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Abstract. The purpose of this paper is twofold. First we aim to unify previous work by the first
two authors, A. Garsia, and C. Reutenauer (see [2], [3], [4], [S] and [10]) on the structure of the
descent algebras of the Coxeter groups of type A, and B,,. But we shall aiso extend these resuits
to the descent algebra of an arbitrary finite Coxeter group W. The descent algebra, introduced by
Solomon in [14], is a subalgebra of the group algebra of W. It is closely related to the subring of
the Burnside ring B(W) spanned by the permutation representations W/W;, where the W, are the
parabolic subgroups of W. Specifically, our purpose is to lift a basis of primitive idempotents of the
parabolic Burnside algebra to a basis of idempotents of the descent algebra.
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1. Introduction

Let (W, S) be a finite Coxeter system. That is, W is a finite group generated by
a set S subject to the defining relations

(sr)™ =1 forall s,res

where m,, are positive integers and m,, = 1 for all s € S.

As is well known, W is faithfully represented in the orthogonal group of
an inner product space V, which has a basis I = {a,|s € S} in bijective
correspondence with S. The inner product is given by

(atss ar) = ~coS(m/m,y)

and the action of W by
s(v) = v = 2(a,,v)a,

for all r,s € S and v € V. Thus s acts as the reflection in the hyperplane
orthogonal to o, and, consequently V' is called the reflection representation of W.
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One easily checks that for all s,r € § we have o, = w(a,) in V if and only if
r=wsw!in W.

We call the set & = {w(a)lw € W, € IT} the root system of W, and II the
set of fundamental roots. It is well known (see [7]) that & can be decomposed
as ¢ = &* w P, where every element of &+ (resp. $7) is a linear combination
of fundamental roots with coefficients all nonnegative (resp. all nonpositive).
Moreover, if w € W and #(w) denotes the length of a minimal expression for
w in terms of elements of S, then £(w) equals the cardinality of the set N(w),
where

Nw) = {a € 3" |w(a) € $7}
Note that £(vw) = £(v) + £(w) if and only if N(vw) = w™}{(N(v)) & N(w).

For each J C II, the standard parabolic subgroup W is the subgroup of W
generated by

Sy = {s € Sla, € J}
Then (W, Sy) is also a Coxeter system. If V; is the subspace of V' spanned by J,
then the W-action on V yields a Wj-action on Vj, which can be identified with
the reflection representation of W;. The root system of W is &, = #NV;; and
we write $} for #* NV, for $; and $~ NV;. It is easily shown that N(w) C &3
if and only if w € W;.

In this paper we study the descent algebra (or Solomon algebra) > (W) of a
Coxeter group W. If w e W, then the descent set of w is defined to be

D(w) = Nw)n = {a € Tw(a) € 7}

In terms of the generating set S this corresponds to {s € S|f(ws) < f(w)}. If
JCH, let

X;={weW|Dw)nJ =0} = {we WwJ) ¢ $*}

Ty = Zw

weXy

Define 3 (W) to be the subspace of Q(W) spanned by all such elements z,
(which are clearly linearly independent).

It has been shown by Solomon [14] that (W) is a subalgebra of Q(W).
More precisely, Solomon has shown that

TJTK = Y QIKLEL, 6
LK

and let

where
askr = {w e X7'n Xxlw ' (J)NK = L}|.

In Section 2 we shall prove these facts using techniques that will be developed
further in later sections. It is easily shown (Solomon [14]) that the zx’s are
linearly independent; thus they form a basis of _(W).
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In {10] A. Garsia and C. Reutenauer have given a decomposition of the
multiplicative structure of the descent algebra of the symmetric group (the Coxeter
group of type A,,). This decomposition exploits the action of the symmetric group
on the free Lie algebra in a manner reminiscent of the Poincaré-Birkhoff-Witt
theorem. In [2] and [5] we showed that a similar decomposition, as well as
related results, also holds for the hyperoctahedral group (type B,). The object
of this paper, and ongoing work, is to extend these results to the descent algebra
of any finite Coxeter group.

For a general descent algebra ) (W) we shall exhibit a new basis consisting
of elements ex, K C II, which are scalar multiples of idempotents, and satisfy
S kcn kex = 1 for certain positive constants pff. Furthermore, for all J,M C
I1, when ejeys is expressed as a linear combination of the ex’s, the only nonzero
coefficients correspond to subsets K of M that are equivalent to J, in the
sense that J = w(K) for some w € W. As a consequence we obtain a set of
idempotents E) = Y., ukex indexed by equivalence classes A of subsets of IT,

such that 0 ifrs
_ i i
EAE# - {E,\ if A= m (2)
and ), Ey = 1. In fact, the E)’s form a decomposition of the identity into
primitive idempotents, and hence the right ideals of 3 (W) which they generate
are a full set of indecomposable projective right modules for o(W). Furthermore,
the E\’s induce a decomposition of the action of } (W) on Q(W) by left

multiplication:
QW) = @HA
A

where H), = E) - Q(W). We shall compute the dimension of H, in Section 7.
Our calculations in Section 7 also show that the unique maximal submodule of
E\ Y (W) is spanned by the differences e; — ex for J,K € A. This gives an
alternative proof of Solomon’s result that the radical of 3 (W) is the subspace
spanned all elements z; — zx for J and K equivalent subsets of IT. Thus

dim (\/%) =2¢ |4

where A is the set of equivalence classes of subsets of IT.

These constructions have already been carried through for all indecomposable
finite Coxeter groups of type A, (see [10]), and of type B, (see [2] and [S]).
Part of the study of the descent algebra has been carried through with extensive
use of the computer algebra system Maple [3].

2. The Solomon Algebra

We start by proving some basic facts concerning the elements z; defined in
Section 1. Proofs of results we assume can be found in Section 2.7 of Carter [7].
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If J C I, then each element of W is uniquely expressible in the form du with
d € Xy and u € Wy, and here we have £(du) = £(d) + £(u). Thus X is a set of
representatives of the cosets wW; in W. Likewise, if K C J C IT, then X;NnW;
is a set of representatives of the cosets wWyx in W;. In this situation we define

and note that z§ = zg. The next two lemmas provide analogues of induction and
restriction for Solomon algebras. The connection with induction and restriction
of permutation characters will be given in detail in Section 4.

LEMMA 2.1. IfK CJCIthen Xg = XJ(WJ ﬂXK) and thus i = :z:J:c{{.

Proof. If d € X; and w € W; N Xk, then w(K) C &, whence dw(K) C d($F) C
&*. It follows that dw € X and this shows that

{dw|d eX;j,weW; ﬂXK} Cc Xg

Since the number of products dw is |W : W,||W; : Wk| = |Xk| we see that
equality holds; and, on taking sums, we have zx = z . m]

LEMMA 2.2. Forall J K C S

Xk = Ws0 Xjnam)d,
deXx

where X x = X;' N Xk; and thus

= J
deX;x

Proof. First note that if d € X x and u € W; N X nyxk), then d € X;' and
u € Wy; so an element of W can arise as a product ud in at most one way.
Let w € Xk and write w = ud with d € X;' and u € W;. Since #(ud) =
£(u) + £(d) we have N(d) C N(ud) = N(w), and so d € Xk. Thus d € Xk, and
futhermore
u(J Nd(K)) C ud(K) = w(K) C &*

so that u € WJnd(K).

It remains to prove that ud € Xx whenever d € X;x and v € Wy N Xjngk).
Since a fundamental root cannot be nontrivially expressed as a positive linear
combination of positive roots, we see that K Nnd~1(#}) = K nd~!(J). But
d(K) C &* (since d € Xk) and so d(K) C (+\&F) U(JNd(K)). It follows that
ud(K) C w(®*\&3) Uu(J Nnd(K) C &+, since w(*\&}) C &* for u € Wy, and
therefore ud € Xk, as required. a
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Lemma 2.2 shows that each element of W is uniquely expressible in the form
udw with w € Wk,d € Xk and u € Wy N Xng). Moreover, in this situation
f(udw) = £(w) + £(d) + £(w). It follows readily that each double coset W wWx
contains a unique d € Xk, and that W; N dWxd™! = Wjnyx).

For J,K C IT we write J ~ K whenever w(J) = K for some w € W (that
is, J and K are equivalent) and J <X K whenever J is equivalent to a subset
of K. The next lemma shows that this equivalence relation is the one used by
Solomon in [14].

LEMMA 23, If JJK C II, then J ~ K if and only if W; and Wy are conjugate,
and J X K if and only if W is conjugate to a subgroup of Wk.

Proof. Suppose that w € W satisfies w W w C W. If d is the shortest element
in W,wWyg, then d-'W;d C Wy, and therefore

WJnd(K) =W, ﬂdWKd_l = W;.

Thus JNd(K) = J and therefore d~}(J) C K. All assertions of the lemma now
follow. a

LEMMA 24. If J C IT and d € W with d™1(J) C II, then X;d = Xy

Proof. For w € Xy, it is clear that wd~! € X, and conversely for w € X,
that wd € Xd—I(J)- a

The following result due to Solomon is easily derived from these lemmas.
THEOREM 2.5. (Solomon) For all J, K C IT

TJTK = Z aJKLTL

LCK
Proof.
TITK = X5 Y Thogx)d by Lemma 2.2
deX x

= Z T jnd(k)d by Lemma 2.1

de Xk
= Y Ty by Lemma 2.4

deXJK

Z AJKLTL
L

Obviously ayxr = 0 when L € K. Thus the theorem is proved. |
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PROPOSITION 2.6. Let o, denote the structure constants of the descent algebra
S (War) corresponding to the =X basis. If J,N C II, then

TNTy = Z (Z aNMLaﬁ[JK) TK

KCJ \LcM

for all M C IT such that J C M. Thus the structure constants satisfy the identities

= M
angk = Y anmiadix

LCM
for all M containing J.
Proof. We have
INZy = mNmMmy
= <Z a'NMLmL> o
LCM
= M, M
= Z ANMLTMT], (L‘.J
LM
= Z aNMLTM (Z aﬁ{m“’%)
LCM KCJ
= E aNMLafJKwK.
LK
LEMKSJ

This proves the first assertion of the theorem, and comparison with

TNT; = Y aNJKTK
KCJ

completes the proof. a

3. Reduction to indecomposable finite Coxeter groups

Throughout this section we suppose that J and K are mutually orthogonal subsets
of IT such that IT = JUK. In this case W = W; x Wx and QW ~ QW; QWk.
We shall show that a similar decomposition holds for the Solomon algebra of W.
LEMMA 3.1. For L C J and M C K we have

wimﬁ =2TrLuM.
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Proof. Given d € Xy there is a unique decomposition d = d;dg with d; € Wy
and dx € Wg. As dg fixes every element of J, it follows that

ds(L) = djdg(L) = d(L) C &*

and hence d; € Xj. Similarly, dx € Xf.
Conversely, if dy € X{ and dgx € X}, then

dydxg(LU M) Cdy(LUdE) Co*

whence dydx € Xyup. It follows that Xy = X x X¥ and that z;p = z{z§.
a

As an immediate consequence of this lemma, we have

PROPOSITION 3.2. The function ¢ : > . (Wy) ® Y(Wk) — Y.(W) defined by
o(u ® v) = wv, is an isomorphism of algebras.

This shows that we may reduce our discussion to the indecomposable finite
Coxeter groups.

4. The parabolic Burnside ring

For each J C IT we have a permutation representation of W on the set W/W;
of cosets Wyw. The orbits of W on W/W; x W/Wyx have representatives of
the form (W;d, Wg), where d € X k; and the stablizer of (W;d,Wg) in W is
d_] Wjdn WK = Wd“l(J)ﬂK' Thus

W/Wy x W/Wk = > ayes W/Wr (3)
LCK

where the ajx1’s are defined as in Section 1. This proves that the representations
W/W; span a subring PB(W) of the Burnside ring of W. We call this the
parabolic Burnside ring of W. On comparing (3) and (1) we see that there is a
homomorphism 6 : Y (W) — PB(W) which takes z; to the element of PB(W)
represented by W/W;. Note that 8 is not, in general an isomorphism because
W/W; and W/Wk represent the same element of PB(W) whenever J ~ K.

A subgroup of W is said to be parabolic if it is conjugate to a standard
parabolic subgroup W; for some J C II. For each v € V, the stabilizer in W of
v,

Staby (v) = {w € W|w(v) = v}
is a parabolic subgroup. Indeed, the set
C={ueV|(au)20 forall o€}
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is a fundamental domain for the action of W, and we may choose t € W such
that t(v) € C. Then (see Steinberg [15])

t Stab,,(v)t™! = Stab, (t(v)) = W,

where J = {a € II|(a,t(v)) = 0}.

Since W; stabilizes J* it follows that w € W; stabilizes v € V if and only
if it stabilizes the orthogonal projection of v in V;. Hence Stabw,(v) is a
parabolic subgroup of W;. It follows by induction that the pointwise stabilizer,
Stabw (P), of an arbitrary subset P of V, is a parabolic subgroup of W. Since
Stabw (PUQ) = Stabw (P)NStabw (Q) we see that the intersection of two parabolic
subgroups is again parabolic; this also follows from the fact, mentioned in Section
2, that Wy NdWgd™! = Wyngx) whenever d € X k.

If g is an arbitrary orthogonal transformation on V, define

Vgl = {1-9))veV}
and
Cu(g) = {veVligw)=uv}

and let 7(g) = dim[V,g]. It is easily checked that [V,g] is the orthogonal
complement of C,(g) in V. Furthermore, if 0 # v € V and r is the reflection in
the hyperplane orthogonal to v, then

[t +1 ifv€[V,
o= {7011 EVEN “

Thus 7(g) is the length of a minimal expression for g as a product of reflections.
In [7] Carter proves that every element w € W can be written as a product of
r(w) reflections in W. (We include a proof in Lemma 4.3.)

Following Solomon [14], for w € W, we define

A(w) = {y e W|[V,y] € [V, w]} = {y € W|Cy(w) C Cv(y)}-

Equivalently, A(w) = Stabw(Cy(w)). In particular, A(w) is a parabolic subgroup
of W. We say that w is of type J if A(w) is conjugate to W;. We shall
sometimes say that w is of type A, where A is the equivalence class of J, since
(by Lemma 2.3) J is determined by w only to within equivalence. It is clear that
A(twt™) = tA(w)t™!, and hence conjugate elements have the same type.
Observe that the maps P — Staby(P) and H — Cy(H), where H is a
subgroup of W, form a Galois connection between the partially ordered set of
subspaces of V' and the partially ordered set of subgroups of W, in the sense that
P C Cy(H) if and only if H C Stabw(P). The parabolic subgroups are the closed
subgroups of W for this Galois connection; that is, H is parabolic if and only
if H = Staby (Cy(H)). Thus if H is any subgroup of W, then Stabw (Cv(H))
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is the smallest parabolic subgroup of W containing H. In particular, if w € W,
then A(w) is the smallest parabolic subgroup containing w, and so w is of type
J if and only if J C II is minimal subject to W containing a conjugate of w.

LEMMA 4.3. Let J C IT and suppose that w € W is of type J. Then

(1) if K C IT and Wi contains a conjugate of w, then J < K,
(2) m(w) = |J},

(3) w can be written as a product of |J| reflections in W.

Proof. Replacing w by a conjugate of itself, we may assume that w € W;. Since
w has type J it is not contained in any proper parabolic subgroup of W.

If t ¢ W and t~lwt € Wk, then w € Wy NtWgt~!, a parabolic subgroup of
W;. It follows that W, NtWxt™! = W,. Now Lemma 3 gives J < K, proving
(2).

The generators of W, all fix J- pointwise, and so J* C Cy(w). Taking
orthogonal complements gives [V,w] C V;. If [V w] # V;, we deduce that V;
contains a nonzero v € Cy(w), and hence that w € Staby, (v), a proper parabolic
subgroup of W;. This is a contradiction, and therefore [V,w] = V;. Thus

7(w) = dim[V,w] = dimV}, = |J|

proving (2).

Since [V, w] = V; it follows from (4) that 7(sw) = 7(w) — 1 whenever s € §,.
Hence sw has type K for some K C IT with |K| = |J| — 1. Arguing by induction
we deduce that sw is a product of [J| — 1 reflections in W, and therefore
w = s(sw) is a product of |J| reflections. )

For J C S, let c; be the product of the reflections s,s € Sy, taken in some
fixed order. The conjugacy class of ¢; in W is independent of the order, and the
elements of this class are called the Coxeter elements of W,. Since J is a linearly
independent set it is clear that [V,c;] = V;, and so c; has type J. We note as
a consequence that the parabolic subgroups of W are precisely the subgroups
A(w).

PROPOSITION 4.4. If J, K C II, then c; is conjugate to ck if and only if J ~ K.

Proof. If c; and ckx are conjugate, then they are of the same type—that is,
J ~ K. Conversely, if J = d(K) for some d € W, then dS;d~! = Sk, and so
dc;d!, being a product of the reflections in Sk, is conjugate to cg. O

Let ;5 = Ind%l, the character of W induced from the trivial character
of W,. In other words, o, is the character corresponding to the permutation
representation W/W,.
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THEOREM 4.5. The assignment W/W; — o, defines an isomorphism © from
PB(W) to the ring of Q-linear combinations of the ;. Thus we may identify
PB(W) with this ring of class functions.

Proof. If J ~ K, the representations W/w, and W/Wx are equal in PB(W) and
hence
s = O(W/W;) = 8(W/Wk) = vk

This makes it legitimate to write ¢, instead of ¢, where X is the equivalence
class of J. For each equivalence class u choose an element ¢, of type u: for
example, a Coxeter element. Since W, contains an element of type K if and
only if K < J it is clear that @(c,) # 0 if and only if 4 < A. For a suitable
ordering of the rows and columns, the matrix x(c,))», is upper triangular with
nonzero diagonal entries. Therefore the ¢, are linearly independent. a

Induction and restriction of characters give rise to maps between PB(W;)
and PB(W). For the case of induction, the permutation representation W;/Wg
in PB(W;) induced to PB(W) is simply W/Wg. By Lemma 2.1 the analogue of
induction for the Solomon algebras is left multiplication by z;. More generally,
if JC M, define IndY : (W) = S (W) by

IndY(z) = ¥z

The restriction of Wy /Wx to PB(W)) is obtained by considering the orbits
of W; on the cosets Wxd in Wy, Thus

Resw, (Wy /Wk) = Z Wi /W jna-r(x0)
deWynXgy

In view of this formula and Lemma 2.2 we define ResY: 3 (War) — S (W) by

M My = 7 _ J
Res; (zg) = Z TInd-1(K) = Z TIna(K)
deWynXgs deWyunX g

The following proposition is immediate from this discussion.

PROPOSITION 4.6. Given J C M C II, let 6, and ) be the canonical ho-
momorphisms from % (W;) and > . (Wu) to PB(W;) and PB(Wy) respectively.
Then

O - Indy = Indy -6,

and
0y - Resﬁ'f = Resw, - Oy

In this context we see that Theorem 2.5 is the Solomon algebra analogue of
the Mackey formula for the product of induced characters (Solomon [14]).
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S. Dihedral groups

In this section we give a complete description of the descent algebra of Coxeter
group of type I(p). That is, we take W to be dihedral group with generating
set S = {r,s} and relations

=g =(sr)P=1

The descent algebra of W has dimension 4 and it has a basis x4, z., z,, 27, Where
II = {a,,0,} is the set of fundamental roots of W and where z, (resp. z,)
denotes z(,,)(resp. x(,,)). More explicitly, we have

zp = 1

2, = l+s+rs+srs+rers+--.
s = l+r+sr+rar+srsr+...
Ty =

Zw:w

The summation for z.(resp. z,) is over the set of all w € W with only one
reduced expression, this unique expression must also end in r(resp. s). The
multiplication table for 3 (W) is easy to compute explicitly in this case. When
p is even it is

1 | 2 T, T
1 1 | =z, Ty Zg
z, | o | 22, + 253930 Exy PT¢
Ty | Ty %.'170 2z, + %21:0 Py
Ty | Tp | PTy Py 2pzy
whereas for p odd it is
1 z, Ty Ty
111 a2, x, Ty
- -1
z |z | zr + &2—1:1:@ xs + Bz | prp
- -1
Ty | 2, | 2o + Ez-lzg T, + B-xp | pay
Ty | Zg | PZo PTp 2pzy
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Using these tables, one can verify that for p even

en | —1/20, - 1/22, + ELag

2p
e, = 1/2z, —1/2zp)
es = 1/2(z, —1/2zy)
1
@ = 5,7 ()

are mutually orthogonal idempotents whose sum is 1. In this case the algebra
Y (W) is semisimple and each equivalence class of subsets of I7 is just a singleton.
Thus the idempotents E) referred to in (2) can be identified with the idempotents
listed above.

When p is odd, we obtain idempotents

en = 1-1/22,—1/2z,+ P- 1:1:0

2p
er = &, —1/2z
e = x3—1/2x
1
€@ = 578 (6)

In this case there are only three equivalence classes of subsets of IT:IT, {{o,},
{o,}} and {0}. The only nonzero products between distinct ex’s are

eer =e. and e, =g,
Thus the E)’s of (1.2) can be taken to be
611,1/2(6,- + e,), and e

The radical of 3 (W) is spanned by the nilpotent element e, — e,.

In preparation for Section 7, we reconsider part of this construction in the
context of a general Coxeter system (W, S). For two elements r, s € S we compute
the product z,x,. (Again, we abbreviate z(4,) to z,). A direct application of (1)
gives

ToZy = PiT, + MLy @)

where o7 = {wla, = w(ar)}.
Observe that for any f = -, fu,w in Q(W), we have fzg = z4f = (X, fu)zs.
In particular, z,zy = |W|zy and multiplying (7) by z4 gives

1/2p; + w3 = 1/4|W|

Thus (7) becomes
zar = p}(, = 1/205) + 1/4W |2y ®
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This identity suggests that for any Coxeter group we set
ey = %(m, —1/22zp)

It then follows easily that e, is an idempotent, and (more generally),

r
— 8

€3y = ";6,-
8

Clearly, if s and r are not conjugate, then p; = 0. But if they are conjugate,
then there exists d € W such that o, = d(o,) and then

ps = {w € Wla, = w(on)}| = [Stabw(a,)d| = p;
Note that Staby(c,) is a subgroup of index 2 in the centralizer of s. Thus we

have . .
_ {er if s and r are conjugate
egep =

0 otherwise

Let A(s) denote the equivalence class of a, € II. From the calculations just
completed we conclude the following.

PROPOSITION 5.5. In any Coxeter group, for all s € S, the elements

_ 1o
Sl D

ar€EX(8)
are idempotents, and if s and r are not conjugate, then

ExoBrxny =0

We generalize this result to all equivalence classes A in Section 7.

6. Idempotents in the parabolic Burnside ring

The Q-algebra PB(W) is isomorphic to an algebra of functions, and therefore it
has a basis of idempotent elements. Specifically, if we define

£ = vy
o

where the coefficient matrix (v,,) is the inverse of the matrix (pi(c,)) that
appears in the proof of Theorem 4.5, then

@ ={] 1z ©)
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and it follows that &, is idempotent. The next theorem shows that (9) holds
when c, is an arbitrary element of type pu.

THEOREM 6.2. Let JJK C IT and let ¢ € W be any element of type J. Then
wk(c) = agyy, the number of d € Xk such that d(J) C K. In particular, axjs
depends only on the equivalence classes of K and J.

Proof. Without loss of generality we may suppose that ¢ € W;. By Mackey’s
formula, the restriction of pg to W; is

Resw, (Ind%xl) = 3 Indy

a-1xng
deXgy

But since ¢ is not contained in any proper parabolic subgroup of Wj, the
character Ind%:_lmml vanishes on ¢ unless d=(K)NJ = J, in which case it takes

the value 1. a

For J C II, let Ny = {w € W|w(J) = J}. Then Nj is the intersection of
X; and the normalizer of W, whereas |N;| = ayss is the index of W in its
normalizer,

For convenience we define £; = £, and vyx = vy, whenever J € A and K € p.
For JC K C I, let f;;‘ be the primitive idempotent of PB(Wx) that takes the
value 1 on elements of type J relative to Wx.

The next two propositions descrive the effect of the restriction and induction
maps on these idempotents.

PROPOSITION 6.3. Let J, K C IT and let Jy,J2,...,J be representatives of the
Wik-equivalence classes of subsets of K that are W-equivalent to J. Then

h
Resw, ;=Y &%

i=1

In particulay, Resw, £y = 0 if J is not equivalent to any subset of K.

PROPOSITION 6.4, If J C K C II, then

|Ny|

IWK ﬂNJ'EJ

Indy, & =

Proof. Suppose at first that J = K and that c € W, is an element of type J.
Then A(c) = W; and therefore z~lcx € W if and only if z is in the normalizer
of Wj. So (Indy €7)(c) = |Ny|. It is clear that Ind}} ¢ vanishes everywhere
except at elements of type J, and therefore Ind%&ﬁ = |Ny|&;.



A DECOMPOSITION OF THE DESCENT ALGEBRA 37

In general, we have

W oK _ oW 1 |Ny|
IndWKEJ IndWK (_—IWKnN 'Ind 6]) ___IW NN IEJ a

For the purposes of calculation, the following theorem is sometimes more useful
than Theorem 6.2. The quantities |N,|/|Wx N N;| can be obtained from the
tables in Howlett [11].

THEOREM 6.5. Let J X K C IT and let J;,Ja,...,Jy be representatives of the

Wx-equivalence classes of subsets of K that are W-equivalent to J. If c€ W is of
type J, then

N,
‘PK(C) Z IWI'{ r:ll\r] |

Proof. By definition, )" ¢¥ = 1, where L runs through representatives of the
Wk-equivalence classes of subsets of K. Inducing to W and using Proposition

6.4 gives
E AN
Wk NN, L’
Since £1(c) = 1 if and only if L ~ J; for some i, evaluation at ¢ completes the
proof. O

This theorem is also a consequence of the fact that |N;|/|Wx N Ny| is the
number of d € Xg; such that d(J) C K and d(J) is Wg-equivalent to J;.

Let C(J) be the set of elements of type J and note that C(J) depends only
on the equivalence class of J.

The main result of this section yields a remarkable formula for the coefficients
vyx in the case K = .

THEOREM 6.6. If mq,my,..., m, are the exponents of W, then

n m nn v m"
vip = (—1) I_IWT_
Proof. If ¢ is the sign character of W, then by Frobenius reciprocity

wo={3 739

and therefore vy = (£7,¢). By definition of the inner product,
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Eme) = W™ Y (1) ™én(w)

weWw

(-Drle)|/Iw|

A well-known formula of Shephard and Todd [12] (see also Solomon [13]) states
that

Dt = (1 4+ myt)(1 + mat) - (1 + mat)

weW
Lemma 4.3 (2) shows that 7(w) = n if and only if w is of type II. Thus
mymy -+ my is the number of elements of type II in W. This completes the
proof. 0

COROLLARY 6.7. Let J C IT with |J| = k and let my,m;,...,m; be the exponents

of W;. Then
FMimy My

v = (=D |Nw(W5)|
where Nw (W) is the normalizer in W of W.

Proof. To see this, apply Theorem 6.6 to W; and then use Proposition 6.4. O

It is also interesting to observe that

WIS v = 10|

The proof is obtained by taking the inner product of £; = 3 vj,p, with the
trivial character and using the fact that (¢,,1) = 1 for all .

A similar calculation, but taking the inner product of £; with the sign character
of Wi induced to W gives

C(J)ynWw,
ZVJIJG’LQ‘( 1)'J\l (|3V| Ll

7. Idempotents in the Solomon algebra

Our main aim in this section is to construct the elements e; € >_(W) mentioned in
Section 1. These elements are mapped by 6 : (W) — PB(W) to scalar multiples
of the idempotents £; defined in Section 6, and are themselves scalar multiples
of idempotents. Moreover, the e; and the analogous elements eX € 3" (W) are
related by analogues of Propositions 6.3 and 6.4.
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We begin by defining certain positive constants uj, for all K C J C II. For
K C IT we choose pf arbitrarily, and then we put

IL{( = Z ﬂg(x) (10)

weX 5
w(K)yen

For convenience, we define uf, = 0 if K € J.
Inverting the upper triangular matrix (u) yields constants 87 such that

BL=0if JZ K and
S oK = 8 = S Bl
K X
where 6,1 is the Kronecker delta. For J C M C IT we define e¥ € Y (Wy) by

eff = > Brai (11)

KeMm

noting that the coefficient of 2 in e is zero unless K C J. Let e; = €.

From Lemma 2.1 and this definition we immediately derive the analogue of
Proposition 6.4.

PROPOSITION 7.3. If K C L C M, then e¥f = aMek; that is, e}f = Ind¥(ek).
Observe that if K C J and L ~ K, then
{we X jjwK) =L} ={we Xpsjw(L)nJ = K}
and so (10) can be restated as

uk =Y ulenx (12)
LK

Our first lemma shows that (12) remains true when IT is replaced by M C 1.

LEMMA 75. If J, K C M C II then
pi = Zl—tﬁ!aym
L

where the all,, are the structure constants of 5 (Wy), and L runs through subsets
of M that are Wys-equivalent to K.

Proof.

Z uifalix = Z Z KNONMLOL K

LcM LeM N~L
Lﬁl{ L;'(K
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= D M| 2 emmaix
N~L LM
Lﬁk
Now ayyraf, = 0 unless L < N and K is Wy-equivalent to a subset of L,
and when K ~ N this forces K to be Wys-equivalent to L. Hence the condition
LﬁK on the inner sum is superfluous, and so Proposition 2.6 gives

zﬂﬁlaym = Z BNaNIK
L N~K
= g by (7.4).
a
Associativity in Y (Wys) gives the following relation on the structure constants:
M M

Z affialivs = D albeqalivk (13)

JcM QM

for all subsets L, P,N, K, of M. If L and K are Wy -equivalent then the only
nonzero terms on the right-hand side come from @ which are in this same
Wa-equivalence class. So multiplying (13) by x4 and summing over L C M that
are Ws-equivalent to K gives (by Lemma 7.5)

Z a%v.ll‘{( = Z Z N%a}qu agNK
JCM QK \Ly9
= > Hpabvx (14)
Q~K
for all P, N, K C M.
M

We can now prove the main facts concerning multiplication of the €.

THEOREM 7.8. If N,J C M C II then

M_M _ M M
€j TN = E :a'JNKeK
KGN
Kﬁ"

Note that the coefficient al¥yy is the number of v € Wy N X such that v(K) = J.

Proof. If J,L C M then 3y kB = 651 Hence multiplying (14) through by
BE and summing over K C M gives

M
apNp = E E ' ubalnkBE
KCM QHK
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> u (E olfuxBE )

QcM k@
Multiplying through by 8§, where J C M, and summing over P C M gives
> oy = ) afywBE (15)

PCM K~J

Multiplying this by z}/ and summing over L C M gives

Z Bpzpay = Z afvk (LZ B xf )

pPcM K ~J

So, by (11), eMzl = 31 ., aM el as required (since a¥y, = 0 for K ¢ N).

a
COROLLARY 7.10. If L,J C M C II, then
€7 Yell = Z (Z a‘JNK:BN) €x
K:L
where the inner sum is over N such that K C N C L.
Proof. Simply write e} = 3"y, Bfz¥ and use Theorem 7.8. m|

Corollary 7.10 shows that for each Wy-equivalence class ), the elements e¥,
for J € ), span a right ideal I(M, ) of 3 (Wy). Furthermore, 3 (W) is the
direct sum of these right ideals, since the e¥, for J C M, form a basis of 3 (Wy).
Our next proposition shows that 8y : Y (W) — PB(W)y) maps the I(M, A\)’s to
the simple components of PB(Wy).

PROPOSITION 7.11. If J © M and ) is the Wiy equivalence class containing J, then
|[Wa N Ny
uJ

EM

Ou(e)) =

Proof. We have

l=af=> uelf =33 ulfelf

JCM A Jei

where ) runs through all Wy -equivalence classes. Hence the elements EY =
S jeruMeM are the orthogonal idempotents corresponding to the decompo-
sition > (Wy) = @, I(M,)). Applying the homomorphism ), we see that
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A 0m(EY) = 1 and 0y (EY)0r(EM) = 0 whenever X # p. It will follow that
6r(E$) is the primitive idempotent ¢, provided we can prove that 6),(EM) is
nonzero on elements of type A.

We do this first in the case A = {M}. Observe that if K C M and K # M
then the character 8)(e)) vanishes on elements of type M, since

B1e(e) = 6r(Ind) (X)) = Ind}¥ (9x (X))

by Proposition 4.6. Since

lw, = 0u(1) = > uifb6u(el)
KCM

VJ\V; deduce that 6y (Ef};) = pd6r(e}) takes the value 1 on elements of type
Now consider an arbitrary Wys-equivalence class A. Since 6y(EY) = 3 gy ¥
Indy (8 (eK)), and since Ox(ek) takes a positive value on elements of type K,
it follows that 8)/(E}) is nonzero on elements of type ), as required.
Thus we have proved that 6)(E}) = £} for all ), and in particular, 6y (elf) =
(1/ud)eM. Applying this with M replaced by J we find that

1 Wu NN,
bu(elf) = Indie (e = A Rl

by Proposition 6.4. a

COROLLARY 7.12. Let )\ be a Wys-equivalence class of subsets of M and let L, J € A

Then w |
MM _ IWMON
€j€L = — g3 €L

Ky

Proof. The only subset K of L such that K Af;J is K = L, and so Corollary 7.10

shows that e¥e¥ is a scalar multiple of e}. Applying 8), and using Proposition
7.11 determines the scalar. a

Note also that the scalar |Wy, N Ny|/u) depends only on the Wys-equivalence
class A containing J. Indeed, it is easily shown (by use of Lemma 7.5, for
example) that

-1
Wi NN
l'—M—J—Jl = (Z #%) = afl..8f (16)

Ky Ne

for all L € A
It is immediate from Corollary 7.12 that the right ideal I(M, }) is generated
by an element Y., psz¥ such that 3", , p; # 0. In particular, I(M,)) is an
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indecomposable. By standard theory (see [1]), it follows that the I(M, )\)’s form a
full set of projective indecomposable modules for > (Wy). Since 8 (I(M, X)) is
one-dimensional, we deduce that I(M, \) Nkerf), has codimension 1 in I(M, )),
and is the unique maximal submodule of I(M, A). Hence the kernel of 8,4, being
the direct sum of the subspaces I(M, \) Nkerfu, is the radical of Y (Wy).

The following proposition provides the analogue of Proposition 6.3.

PROPOSITION 7.14. Let JJ K C M C II. Then

K

Resi{(e)) = z :a'yKQeQ
Q<K
el

Proof. Since e} =3, B{z}, the definition of Resy gives

Res% (e)JW )

Z ﬁz{( Z ‘”f—l(z,)nx)
d

LCM eWnNXix

= Z Z Biafknzh

LCEM NCM

= Y > aloBRak

NCM Qﬁ"

by (15). By definition we have eX = 3y, B%2K, and the result follows. O

As our final result we determine the dimension of the right ideal H) of Q(W)
generated by the idempotent EJT.

THEOREM 7.15. The dimension of H) is the number of elements of W of type A

Proof. The dimension of H, is the trace of EJ in the regular representation
of W. This can be determined by expressing EY as a linear combination of
elements of W and multiplying the coefficient of 1 by |W|.

Now BT =%, ulell =30, ¥ kcnul Bkzk, and since 1 occurs in each
zx with coefficient 1, we deduce that

dimHy = W|Y_ 3 ufBk

Jex Kcll

Let C()) be the set of elements of W of type A. Then

IC = [WI(én1)
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(WI(8(ETT), 1)
WY D uf B (6(zk), 1)

JeExKCH

Since 8(zk) = ¢x and (ék,1) = 1, we see that |C(X)| = dimH), as required. O
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