:

where HL = EL • Q(W). We shall compute the dimension of HL in Section 7.
Our calculations in Section 7 also show that the unique maximal submodule of
EL£(W) is spanned by the differences ej - eK for J, K € L. This gives an
alternative proof of Solomon's result that the radical of £(W) is the subspace
spanned all elements xj - XK for J and K equivalent subsets of P. Thus

where A is the set of equivalence classes of subsets of n.
These constructions have already been carried through for all indecomposable

finite Coxeter groups of type An (see [10]), and of type Bn (see [2] and [5]).
Part of the study of the descent algebra has been carried through with extensive
use of the computer algebra system Maple [3],

2. The Solomon Algebra

We start by proving some basic facts concerning the elements xj defined in
Section 1. Proofs of results we assume can be found in Section 2.7 of Carter [7],
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If J C P, then each element of W is uniquely expressible in the form du with
d e Xj and u € Wj, and here we have l(du) = l (d ) + l(u). Thus Xj is a set of
representatives of the cosets wWj in W. Likewise, if K C J C P, then Xj n Wj
is a set of representatives of the cosets wWK in Wj. In this situation we define

and note that xp = XK. The next two lemmas provide analogues of induction and
restriction for Solomon algebras. The connection with induction and restriction
of permutation characters will be given in detail in Section 4.

LEMMA 2.1. If K C J e P then XK = Xj(Wj n XK) and thus XK = XJX
J
K.

Proof. If d e Xj and w e Wj n XK, then w(K) C $+, whence dw(K) C d($+) C
P+. It follows that dw e XK and this shows that

Since the number of products dw is |W : W j||W j : WK| = |XK| we see that
equality holds; and, on taking sums, we have XK = XJX

J
K.

LEMMA 2.2. For all J, K c s

where XJK = XJ
-1 n XK; and thus

Proof. First note that if d e XJK and u e Wj n XJnd(K), then d e XJ
-1 and

u e Wj; so an element of W can arise as a product ud in at most one way.
Let w e XK and write w = ud with d e XJ

-1 and u € WJ. Since l(ud) =
l(u) + l(d) we have N(d) C N(ud) = N(w), and so d e XK. Thus d € XJK, and
futhermore

so that u e WJnd(K).
It remains to prove that ud e XK whenever d e XJK and u eWj n XJnd(k).

Since a fundamental root cannot be nontrivially expressed as a positive linear
combination of positive roots, we see that K n d - 1 ( P j ) = K n d - 1 ( J ) . But
d(K) C P+ (since d € XK) and so d(K) C (<P+\$J) U (J n <*(#)). It follows that
ud(K) C u($+\$5) U u(J n d(K) C <P+, since u(^+\$J) C $+ for u e Wj, and
therefore ud e XK, as required.
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Lemma 2.2 shows that each element of W is uniquely expressible in the form
udw with w € WK, d e XJK and u e WJ n XJnd(k). Moreover, in this situation
l(udw) = l(u) + l (d ) + l(w). It follows readily that each double coset WjwWK

contains a unique d E XjK, and that Wj n dWK d-1 = WJnd(K).
For J, K C P we write J ~ K whenever w(J) = K for some w e W (that

is, J and K are equivalent) and J X K whenever J is equivalent to a subset
of K. The next lemma shows that this equivalence relation is the one used by
Solomon in [14].

LEMMA 2.3. If J, K C P, then J ~ K if and only if WJ and WK are conjugate,
and J ± K if and only if Wj is conjugate to a subgroup of WK.

Proof. Suppose that w € W satisfies w - 1W jw C WK. If d is the shortest element
in WjwWK, then d - 1 W j d C WK, and therefore

Thus J n d ( K ) = J and therefore d - 1 ( J ) C K. All assertions of the lemma now
follow.

LEMMA 2.4. If J C P and d E W with d - 1 ( J ) C P, then Xjd = Xd - 1 ( J ) .

Proof. For w e X d - 1 ( J ) , it is clear that wd-1 € Xj, and conversely for w e Xj,
that wd € Xd-1(J).

The following result due to Solomon is easily derived from these lemmas.

THEOREM 2.5. (Solomon) For all J, K C P

27

Proof.

Obviously aJKL = 0 when L C K. Thus the theorem is proved.
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PROPOSITION 2.6. Let aM
JK denote the structure constants of the descent algebra

S(WM) corresponding to the xM basis. If J, N C P, then

for all M C P such that J C M. Thus the structure constants satisfy the identities

for all M containing J.

Proof. We have

This proves the first assertion of the theorem, and comparison with

completes the proof.

3. Reduction to indecomposable finite Coxeter groups

Throughout this section we suppose that J and K are mutually orthogonal subsets
of n such that U = JuK. In this case W = Wj x WK and QW = QW jXQWK.
We shall show that a similar decomposition holds for the Solomon algebra of W.

LEMMA 3.1. For L C J and M C K we have
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Proof. Given d € XLUM there is a unique decomposition d = djdK with dj € Wj

and dk e WK. As dk fixes every element of J, it follows that

and hence dj e XJ
L. Similarly, dK G XK.

Conversely, if dj e Xj and dk € XK, then

whence djdk e XLuM. It follows that XLuM = XJ x Xk and that xLuM = xJxk.

As an immediate consequence of this lemma, we have

PROPOSITION 3.2. The function v : £(WJ) X S(Wk) -> E(W) defined by
P(u X v) = uv, is an isomorphism of algebras.

This shows that we may reduce our discussion to the indecomposable finite
Coxeter groups.

4. The parabolic Burnside ring

For each J C P we have a permutation representation of W on the set W/Wj

of cosets Wjw. The orbits of W on W/Wj x W/WK have representatives of
the form (Wjd, WK), where d € XJK; and the stablizer of (Wjd, WK) in W is
d - 1W jdnWK = Wd-1(J)nK. Thus

where the aJKL'S are defined as in Section 1. This proves that the representations
W/Wj span a subring PB(W) of the Burnside ring of W. We call this the
parabolic Burnside ring of W. On comparing (3) and (1) we see that there is a
homomorphism T : S(W) -> PB(W) which takes xj to the element of PB(W)
represented by W/Wj. Note that B is not, in general an isomorphism because
W/Wj and W/WK represent the same element of PB(W) whenever J ~ K.

A subgroup of W is said to be parabolic if it is conjugate to a standard
parabolic subgroup Wj for some J C P. For each v e V, the stabilizer in W of
v,

is a parabolic subgroup. Indeed, the set
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is a fundamental domain for the action of W, and we may choose t € W such
that t(v) € C. Then (see Steinberg [15])

where J = {a e n|(a,t(v)) = 0}.
Since Wj stabilizes J| it follows that w € Wj stabilizes v e V if and only

if it stabilizes the orthogonal projection of v in Vj. Hence Stabwj(v) is a
parabolic subgroup of Wj. It follows by induction that the pointwise stabilizer,
Stabw(P), of an arbitrary subset P of V, is a parabolic subgroup of W. Since
Stabw(PuQ) = Stabw(P)nStabw(q) we see that the intersection of two parabolic
subgroups is again parabolic; this also follows from the fact, mentioned in Section
2, that Wj n dWKd -1 = WJnd(K) whenever d e XJK.

If g is an arbitrary orthogonal transformation on V, define

and

and let r(g) = dim[V,g]. It is easily checked that [V,g] is the orthogonal
complement of Cv(g) in V. Furthermore, if 0 = v e V and r is the reflection in
the hyperplane orthogonal to v, then

Thus r(g) is the length of a minimal expression for g as a product of reflections.
In [7] Carter proves that every element w £W can be written as a product of
T(W) reflections in W. (We include a proof in Lemma 4.3.)

Following Solomon [14], for w e W, we define

Equivalently, A(w) = Stabw(Cv(w)). In particular, A(w) is a parabolic subgroup
of W. We say that w is of type J if A(w) is conjugate to Wj. We shall
sometimes say that w is of type A, where A is the equivalence class of J, since
(by Lemma 2.3) J is determined by w only to within equivalence. It is clear that
A(twt -1) = tA(w)t-1, and hence conjugate elements have the same type.

Observe that the maps P -> Stabw(P) and H -> Cv(H), where H is a
subgroup of W, form a Galois connection between the partially ordered set of
subspaces of V and the partially ordered set of subgroups of W, in the sense that
P C C v ( H ) if and only if H C Stabw(P). The parabolic subgroups are the closed
subgroups of W for this Galois connection; that is, H is parabolic if and only
if H = Stabw(Cv(H)). Thus if H is any subgroup of W, then Stabw(Cv(H))
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is the smallest parabolic subgroup of W containing H. In particular, if w E W,
then A(w) is the smallest parabolic subgroup containing w, and so w is of type
J if and only if J C E is minimal subject to Wj containing a conjugate of w.

LEMMA 4.3. Let J C n and suppose that w e W is of type J. Then

(1) if K C P and WK contains a conjugate of w, then J x K,
(2) r(w) = |J|,
(3) w can be written as a product of \J\ reflections in W.

Proof. Replacing w by a conjugate of itself, we may assume that w e Wj. Since
w has type J it is not contained in any proper parabolic subgroup of Wj.

If t € W and t-1wt € WK, then w e Wj n tWkt
-1, a parabolic subgroup of

WJ. It follows that Wj n tWkt
-1 = Wj. Now Lemma 3 gives J < K, proving

(1).
The generators of Wj all fix J1 pointwise, and so JL C Cv(w). Taking

orthogonal complements gives [V, w] C Vj. If [V,w] = Vj, we deduce that Vj

contains a nonzero v e C v(w), and hence that w E StabWJ(v), a proper parabolic
subgroup of WJ. This is a contradiction, and therefore [V, w] = Vj. Thus

31

proving (2).
Since [V, w] = Vj it follows from (4) that T(sw) = T(W) - 1 whenever s € Sj.

Hence sw has type K for some K C P with \K\ = |J| -1. Arguing by induction
we deduce that sw is a product of \J\ - 1 reflections in W, and therefore
w = s(sw) is a product of |J| reflections.

For J C S, let cj be the product of the reflections s, s € Sj, taken in some
fixed order. The conjugacy class of cj in Wj is independent of the order, and the
elements of this class are called the Coxeter elements of Wj. Since J is a linearly
independent set it is clear that [V,cj] = Vj, and so cj has type J. We note as
a consequence that the parabolic subgroups of W are precisely the subgroups
A(w).

PROPOSITION 4.4. If J, K C P, then cj is conjugate to CK if and only if J ~ K.

Proof. If cj and CK are conjugate, then they are of the same type-that is,
J ~ K. Conversely, if J = d(K) for some d e W, then dSjd - 1 = SK, and so
d c j d - 1 , being a product of the reflections in SK, is conjugate to CK.

Let Pj = Indwj1, the character of W induced from the trivial character
of Wj. In other words, Pj is the character corresponding to the permutation
representation W/Wj.
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THEOREM 4.5. The assignment W/Wj -> pj defines an isomorphism & from
PB(W) to the ring of Q-linear combinations of the pj. Thus we may identify
PB(W) with this ring of class functions.

Proof. If J ~ K, the representations W/Wj and W/WK are equal in PB(W) and
hence

In this context we see that Theorem 2.5 is the Solomon algebra analogue of
the Mackey formula for the product of induced characters (Solomon [14]).

32

This makes it legitimate to write pL instead of pj where A is the equivalence
class of J. For each equivalence class u choose an element cu of type u: for
example, a Coxeter element. Since Wj contains an element of type K if and
only if K x J it is clear that PL(Cu) = 0 if and only if u < L. For a suitable
ordering of the rows and columns, the matrix VL(Cu))L , U is upper triangular with
nonzero diagonal entries. Therefore the pL are linearly independent.

Induction and restriction of characters give rise to maps between PB(Wj)
and PB(W). For the case of induction, the permutation representation WJ/WK

in PB(Wj) induced to PB(W) is simply W/WK. By Lemma 2.1 the analogue of
induction for the Solomon algebras is left multiplication by xj. More generally,
if J c M, define IndM : £(Wj) -> S (W M ) by

The restriction of WM/WK to PB(Wj) is obtained by considering the orbits
of Wj on the cosets Wkd in WM. Thus

In view of this formula and Lemma 2.2 we define ResM: £(WM) -> S (W j ) by

The following proposition is immediate from this discussion.

PROPOSITION 4.6. Given J C M C P, let Tj, and BM be the canonical ho-
momorphisms from S(W j ) and S(W M ) to PB(Wj) and PB(WM) respectively.
Then

and
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5. Dihedral groups

In this section we give a complete description of the descent algebra of Coxeter
group of type I2(p). That is, we take W to be dihedral group with generating
set S = {r, s} and relations

The descent algebra of W has dimension 4 and it has a basis x0,xr,xs,xn, where
II = {ar, as} is the set of fundamental roots of W and where xr (resp. xs)
denotes x{ar}(resp. X{as}). More explicitly, we have

The summation for xr(resp. xs) is over the set of all w e W with only one
reduced expression, this unique expression must also end in r(resp. s). The
multiplication table for E(W) is easy to compute explicitly in this case. When
p is even it is

whereas for p odd it is

1
Xr

Xs

X0

1

1

XT

xs

x0

Xr

Xr

Px0

px0

X,

X,

px0

px0

X0

x0

px0

px0

2px0

1

XT

xs

x0

1

1

Xr

Xs

X0

XT

Xr

px0

Xs

xs

px0

X0

X0

px0

px0

2px0
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Using these tables, one can verify that for p even

are mutually orthogonal idempotents whose sum is 1. In this case the algebra
S(W) is semisimple and each equivalence class of subsets of II is just a singleton.
Thus the idempotents EL referred to in (2) can be identified with the idempotents
listed above.

When p is odd, we obtain idempotents

In this case there are only three equivalence classes of subsets of II: II, {{ar},
{as}} and {0}. The only nonzero products between distinct ek's are

Thus the EX'S of (1.2) can be taken to be

The radical of £(W) is spanned by the nilpotent element er-es.
In preparation for Section 7, we reconsider part of this construction in the

context of a general Coxeter system (W, S). For two elements r, s € S we compute
the product xsxr. (Again, we abbreviate X { a r } to xr). A direct application of (1)
gives

where pT = \{w\as = w(aT)}\.
Observe that for any f = £w fww in Q(W), we have fxt = x0f = (£w fw)xt.

In particular, xrxt = 1|W|x0 and multiplying (7) by x0 gives

Thus (7) becomes
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This identity suggests that for any Coxeter group we set

It then follows easily that es is an idempotent, and (more generally),

Clearly, if s and r are not conjugate, then pr
a = 0. But if they are conjugate,

then there exists d e W such that as = d(ar) and then

Note that Stabw(as) is a subgroup of index 2 in the centralizer of s. Thus we
have

Let A(s) denote the equivalence class of a, e U. From the calculations just
completed we conclude the following.

PROPOSITION 5.5. In any Coxeter group, for all s € S, the elements

are idempotents, and if s and r are not conjugate, then

We generalize this result to all equivalence classes A in Section 7.

6. Idempotents in the parabolic Burnside ring

The Q-algebra PB(W) is isomorphic to an algebra of functions, and therefore it
has a basis of idempotent elements. Specifically, if we define

where the coefficient matrix (VLU) is the inverse of the matrix (PL(Cu)) that
appears in the proof of Theorem 4.5, then
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and it follows that £L is idempotent. The next theorem shows that (9) holds
when Cu is an arbitrary element of type u.

THEOREM 6.2. Let J, K c n and let c e W be any element of type J. Then
PK(C) = a k j j , the number of d € XKJ such that d(J) C K. In particular, aKJJ

depends only on the equivalence classes of K and J.

Proof. Without loss of generality we may suppose that c e Wj. By Mackey's
formula, the restriction of PK to Wj is

But since c is not contained in any proper parabolic subgroup of Wj, the
character IndwJ

-1(k)nj 1 vanishes on c unless d - 1 ( K ) n J = J, in which case it takes

the value 1.

For J C n, let Nj = {w € W\w(J) = J}. Then Nj is the intersection of
Xj and the normalizer of Wj, whereas \Nj{ = ajjj is the index of Wj in its
normalizes

For convenience we define £J = £L and VJK = vLu whenever J e A and K e u.
For J C K C n, let SK be the primitive idempotent of PB(WK) that takes the
value 1 on elements of type J relative to WK.

The next two propositions descrive the effect of the restriction and induction
maps on these idempotents.

PROPOSITION 6.3. Let J, K C n and let J1, J2,..., Jh, be representatives of the
Wk-equivalence classes of subsets of K that are W-equivalent to J. Then

In particular, ReswK£J = 0 if J is not equivalent to any subset of K.

PROPOSITION 6.4. If J C K e n, then

Proof. Suppose at first that J = K and that c e Wj is an element of type J.
Then A(c) = WJ and therefore x - 1 cx e WJ if and only if x is in the normalizer
of Wj. So (Indw

j£
j)(c) = |Nj|. It is clear that Indw

jE
j vanishes everywhere

except at elements of type J, and therefore IndW
JE

j = \Nj\£j.
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In general, we have

For the purposes of calculation, the following theorem is sometimes more useful
than Theorem 6.2. The quantities \Nj\f\Wx n Nj\ can be obtained from the
tables in Hewlett [11].

THEOREM 6.5. Let J ^ K C n and let J1, J2,..., Jh be representatives of the
WK-equivalence classes of subsets of K that are W-equivalent to J. If c € W is of
type J, then

Proof. By definition, S£k = 1, where L runs through representatives of the
Wk-equivalence classes of subsets of K. Inducing to W and using Proposition
6.4 gives

Since £L(c) = 1 if and only if L ~ Ji for some i, evaluation at c completes the
proof.

This theorem is also a consequence of the fact that \NJ\/\WK n Nj i \ is the
number of d e XKJ such that d(J) C K and d(J) is WK-equivalent to Ji.

Let C( J) be the set of elements of type J and note that C(J) depends only
on the equivalence class of J.

The main result of this section yields a remarkable formula for the coefficients
VJK in the case K = 0.

THEOREM 6.6. If m1, m2,..., mn are the exponents of W, then

Proof. If e is the sign character of W, then by Frobenius reciprocity

and therefore vnT = (EP, E). By definition of the inner product,
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A well-known formula of Shephard and Todd [12] (see also Solomon [13]) states

Lemma 4.3 (2) shows that T(w) = n if and only if w is of type II. Thus
m1m2 • • • mk is the number of elements of type P in W. This completes the
proof.

COROLLARY 6.7. Let J C P with \J\ = k and let m1, m2, ...,mk be the exponents
of Wj. Then

where Nw(Wj) is the normalizer in W of Wj.

Proof. To see this, apply Theorem 6.6 to Wj and then use Proposition 6.4.

It is also interesting to observe that

The proof is obtained by taking the inner product of £j = £ vjnV>n with the
trivial character and using the fact that (Pu, 1) = 1 for all u.

A similar calculation, but taking the inner product of Ej with the sign character
of WL induced to W gives

7. Idempotents in the Solomon algebra

Our main aim in this section is to construct the elements ej e £(W) mentioned in
Section 1. These elements are mapped by T : £(W) -> PB(W) to scalar multiples
of the idempotents EJ defined in Section 6, and are themselves scalar multiples
of idempotents. Moreover, the ej and the analogous elements e$ e S(Wk) are
related by analogues of Propositions 6.3 and 6.4.

that
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We begin by defining certain positive constants uJ
K for all K C J c 77. For

K C 77 we choose UK arbitrarily, and then we put

For convenience, we define HJ
K = 0 if K g J.

Inverting the upper triangular matrix (uJ) yields constants PJ
K such that

BJ
K = 0 if J g K and

where dJL is the Kronecker delta. For J C M C P we define eM e Z ( w m ) by

noting that the coefficient of xm in em is zero unless K C J. Let ej = ep.
From Lemma 2.1 and this definition we immediately derive the analogue of

Proposition 6.4.

PROPOSITION 7.3. If K CLCM, then em = xMeL
K; that is, eM = IndM (eL ) .

Observe that if K C J and L ~ K, then

and so (10) can be restated as

Our first lemma shows that (12) remains true when 77 is replaced by M C 77.

LEMMA 7.5. If J, K C M C n then

where the aM
jK are the structure constants of S(WM), and L runs through subsets

of M that are WM-equivalent to K.

Proof.
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Now atiMLctfjK = 0 unless L •< N and K is WM-equivalent to a subset of L,
and when K ~ JV this forces K to be Wm-equivalent to L. Hence the condition
L~K on the inner sum is superfluous, and so Proposition 2.6 gives

Associativity in £(WM) gives the following relation on the structure constants:

for all subsets L, P, N, K, of M. If L and K are WM-equivalent then the only
nonzero terms on the right-hand side come from Q which are in this same
Wm-equivalence class. So multiplying (13) by uM and summing over L C M that
are WM-equivalent to K gives (by Lemma 7.5)

for all P, N, K C M.
We can now prove the main facts concerning multiplication of the eM.

THEOREM 7.8. If N, J c M c P then

Note that the coefficient aM
NK is the number of v € WM n XN such that v(K) = J.

Proof. If J, L C M then £KCM Pj^f = 6JL- Hence multiplying (14) through by
BK and summing over K C M gives
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Multiplying through by Bj, where J C M, and summing over PCM gives

Multiplying this by xM and summing over L C M gives

So, by (11), emxm = £wa3W$. as required (since a$NK = 0 for K £ N).

COROLLARY 7.10. If L, J C M e P, then

where the inner sum is over N such that K C N C L.

Proof. Simply write eM = SNCL BLXM and use Theorem 7.8.

Corollary 7.10 shows that for each WM-equivalence class A, the elements em,
for J e A, span a right ideal I(M, A) of £(WW). Furthermore, £(WM) is the
direct sum of these right ideals, since the eM, for J CM, form a basis of £(WM).
Our next proposition shows that 6M : £(WW) -> PB(WM) maps the I(M, A)'s to
the simple components of PB(WM).

PROPOSITION 7.11. If J C M and A is the WM equivalence class containing J, then

Proof. We have

where A runs through all WM-equivalence classes. Hence the elements EM =
EyeLuMeM are the orthogonal idempotents corresponding to the decompo-
sition £(WM) = ©LI(M, L). Applying the homomorphism 9M we see that



EA M-Ef) = 1 and 9M(E^)&M(E^) = 0 whenever A = u. It will follow that
O M ( E M ) is the primitive idempotent eM, provided we can prove that T M (E M ) is
nonzero on elements of type A.

We do this first in the case L = {M}. Observe that if K C M and K = M
then the character 0M(eM) vanishes on elements of type M, since

we deduce that 0M(EM
{M}) = uM0M(eM) takes the value 1 on elements of type

M.

Now consider an arbitrary WM-equivalence class A. Since T M (E M ) = EATCA VK
IndWm(0K(eK)), and since TK(eK) takes a positive value on elements of type K,
it follows that O M (E M ) is nonzero on elements of type L, as required.

Thus we have proved that 0M (EM ) = eM for all A, and in particular, 9M(eM) =
(1/uM)£M. Applying this with M replaced by J we find that
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by Proposition 4.6. Since

by Proposition 6.4.

COROLLARY 7.12. Let X be a WM-equivalence class of subsets of M and let L, J E L.
Then

Proof. The only subset K of L such that K~ J is K = L, and so Corollary 7.10
shows that eMeM is a scalar multiple of eM. Applying TM and using Proposition
7.11 determines the scalar.

Note also that the scalar \WMr\Nj\lnJj depends only on the WM-equivalence
class A containing J. Indeed, it is easily shown (by use of Lemma 7.5, for
example) that

for all L 6 A.
It is immediate from Corollary 7.12 that the right ideal I(M, A) is generated

by an element £J£A pjxf such that £^€A pj = 0. In particular, I(M, A) is an



A DECOMPOSITION OF THE DESCENT ALGEBRA 43

indecomposable. By standard theory (see [1]), it follows that the I(M, L)'s form a
full set of projective indecomposable modules for £(WM). Since 0M(I(M, L)) is
one-dimensional, we deduce that I(M, A) n kerTM has codimension 1 in I(M, A),
and is the unique maximal submodule of I(M, L). Hence the kernel of TM, being
the direct sum of the subspaces I(M, L) n kerTM, is the radical of S(WM).

The following proposition provides the analogue of Proposition 6.3.

PROPOSITION 7.14. Let J, K C M C P. Then

Proof. Since eM = £LcMBJxM, the definition of ResM gives

by (15). By definition we have ek = E N C M / ^ N X N ' and the result follows.

As our final result we determine the dimension of the right ideal HL of Q(W)
generated by the idempotent EP.

THEOREM 7.15. The dimension of HL is the number of elements of W of type L.

Proof. The dimension of HL is the trace of EP in the regular representation
of W. This can be determined by expressing EP as a linear combination of
elements of W and multiplying the coefficient of 1 by \W\.

Now Ef = EjexMje? = £J€A Y,Kcn Mj PK*K, and since 1 occurs in each
XK with coefficient 1, we deduce that

Let C(L) be the set of elements of W of type A. Then
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Since 9(xK) = <t>K and (<J>K, 1) = 1, we see that \C(X)\ = dimHL, as required.
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