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Abstract. The sporadic simple group F2 known as Fischer's Baby Monster acts flag-transitively on a
rank 5 P-geometry G(F2). P-geometries are geometries with string diagrams, all of whose nonempty
edges except one are projective planes of order 2 and one terminal edge is the geometry of the
Petersen graph. Let AC be a flag-transitive P-geometry of rank 5. Suppose that each proper residue
of K is isomorphic to the corresponding residue in g(F2). We show that in this case K is isomorphic
to G(F2). This result realizes a step in classification of the flag-transitive P-geometries and also
plays an important role in the characterization of the Fischer-Griess Monster in terms of its 2-local
parabolic geometry.
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1. Introduction

The geometry d(F2) was constructed in [7]. In [13] the following description
of this geometry was proposed. Let K = F2. Then K contains an elementary
abelian subgroup E of order 25 such that NK(E)/CK(E) = L5(2). Let 1 < E1 <
• • • < E5 = E be a chain of subgroups in E where \Ei\ = 2 i , 1< i< 5. Then the
elements of type i in G(F2) are all subgroups of K that are conjugate to Ei; two
elements are incident if one of the corresponding subgroups contains another
one. Notice that the truncation of Q(F2) by the elements of type 5 is exactly the
minimal 2-local parabolic geometry of F2 constructed in [21].

It follows directly from the definition that G(F2) belongs to a string diagram
and that the residue of an element of type 5 is the projective space PG(4,2).
It turns out that a rank-2 residue of type {4,5} is the geometry of edges and
vertices of the Petersen graph with the natural incidence relation. Thus G(F2) is
a flag-transitive P-geometry.

Let (a1,a2,...,a5} be a maximal flag in Q(F2) and Ki be the stabilizer of ai

in K = F2. Then the Ki's are called the maximal parabolic subgroups associated
with the action of K on G(F2). Without loss of generality we can assume that
ai = Ei (clearly Ki = Nk((E i) in this case), 1 < i < 5. Below we present a
diagram of stabilizers where, under the node of type i, the structure of Ki is
indicated. Here, [2n] stands for an arbitrary group of order 2n.



Other known examples of P-geometries relate to the sporadic simple groups
M22,M23,Co2,J4 and to nonsplit extensions 3 • M22 and 323 • Co2. Originally,
interest in P-geometries was motivated by a relationship of these geometries
with a class of 2-arc transitive graphs of girth 5 [8]. Recently, S.V. Shepectorov
and the author reduced the classification problem of flag-transitive P-geometries
to a treatment of the rank 5 case. Notice that G(F2) is the only known rank 5
example.

Our main result is the following.

THEOREM A. Let K be a group satisfying the following properties:

(a) It is generated by subgroups K1, K2, and K3 of shapes 21+22. Co2, 2
2. [230]. (S3 x

Aut(M22)) and 23. [232]. (L3(2) x S5), respectively. In K2 and K3, on the elemen-
tary abelian normal subgroups of order 22 and 23 their full automorphism groups
are induced.

(b) K1 n K2 has index 3 in K2.
(c) K1 n K3 and K2 n K3 both have index 7 in K3 and they correspond to an incident

point-line pair of a projective plane of order 2 acted on by the composition factor
L3(2)of K3.

Then K = F2.

The concrete form of Theorem A is inspired by its application in the geometric
characterization of the Monster (cf. [10]).

Let K, be a rank 5 P-geometry and let K act flag-transitively on K. Suppose
that the residue of an element of type 1 in K, is isomorphic to the P-geometry
Q(Co2) (i.e., to the corresponding residue in Q(F2). Let K1,K2, and K3 be the
stabilizers in K of pairwise incident elements of types 1, 2, and 3, respectively.
Then it can be deduced from results in [23] that for the group K and its
subgroups Ki, i = 1,2,3, the hypothesis of Theorem A holds. So we have the
following.

THEOREM B. Let k be a flag-transitive P-geometry of rank 5 and suppose that the
residue of an element of type 1 is isomorphic to the P-geometry Q(Co2). Then K, is
isomorphic to Q(F2).

Now as a direct consequence of Theorem B we obtain the result announced
in [12].
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THEOREM C. The geometry Q(F2) is simply connected.

It is conjectured that Q(F2) is not 2-simply connected and that the automor-
phism group of its universal 2-cover is a nonsplit extension 34371 • F2.

Since the subgroups K1,K2, and K3 are also parabolics in the maximal
parabolic geometry of F2 described in [20], Theorem A implies the simple
connectedness of that geometry as well.

The group K = F2 contains involutions a and b such that CK(a) = 2.2E6(2): 2
and Ck(6) = 21+22. Co2. The involutions conjugate to a, form a class of {3,4}-
transpositions in F2 and the centralizer of b is conjugate to the subgroup K1

from Theorem A. In [25] F2 was characterized by the structure of the centralizer
of a. The final step in his characterization relies on some unpublished results
of B. Fischer. In [1] F2 was characterized by the structure of the centralizer of
6, i.e., it was shown that a finite simple group with an involution having such
a centralizer contains another involution with centralizer isomorphic to Ck(a).
Thus a reduction to the characterization on G. Stroth was made. Finally, in [22]
a self-contained characterization of F2 as a finite group containing involutions o
and b with the above structure of centralizers, is given.

Starting with the fact that K contains an involution b such that Ck(b) is
a 2-constrained group of shape 21+22.Co2 together with certain information
concerning fusion in K of involutions from O2(CK(b)), it can be shown that K
is a flag-transitive automorphism group of a rank 5 P-geometry (see Section
9 in [13]). Thus Theorem A has a close relation to the above-mentioned
characterization of F2 by centralizers of involutions. On the other hand, it is not
assumed in Theorem A that K1 is the full centralizer of an involution in K.

The paper is organized as follows. In Section 2 we collect some known
facts concerning the Leech lattice and related groups, mainly the group Co2.
In Section 3 we establish some properties of subgroups K1 ,K2 , and K3 from
Theorem A. These properties enable us to show that K acts flag-transitively on a
rank 5 P-geometry G(K), one of whose residual geometries is isomorphic to the
P-geometry Q(Co2) of the Conway group. The action of K on Q(K) is defined
in such a way that K1,K2, and K3 are stabilizers of pairwise incident elements
of type 1, 2, and 3, respectively.

In Section 4 we apply to Q(K) a standard construction from [14] to obtain
a Cj-subgeometry whose stabilizer S = [225]. Sps(2) induces on the subgeometry
the flag-transitive action of Sp8(2).

In Section 5 we consider in K an involution a and show that the centralizers
of a in the subgroups K1 ,K2 ,K3 and S generate a subgroup E = 2 • 2E6(2): 2.
The subgroup E, acting on Q(K) preserves a subgeometry £, which is isomorphic
to a truncated F4-building on which E induces the natural action. Moreover,
subgroup 5, acting on the subgeometries conjugate to £, has a length 120 orbit
on which it induces a doubly transitive action of 5ps(2) on the cosets of O8(2).
For identification of E we apply Tits's local characterization of the geometries
of Lie type groups [26], [27].
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In Section 6 we consider the action of K1 on the set of all subgeometries that
are conjugate to £ and contain the element a1 of type 1 stabilized by K1. In this
action O2(K1) has all orbits of length 2. This enables us to define on the set of
subgeometries passing through a fixed element of type 1 an equivalence relation
with classes of size 2. After that we define on the set of subgeometries that are
conjugate to £ a graph F = F(K) where two subgeometries are adjacent if they
have an element of type 1 in common and are equivalent with respect to this
element. We show that the valency of F is 3,968,055. The subgroup E acting
on F stabilizes a vertex v and induces on the set F(v) of vertices adjacent to
v a primitive action of E/(a) = 2E6,(2) : 2. We show that the set of triangles
of r splits under the action of K into two orbits. An edge of F lies in the
1,782 triangle from one of the orbits and in 44,352 from another one. Finally,
we show that E acting on the set of vertices at distance 2 from v has an orbit
F4

2 (v) such that the stabilizer in E of a vertex w from this orbit is of the shape
2f+20. U4(3): 2 and the set T n F(w) is of size 648.

In terms of the graph F(K) one can define a geometry H(K), which is
a c-extension of the natural geometry of the group E/(a) on which K acts
flag-transitively. Notice that the geometry H(F2) is presented in [2].

In Section 7 we collect certain results from [6], [15], and mainly from [22]
concerning the Baby Monster graph P = T(F2). We use these results in the next
section as an information on the structure of F(K) for an arbitrary group K
satisfying Theorem A.

In Section 8 we complete the proof of Theorem A. We show that the diameter
of r is 3 and determine the orbits of E on the vertex set of F. This information
enables us to conclude that (1) K is nonabelian simple, (2) E and K1 are the
full centralizers in K of the corresponding involutions, and (3) the order of
K is equal to the order of F2. Now the isomorphism K = F2 follows either
from a characterization of the amalgams arising in flag-transitive action on rank
5 P-geometries [24] or form the characterizations of F2 by the centralizers of
involution [1], [22], [25].

As a consequence of our proof of Theorem A we obtain a characterization
of the aforementioned c-extension H(F2) of the natural 2E6(2)-geometry. In
particular it follows that the geometry is simply connected.

We recall that a computer construction of F2 was announced in [15] and an in-
dependent computer-free existence proof of F2 follows from Griess's construction
of the Monster in [5].

2. Preliminary results

First, we recall some known properties of the Leech lattice and related groups (cf.
[3], [4], [28]). The Mathieu group M22 has exactly two irreducible 10-dimensional
GF(2)-modules: a factor module of the truncated Golay code and its dual, which
is a section in the Golay cocode. They are also modules for Aut(M22). In order
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to simplify the terminology, we call these irreducible modules Golay code and
Golay cocode, respectively. The orbit lengths on nonzero vectors are 77, 330,
616 in the code and 22, 231, 770 in the cocode.

Let A be the Leech lattice. Let ( , } = (1/16)(,) where ( , ) is the ordinary
inner product. Let An = {L|L e A, (A, A) = n} and A = A/2A Then A carries the
structure of a 24-dimensional vector space over GF(2) and A = A0 u A2 U A3, U A4

(recall that A1 = t). Moreover, A is an irreducible self-dual module for the
Conway group Co1. The group Co\ acting on A preserves a unique nontrivial
quadratic form f where f(L) = 0 if and only if L e Li and i is even. Let
A e A2. Then the stablizer of A in Co1 is the group Co2. We assume below that
A is the image of the vector (4,022). Let 5 = (A)L/(A) where the orthogonal
complement is defined with respect to f. Then S is an irreducible 22-dimensional
GF(2)-module for Co2.

LEMMA 2.1. Co2 acting on the nonzero vectors of S has exactly 5 orbits: £22, £42,
£44, =33, and 5'33 with respective stabilizers isomorphic to U6(2).2, 210. Aut(M22),
21+8.S8, HS.2 and U4(3). D8. Moreover E'ij contains images of vectors u such that
(u, u) = i and (A + u, A + u) = ±j.

LEMMA 2.2. Let M be a subgroup in Co2 with shape 210 • Aut(M22). Then M
stabtizes an element from £42 and O2(M) is the Golay code.

Let u be the element form £42, which is the image of the vector (8,023) from
A and let M = 210 • Aut(M22) be the stabilizer of u in Co2.

LEMMA 2.3. M has exactly three orbits on £22, denoted by S22, £22, and £22. These
orbits contain images of vectors of shapes (0,42,021), (-3, 123), and (28,016), respec-
tively. The corresponding stabilizers are isomorphic to 29. £3(4). 2, Aut(M22) and
[210]. S6, respectively. These orbits contain images of vectors of shapes (02,42,020),
(28,016), (02,28,014), and (123,-3), respectively.

LEMMA 2.4. M has exactly four orbits on S42 - {u}. The corresponding stabilizers
are isomorphic to 24+10. S5, [2

9].S6, [2
8].L3(2), and L3(4), respectively.

Let S = E(u) be the orbit of M on E42 - {u} with stabilizer isomorphic to
24+10 • S5. Then S contains the images of all vectors from L2 whose supports of
size 2 are disjoint from {1,2} and whose nonzero components are equal to ±4.
Each such support corresponds to exactly two elements from S. Thus we have
an equivalence relation on Z with classes of size 2. These classes are indexed by
the 2-element subsets of the set {3, 4, • • •, 24}. It is clear that O2(M) preserves
each class as a whole, whereas M/O2(M) = Aut(M22) acts in the obvious way
on the set of classes. The following lemma is a consequence of Lemma 2.4 and
the above arguments.



LEMMA 2.5. Let {u,v1, v2} be a triple of elements from E42 and suppose that its
setwise stabilizer in Co2 is of shape [214] • (S5 x S3). Then v1 and v2 are equivalent
elements from E(u).

The images under Co2 of the triple form Lemma 2.5 will be called special
triples. The special triples are closely related to both minimal and maximal
2-local parabolic geometries of Co2 (cf. [20], [21]). In those geometries the
elements of £42 are points, whereas the special triples are lines. The following
proposition is a consequence of the description of the natural representations of
the 2-local geometries of Co2 obtained in [14].

PROPOSITION 2.6. Let W be a GF(2)-module for Co2, which is generated by a set
of one-dimensional subspaces indexed by the elements of £42, and suppose that the
subspaces corresponding to a_special triple generate a 2-dimensional subspace. Then
W is isomorphic either to (A)| or to (A)L / (A), where A is the nonzero vector from
A stabilized by Co2.

The group Co2 acting on 5 = (A) - / (A) preserves a unique nontrivial quadratic
form, i.e., the one induced by /.

Let a e H22 and U = U6(2) • 2 be the stabilizer of a in Co2. Since Co2 is
primitive on £22, and in view of Lemma 2.1, we see that U does not stabilize a
2-dimensional subspace in 5. Thus we have the following.

LEMMA 2.7. Let a e H22, U = U6(2) • 2 be the stabilizer of a in Co2 and (a)L be
the subspace of S dual to (a). Then (cr)1 is an indecomposible module for U.

We conclude the section by a description of the involutions in Co2.

LEMMA 2.8. Co2 has exactly three conjugacy classes of involutions. The respective
centralizers are isomorphic to 21+8 • Sp6(2), (21+6 x 24) • A8 and 210 • Aut(A6).

LEMMA 2.9. Let M = 210 • Aut(M22) be a subgroup of Co2, r be an involution
form the orbit of length 77 of M on O2(M), and S be the centralizer of r in Co2.
Then S = 2+

1+8 • Sp6(2); S has a unique orbit of length 63 on s42 and a unique
orbit of length 28 on £22.

3. Reconstruction of the P-geometry

Let K be a group and Ki i=1,2,3 be its subgroups satisfying the hypothesis of
Theorem A. In this section we deduce some information about the structure of
these subgroups. Using this information we will show that K acts flag-transitively
on a rank 5 P-geometry in such a way K1, K2, and K3 are maximal parabolics.
Some arguments in this section are rather similar to those in Section 3 of [10].
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Let Ei be the normal subgroup of order 2i in Ki, 1 < i < 3. Let Q = O2(K1)
be the extraspecial group with center E1 and set Q = Q/E 1 be the elementary
abelian 2-group of rank 22. The well-known properties of extraspecial groups
imply the following.

LEMMA 3.1. Let T be a subgroup of K1 containing O2(K1). Then E1 is the center
of T.

Since K2 contains a unique conjugacy class of subgroups of index 3, K1 n K2

centralizes an involution from E2. Thus, by Lemma 3.1, we have the following.

LEMMA 3.2. E1 < E2; in particular E1 is not normal in K2.

The following lemma is a direct consequence of condition (c) in Theorem A.

LEMMA 3.3. K1 and K2 generate K.

Let A be a graph on the set of (right) cosets of K1 in K where two cosets are
adjacent if they both have nonempty intersections with a coset of K2. Let a € A
be the coset containing the identity element. Since a is actually the same as K1,
the latter is the stabilizer of a in K and K2 stabilizers a triangle t = {a,B,y}
and induces S3 on t. Let T be the set of all images of t under K and T(a) be
the set of triangles from T passing through a.

LEMMA 3.4. The action induced by K1 on T(a) is similar to the primitive action of
Co2 on the cosets of 210. Aut(M22).

By Lemma 2.2 the action of Co2 on T(a) is similar to its action on H42.

LEMMA 3.5. The subgroup Q = O2(K1) induces a nontrivial action on the set A(a)
of vertices adjacent to a in A

Proof. Since K2 induces S3 on t, it contains an element k that stabilizes 7 and
permutes a and B. By Lemma 3.3 K = ( K 1 , k ) . Suppose that Q does not act
on A(a). Then Q is contained in the elementwise stabilizer K(t) of the triangle
t. By Lemma 3.1 the center of K(t) is E1. This means that E1 is normal in K.
Hence E1 is normal in K2, a contradiction to Lemma 3.2. D

Thus Q acts nontrivially on A(a). It is clear that the orbits of this action are
of length 2. Moreover, if {e, s} is such an orbit then {a, e, s} e T(a) and each
triangle from T(a) can be obtained in this manner.

Now let us turn to the action of K3 on A. Let ft be the orbit of K3 containing
a. By condition (c) \f\ = 7 and K2 n K3, has on ft an orbit of length 3, which
contains a. It is clear that the latter orbit coincides with the triangle t that is



stabilized by K2. Hence fi contains exactly seven triangles from T and these
triangles are the lines of a projective plane on J. Let t1 = t,t2, t3 be the triangles
from J that lie in T(a). Then K1 n K3 stablizes {t1,t2,t3} as a whole and by
Lemma 2.5 the triple {t1,t2,t3,} corresponds to a special triple of elements in
s42. In particular we have the following.

LEMMA 3.6. K3 is the full stabilizer of f in K.

The subgroup K1 n K3 contains Q and it induces S4 on f - {a}.

LEMMA 3.7. Q induces on f - {a} the elementary abelian group of order 4.

Now we come to one of the central results of the section. First recall some
notations from Section 2: A is the Leech lattice; A = A/2A; for U C A by U1

we denote the orthogonal complement of U with respect to the unique nontrivial
quadratic form / on A preserved by Co1; X is the nonzero vector stabilized by
Co2.

PROPOSITION 3.8. As a GF(2)-module for Co2, Q is isomorphic to the module
E = <A)V<A>.

Proof. From the description of the orbits of Q on A(a) it follows that the
module dual to Q contains a collection of one-dimensional subspaces indexed by
the elements of E42. By Lemma 3.7 the subspaces corresponding to a special
triple generate a two-dimensional subspace. By Proposition 2.6 Q is either (y)L

or (A)L / (A). Since the dimension of Q is 22 and 3 is self-dual the result follows.
D

Let o: Q —> S and V: Wx —•= be the surjective mappings that commute
with the action of Co2 = K1/Q.

Let us show that E2 and E3 are contained in Q. Really, CK1(E2) =
22. [230].Aut(M22) and by Lemma 2.7, E2 < Q- Since K1 n K3 acts transi-
tively on E3 - E1 this implies E3 < Q. Now, by Lemmas 2.2 and 2.5, we have
the following.

LEMMA 3.9. o(E2) is an element of £42 while j ( E 3 ) is a special triple.

Without loss of generality we assume that f(E2) is the element u, which is
the image of the vector (8,023). In this case o(E3) - {u} is a pair of equivalent
elements from S(u) (cf. notation after Lemma 2.5).

Let A4, A4, and A2 be the subsets of A containing the images of vectors of
the shape (8,023), (44,020), and (42,022), respectively. A direct calculation in the
Leech lattice (or even just in the Golay code) proves the following.
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LEMMA 3.10. M = {0} u A4 U A4 U A2 is a subspace of (A)-1.

By definition the distinguished vector A stabilized by Co2 is contained in M.
Put R = o(i(M)). Since the quadratic form / vanishes on M, the subgroup
R is elementary abelian. In addition both E2 and E3 are contained in R.

LEMMA 3.11. R is a normal subgroup of K2.

Proof. Let N = CK2(E2). Then N = 22. [230]. Aut(M22) and N is an index 2
subgroup of K1 n K2. Let E22 be the orbit of length 44 of M = 210.Aut(M22) on
£22 (cf. Lemma 2.3) and let a € t -1(S22). By definition a e R and by Lemma
2.3 CN(a) = [230]. L3(4). 2. Let e be any other involution from K2, which does
not lie in j - 1 (E 2 2 ) . Then by Lemmas 2.3, 2.4, and 2.8 CN(e) = CN(a). Since N
is normal in K2, the latter preserves o-1(S22) as a whole. Now the claim follows
from the fact that E2 U o -1(E22) generates R. n

Let R = R/E2. Then it is easy to see that R is an irreducible GF(2)-module
for Aut(M22) = N/O2(N), isomorphic to the Golay cocode. This implies the
following.

LEMMA 3.12. O2,3(K2) commutes with R.

Now we are in a position to prove the following.

PROPOSITION 3.13. There exists a rank 5 P-geometry Q(K) on which K acts flag-
transitively in such a way that K1, K2 and K3 are stabilizers of pairwise incident
elements of types 1, 2, and 3, respectively.

Proof. Let us consider the rank 4 P-geometry Q(Co2) of Conway's second group
in its natural representation in S (see [13]). Let {a2,a3,a4,a5} be a maximal
flag such that t - 1 ( a i ) = Ei for i = 2,3 (cf. Lemma 3.9). Put Ej = o-1(aj)
for j = 4,5. Then it follows from [13] that E4, E5 < R. Since both E4 and E5

contain E2, by Lemma 3.12, these subgroups are normalized by O2,3(K2). Notice
that the latter is not contained in K1. Let Kj be the subgroup generated by the
normalizers of Ej in Ki for 1 < i < j -1, j = 4,5. Then CK j(E j) < K1 n K2 n K3
and Kj induces Lj(2) on Ej. Let A be the graph on the cosets of K1 in K
defined above, and let a be the vertex stabilized by K1. Let Si be the orbit of
a under Ki, 1 < i < 5. Then, clearly, S1 - {a}, S2 e T(a), S3 = f. By the
above arguments |Si| = 2i -1, the subgraph of A induced by Si is complete and
Si C Sj for 1 < i < j < 5. Also, it is easy to see that Ki is the full stabilizer of
Ei in K. Now the desired P-geometry Q(K) has all images of the subsets Si,
1 < i < 5 under K as the element set. Two elemets are incident if one of the
subsets contains another one. By definition S(K) is a geometry belonging to a
string diagram and it is easy to check that the residue of an element of type 1 is



Now one can identify X234 = (X2,X3,X4) as a subgroup of K1. It turns out that
X234 is the preimage of an involution centralizer in Co2 = K1/O2(K1) with the
shape 2+1+8. Sp6(2). Therefore the residue of an element of type 1 in £ is the
Sp6(2)-building. By [27] this implies that £ is the Sp8(2)-building. Finally, by
the construction, X acts flag-transitively on £. Thus we have the following.

PROPOSITION 4.1. Q(K) contains a subgeometry £ isomorphic to the Sp8(2)-
building. The stabilizer of £ in K contains a Sylow 2-subgroup of Ki for i =1,2,3
and induces on £ the group Sp8(2).

The following two lemmas are consequences of the construction of £.

isomorphic to the P-geometry Q(Co2). K acts flag transitively on Q(K) so that
the Ki's are the maximal parabolic subgroups. D

4. Sp8(2)-subgeometry

As a result of Section 3, we have a P-geometry Q(K) of rank 5 on which K
acts flag-transitively and the residue of an element of type 1 in this geometry is
isomorphic to the P-geometry Q(Co2). It is shown in [14] that such a geometry
contains a subgeometry £ which belongs to the diagram C4, and that the stabilizer
of £ in K induces on £ a flag-transitive automorphism group Sp8(2). Since we
need some information about £ and its embedding into G(K), we recall below
the procedure of its construction from [14].

Let $ = { a 1 , • • • , a4} be a flag in Q(K), where ai is of type i, 1 < i < 4. We
assume below that the subgroup Ki from Theorem A is the stabilizer of on in
K, 1 < i < 3. Let B be the stabilizer of 0 in K. Let Xj be the stabilizer of the
flag a - {ai} in K, 1 < i < 3 and X4 be the subgroup of index 5 in the stabilizer
of the flag s - {a4}, which contains B. Then B has index 3 in Xi for 1 < i < 4.
Let X be the subgroup of K generated by the subgroups Xi, 1 < i < 4. Then
£ = (X ,B; (X i )1<i< 4 ) is a chamber system [27] and it is easy to check that it
belongs to a string diagram where all nonempty edges except the edge {3,4} are
projective planes of order 2.

To determine the edge {3,4} one should consider the subgroup X34 = {X3, X4).
With a suitable choice of o, this subgroup is contained in K1nK2 and it is not so
difficult to see in the latter group that X34/O2(X34) = Sp4(2) = S6. Hence the
edge {3,4} is the generalized quadrangle of order (2,2) and £ has the following
diagram:
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LEMMA 4.2. The element a3 is contained in exactly five subgeometries that are
conjugate to C and K3, induces S5 on these subgeometries.

LEMMA 4.3. Let S be the stabilizer of the subgeometry C and S1 = S n K 1 . Then 51
contains O2(K1) and its image in K1/O2(K1) = Co2 is the centralizer of a central
involution.

S. 2E6(2)-subgeometry

In this section we show that K contains a subgroup E of the shape 2 • 2E6(2): 2,
which preserves in Q(K) a subgeometry isomorphic to a truncated F4-building on
which E induces the natural action. Subgroup E will be constructed as follows.
We consider a suitable involution a in Q (to be more precise, in f - 1 ( E 2 2 ) ) and
show that the centralizers of a in K1, K2, K3, and S generate a subgroup E
of the above shape. Here S is the stabilizer of a certain Sp8(2)-subgeometry
constructed in the previous section. After determination of the structure of
the aforementioned centralizers, and of their mutual intersections, we will apply
Tits's local characterization of the geometries of the Lie-type groups [26], [27].

We start with a lemma that follows from the fact that the orbit £22 of Co2 on
E has length divisible by 4 and from general properties of extraspecial groups.

LEMMA 5.1. Let T be a Sylow 2-subgroup of K1. Then each orbit of T on En has
length divisible by 4 and each orbit of T on j - 1 ( E 2 2 ) has length divisible by 8.

Put C1 = t - 1(E2 2) and C2 = o-1(S22).

LEMMA 5.2. Ci is a conjugacy class of involutions in Ki, i=1,2.

Proof. The quadratic form on E preserved by Co2 vanishes on E22 so C1 and C2

consist of involutions. Now C1 is a conjugacy class of K1 by Lemmas 2.1 and
5.1. E22 is contained in V(M) where M is the subspace defined in Lemma 3.13.
So by Lemmas 2.3 and 3.11 K2 stabilizes o-1(E22) as a whole. By Lemma 5.1
K2 acts transitively on this set. D

Now we intend to construct a conjugacy class C3 of involutions in K3 such
that C3 C C2. _

In what follows for a group A we put A = A/O2(A).
Let L = K1 nK2. Then L acts transitively on the set of 231 elements of type 3

incident to a2 as well as on the set E22 of size 44. Notice that L = Aut(M22) has
a unique primitive permutation representation of degree less than or equal to 44,
i.e., the natural representation of degree 22. Also, T has a unique permutation
representation of degree 231, i.e., the action on the pairs of points from the
natural representation. This means that L n K3 stabilizes in E22 a subset 0 of



size 4 and all other orbits of L n K3 on E22 are of length divisible by 20. By
Lemma 5.1 © is an orbit of L n K3. By Lemma 2.3 the length of any orbit of
Ln K3 on E22 ~ E22 is divisible by 16. Now since Ln K3 has index 3 in K1nK3,
we conclude that & is an orbit of K1 n K3. By Lemma 3.13 02,3(K2) commutes
with t - 1 (E 2 2 ) /E 2 and it is clear from the above construction that E2 C 0-1(@).
Now since K3 = {K1, nK3, O2,3(K2))> and by Lemma 5.1, we have the following.

LEMMA 5.3. C3 = j-1(o) is a conjugacy class of involutions in K3 of size 8 and
K3 induces a 2-group on C3.

Let a be an involution from C3. Let Pi be the centralizer of c in Ki, 1 < i < 3.
Then by the above construction we have the following:

P1 = 22+20.u6(2).2 P2 = [230].(S3 x L3(4).2) P3 = [232].(L3(2) x S5)

We will need the following.

LEMMA 5.4. Let T be a Sylow 2-subgroup of K1 n K3. Then T has a unique orbit
of length 4 on E22 and this orbit coincides with &.

Proof. Let A be such an orbit of length 4. Without loss of generality we can
assume that T is a Sylow 2-subgroup in K1 n K2. Then, by Lemma 2.3, A C S22.
Now K1nK2 acting on S22 preserves an imprimitivity system with classes of size 2
and O2(K1 nK2) permutes elements in the classes. The action induced on the set
of equivalence classes is the natural degree 22 permutation action of Aut(M22).
A direct calculation in the latter group shows that its Sylow 2-subgroup has orbits
of length 2, 4, and 16. Thus, the result follows. D

The next lemma follows from the structure of P1 and P2.

LEMMA 5.5. Group P2 acting on the set of elements of type 3 incident to a2, has
exactly two orbits whose lengths are 21 and 210. The element a3 lies in the former
of the orbits.

Let us fix an 5p8(2)-subgeometry containing the flag {a1,a2,a3}. Let 5 be
the stabilizer in K of this subgeometry and let P4 = CS(c).

Put E = (Pi\1 < i < 4). We will show that E £ 2 • 2E6(2): 2 and that Pi are
the maximal parabolics associated with the natural action of E on the F4-building.
We start with description of the minimal parabolics Qi. By definition Qi is the
intersection of Pj for 1 < j < 4 , j = i . Put B = Qi n Qj and Qij = (Qi,Qj) for
i = j.

Subgroup P3 induces L3(2) on the set of elements of type 1 and 2 incident
to a3 and S5 on the set of Sp8(2)-subgeometries containing a3 (cf. Lemma 4.2
and 5.3). This implies the following.
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LEMMA 5.6. Subgroup B is of the shape [237] • S3, moreover, Q1 = Q2 = S3 x S3,
Q4 = S5, Q14 = Q24 = S3 x S5.

Lemma 5.5 and the shape of P2 imply the following.

LEMMA 5.7. Q3 = s5, Q34 = L3(4).2, Q13 = S3 x S5.

Now let us determine the structure of Q23.

LEMMA 5.8. Q23 = U4(2).2

Proof. It follows from Lemmas 2.9 and 4.3 that S1 = S n K1 acting on E22 has
an orbit o of length 28. Then S1 = Sp6(2) acts in this orbit as it acts on the
set of minus forms in the symplectic vector space W with stabilizer isomorphic
to O 6 (2) = U4(2).2. Let us show that 9 C o. In fact, the image of S1 n K3 in
S1 is the stabilizer of a two-dimensional isotropic subspace in W and it has an
orbit A of length 4 on 0. This orbit consists of the forms that vanish on the
isotropic subspace. Since S1 n K3, contains a Sylow 2-subgroup of K1 n K3 we
can apply Lemma 5.4 and conclude that A = o. Hence the image of P1 n P4 in
S1 contains at least U4(2). On the other hand, Q23 < P1n P4 and, by Lemma
5.6 and 5.7, we can see that Q23 = P1 n P4 = [231] • U4(2) • 2. D

By Lemmas 5.6, 5.7, and 5.8 we have a chamber system £ = (E, B, {Qi}1<i<4),
which corresponds to the following diagram:

Now it is straightforward to see that Q2, Q3, and Q4 generate P1, whereas Q1,
Q2, and Q3 generate in S a subgroup of index 120 and of the shape [225].O8

-(2).
Notice that in the latter case the whole group S cannot be generated since
S n P1 is a proper subgroup of S n K1. Now analogously to the case of Sp8(2)-
subgeometries we see that in £ all C3-residues are buildings, so by [27] £ is
a building itself. Since the shapes of the maximal parabolics are known, and
application of the classification of buildings in [26] enables us to identify the
action of E on £ with the group 2E6(2): 2. It is clear that the order 2 subgroup
(a) is in the kernel of the action. We claim the extension E/(a) by (a) is nonsplit.
Indeed, P1 contains a Sylow 2-subgroup of E and by Lemma 2.7 O2(P1/E1) is
an indecomposible GF(2)-module. So the claim follows and in view of [4] we
have the following.



PROPOSITION 5.9. The geometry G(K) contains a subgeometry £ whose full stabilizer
in K is a subgroup E = 2.2E6(2): 2. The subgeometry is isomorphic to the truncated
rebuilding on which E induces the natural action. The stabilizer S of an Sp8(2)-
subgeometry acting on the set of subgeometries conjugate to £ has an orbit of length
120 on which it induces a doubly transitive action of Sp8(2) on the cosets of O-

8(2).

6. A graph

Let us consider the set II of the subgeometries conjugate to e, i.e, the set of
images of £ under the action of K. Let II(a1) be the subset of 77 consisting of
the subgeometries containing a1. Since E is flag-transitive on £, it is easy to see
that K1 acts transitively on n(a1) and P1 = 22+20. U6(2): 2 is the point stabilizer
in this action. Since O2(K1) intersects P1 by a subgroup of index 2, we see that
the orbits of O2(K1) on II(a1) are all of length 2. Thus we have an equivalence
relation on II(a1) with classes of size 2.

Now define a graph F = F(K) having 77 as the set of vertices in which two
subgeometries are adjacent if they have an element a of type 1 in common and
are equivalent with respect to the equivalence relation on L(a) defined above.
So each element of type 1 in the subgeometry £ gives rise a subgeometry adjacent
to £ in F. Since E acts primitively on the set of elements of type 1 in £ and, by
the construction, distinct subgeometries have distinct sets of elements of type 1,
we see that there is a bijection between the set of elements of type 1 in £ and
the set of subgeometries adjacent to £ in F.

Let v be a vertex of F corresponding to £. Let F(v) be the set of vertices
adjacent to v in F. By the above paragraph and Proposition 5.9 we have the
following.

LEMMA 6.1. K acts vertex- and edge-transitively on F and E is the stabilizer of a
vertex v in this action. The action of E on the set F(v) of vertices adjacent to v is
similar to its action on the set of elements of type 1 in £. In particular, the valency
of F is equal to 3,968,055.

Let us consider the action of E on the set of elements of type 1 in £ (notice
that (C) is in the kernel of the action). The elements of type 1, 2, 3, and 4 in £
will be called points, lines, planes, and simplecta, respectively. We use the term
containment for the incidence between the elements. Thus we are interested in
the action of E on the set of points. A detailed description of this representation
can be found in [22]. We start with the following.

LEMMA 6.2. Subgroup E acting on the point set of e has rank 5 with the subdegrees 1,
1,782, 44,352, 2,097,152, and 1,824,768. The respective 2-point stabilizers are isomor-
phic to 22+20.[U6(2):2, [230].L3(4):2, [225]. U4(2): 2, 2.U6(2):2, and [220]. L3(4): 2.
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Subdegree 1782 corresponds to the collinearity graph, i.e., to the graph where
two points are adjacent if they are on a common line. The structure of the
collinearity graph with respect to a point u is given in Figure 1. Here the number
of vertices in a box B adjacent to a fixed vertex in a box A is indicated around
A on the edge (or loop) joining A and B.

The image in E / ( c ) of the stabilizer of a point u is of the shape 21+20. U6(2): 2.
Let y(u) denote the unique nontrivial element in the center of that group. Then
the following proposition holds (cf. [22]).

LEMMA 6.3. Let w e Ei(u). Then the product r(u) • r(w) is of order i, i = 2,3,4.

Subgroup A, which is the stabilizer of a simplecton in its action on the
collinearity graph, has a unique orbit A of length 119. Orbit A consists of all
points in the simplecton. Suppose that u is contained in A and let w be another
point form A. Then w is either collinear to u or is contained in the suborbit of
length 44,352 and both possibilities take place.

Now, by Proposition 5.9, subgroup S has an orbit S of length 120 on the
vertex set of T. If 5 is the stabilizer of an Sp8(2)-subgeometry that contains
the flag {a1,a2,a3} (by the construction £ contains this flag as well), then S
contains the vertex v. Now S contains a Sylow 2-subgroup of K1 and hence
it contains O2(K1). This means that S contains an element that moves v to a
vertex adjacent to v, i.e., to the vertex that is equivalent to v in U(a1). Since
the action of S on S is doubly transitive, we see that E C {v} U F(v). Hence
S - {v} is an orbit of length 119 of P4 on F(v) and by the above paragraph we
can assume that S = {v} U A. Thus we have the following.

LEMMA 6.4. Subgroup S acting on F stabilizes a complete subgraph S on 120
vertices containing v. Moreover, 27 — {v} is a simplecton in £.

As a direct consequence of the above lemma we have the following.

LEMMA 6.5. // two vertices from F(v) correspond to points lying in a common
simplecton then they are adjacent.

Let us consider the action of K on F. The elementwise stabilizer of vertices
x, y, z,... in this action is denoted by K(x, y, z,...). By Proposition 5.9 and Lemma
6,1, the action of K(v) on F(v) is determined up to similarity. The center of
K(v) is of order 2. The unique nontrivial element of this center is denoted
by the same symbol v. Thus each vertex of F corresponds to an involution of
K. At this point we cannot claim that with distinct vertices distinct involutions
are associated, but later we show that this is the case. On the other hand,
the involution corresponding to adjacent vertices are distinct and they commute.
This observation together with Lemmas 6.3 and 6.5 imply the following.



LEMMA 6.6. Let u, w € F(v). Then u and w are adjacent if and only if w e
£2(u) U £'2(u).

By Lemma 6.6 the structure of the subgraph of F induced by F(v) is deter-
mined uniquely up to isomorphism.

Let w e Si(u) for i =3 or 4 (cf. Figure 1). Then by Lemma 6.6 w is at
distance 2 from u and by Lemma 6.3 the order of u • w is either i or 2i. So we
have the following.

LEMMA 6.7. Subgroup K(v) has exactly two orbits on the set of vertices at distance 2
from v in F. If F2

3(v) and F4
2(v) are these orbits then for w e F2(v) the order of the

product v • w is either i or 2i. In addition K(v, w) acts transitively on F(v) n F(w).

Let us now study the subgraph of F induced by the set U = U(a1), consisting
of the subgeometries that contain the element a1. As we see above, 02(K1) has
all orbits of length 2 on 77. Let 77 be the set of these orbits. Then K1 induces
on 77 a primitive rank 3 action of Co2 = K1/O2(K1) with subdegrees 1, 891,
and 1408. The intersection diagram of the graph of valency 891 on 77 invariant
under K\ is given on Figure 2.

It is easy to see that the action induced by O2(K1) on the union of any two
of its orbits on 77 is of order 4. This implies the following.

Figure 2.

Figure 1.
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LEMMA 6.8. The action of K on U = u(a1) is of rank 4 with the subdegrees 1, 1,
1782, and 2816.

By our construction, the vertices from the same orbit of O2(K1) are adjacent.
Let us show that there are more adjacencies in U. Let S be the stabilizer of
an Sp8(2)-subgeometry containing a1 and E be the orbit of length 120 of S on
r. Then E n U = 0. An analysis of the 2-parts in the orders of S n K1 and
E shows that S n n is of size at least 8. Since the subgraph induced by S is
complete we have the following (compare Lemmas 6.2 and 6.6).

LEMMA 6.9. The subgraph of r induced by H is of valency 1 +1782.

Let v and w be nonadjacent vertices from H. Then by Lemma 6.9 and
Figure 2, v and w are at distance 2 from each other. On the other hand, v
and w as involutions are contained in O2(K1). It follows from the structure of
O2(K1) that z = v • w is of order 4 and {z2} = E1. By Lemma 6.7 w e F2(v) ,
whereas by Lemma 6.9 and Figure 2, F(v) n F(w) n II is of size 648. From
the structure of K1 we see that K1 n K(v, w) = 21+20.U4(3): 22. On the other
hand, K (v, w) < CK(v)(w) < CK(v)(z2) - K1 n K(v). Since K(v, w) is transitive
on F(v) n F(w), by Lemma 6.7 we obtain the following.

LEMMA 6.10. Let w e F4(v). Then there is a unique element a of type 1 in Q(K)
such that {v,w} c U(a). Moreover, K(v,w) = 21+20. U4(3) : 22 and this subgroup
stabilizes a vertex u e F(v) that is equivalent to v in H(a). Set F(v) n r(w) is
contained in II(a) and has cardinality 648.

Remark. Let v, w, u be as in Lemma 6.10. Then it is easy to see that
O 2 (K(v ,w) ) and O2(K(v,u)) have the same image in K(v,u)/(v). In addition,
U6(2) : 2 = K(v, u)/O2(K(v, u)) has a unique conjugacy class of subgroups
U4(3): 22. This means that the action of K(v, w) on F(v) is uniquely determined.

7. Some properties of the Baby Monster graph

In this section we present some properties of the Baby Monster graph F(F2).
This graph can be obtained by application of the procedure from Section 6 to
the case K = F2. These results are contained in [6], [15] and, mainly, in [22]. In
Section 8 we deduce from the results certain information concerning the structure
of the subgraph induced by F(v) and the action of K(v) on this subgraph. By
the results proved above, the subgraph and the action do not depend on the
particular choice of the group K satisfying Theorem A.

We denote T(F2) by $ and F2 by F. The vertices of P are involutions of F
that form a conjugacy class of {3,4}-transpositions in F (the class 2A in [4]).
The term {3,4}-transpositions means that the product of any two noncommuting



involutions from the class has order either 3 or 4. Two vertices of o are adjacent
if their product is a central involution in F (2B-involution in [4]). In what
follows we do not distinguish vertices of o and {3,4}-transpositions in F.

The permutational rank of F acting on £ is 5. If (x, y) is a pair of vertices of F
then the orbital of F containing this pair is uniquely determined by the conjugacy
class containing the product x • y. Thus there are five possibilities for the product
corresponding to classes 1, 2B, 3A, 4A, and 1C. The corresponding 2-point
stabilizers are isomorphic to 2 •2E6(2): 2, 22+20. U6(2): 2, Fi22 : 2,21+20. U4(3): 22

and 22 x F4(2), respectively.
A rough structure of F with respect to a fixed vertex is given in Figure 3

where we join boxes only if there are edges between vertices in the boxes.

Following [22] for a vertex x of $ by 2Bx, 3AX, 4AX, and 2CX we denote
the set of vertices of F whose product with x is in the class 2B, 3A, 4A, 2C,
respectively.

LEMMA 7.1. Let u e 3 Av. Then F(u,v) acting on 2BV has exactly four orbits
Ai, 1 < i < 4. Moreover, A1 € 2BU; A2 U A3 e 3Au; A4 € 4AU. An information
concerning these orbits and the action of F(u, v) on them is given in Table 1 where
Li = F(u, v, wi) for wi e Ai, 1 < i < 4.

Figure 3.
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Table 1.

i

1

2

3

4

|Ai| Li

3,510 2.U6(2):2

142,155 210.M22:2

694,980 27. Sp6(2)

3,127,410 2.(29.L3(4)):2



LEMMA 7.2. Let u e 4Av. Then F(u,v) has on 2BV exactly eight orbits Oi,
1 < i < 8, whose lengths are 648, 8064, 663552, 1, 1134, 36288, 1161216, and
2097152, respectively. If {w} = O4 then E2(w) = O1U O5, E'2(w) = O2 U O6,

Z4(w) = O'3 U O7, E3(w) = O8. Here, O1 = 2BV n 2Bw, O2 = 2BV n 2Cw

O3 = 2Bv n 3Aw and O4 U O5 U O6 U O7 U O8 = 2Bv n 4AU. If w € O2 then
F(u,v,w) = 21+14 • (2 x U4(2) : 2).

Remarks. Since 02 € 2CU there are no edges between O2 and O1.

LEMMA 7.3. Let u e 2CV. Then F(u, v) has on 2BV exactly two orbits E1 and S2

of length 69615 and 3898440, respectively. Moreover, E2 = 2Bvn4Au.

We need some results concerning Fischer's group Fi22 from [4], which we
adapt to the notation of Lemma 7.1.

LEMMA 7.4. Group Fi22 : 2 acting on A1 induces a primitive rank three group
with the subdegrees 1, 693, and 2816 and with 2-points stabilizers isomorphic to
2. U6(2): 2, [210]. U4(2): 2, 3 x U4(3): 2, respectively. This action is similar to the action
by conjugation on the class of 3-transpositions and the subdegree 693 corresponds to
commuting transpositions.

LEMMA 7.5. Subgroup L2 acting on A1 has exactly three orbits whose lengths are
22, 25 • 77, and 210.

The following lemma is a direct consequence of two previous ones.

LEMMA 7.6. Subgroup L4 stabilizes at most one point from A\.

LEMMA 7.7. Let n be a undirected graph and W be a group acting vertex- and
edge-transitively on f. Suppose that (1) the valency of n is 693; (2) the stabilizer
W(x) of a vertex x of n is isomorphic to 2 • U 6 (2): 2; (3) W(x) induces on the set
f ( x ) of vertices adjacent to x a rank 3 action of U6(2): 2; (4) the subgraph induces
by n(x) has valency 180. Then W = Fi22 : 2 and n is a graph on 3-transpositions
of W.

Proof. The action induced by W(x) on f(x) is similar to the action of U 6 (2) : 2
on the set of isotropic points of the corresponding unitary space. In the subgraph
induced by Q(x) two vertices are adjacent if the corresponding points determine
an isotropic line. Let L, P C f(x) be an isotropic line and an isotropic plane,
respectively. Let us define a rank 4 geometry F in which elements of type 1 and
2 are the vertices and the edges of n, where elements of type 3 and 4 are the
images under W of L U {x} and P U {x}, respectively. Suppose that incidence
relation is defined by inclusion. Then, by the hypothesis of the lemma, f belongs
to the diagram

63A GEOMETRIC CHARACTERIZATION OF FISCHER'S BABY MONSTER



64 IVANOV

and that W acts flag-transitively on F. By [16] (see also [19]) the claim of the
lemma follows. D

8. The isomorphism K = F2

In this section we continue consideration of the graph F(K) associated with
an arbitrary group K satisfying Theorem A. We obtain a considerable infor-
mation about its structure. This information will enable us to apply known
characterizations of the Baby Monster group.

LEMMA 8.1. Let u e F3
2(v). Then K(v, u) = Fi22 : 2 and \F(v) n T(u)| = 3510.

Proof. Let w e F(v) n F(u). Then the structure of r(v) n F(w) n F(u) and the
action of K(v,w,u) on this set do not depend on the particular choice of K.
So they are as in the Baby Monster case. On the other hand, by Lemma 7.7 in
the situation under consideration, the local isomorphism implies the global one.
Thus the result follows. D

It is known (Lemma 7 in [17]) that 2E6(2):2 contains a unique conjugacy class
of subgroups isomorphic to Fi22:2. This means that the action of K(u,v) on
F(v) is uniquely determined. Let Ai, 1 < i < 4 be the orbits of K(u, v) on F(v)
as in Lemma 7.1 and Li = K(U,V,W i ) for Wi e Ai. Notice that A1 = F ( v ) n F ( u ) .

LEMMA 8.2. In the above notation, L1 has four orbits Hi, 1 < i < 4 on the set of
vertices from F(v) that are adjacent to w1 and do not lie in A1. The lengths of these
orbits are 891, 891, 693 • 27, and 693 • 36.

Proof. Consider the set F(W1). Then u e E3(v). Since L1 = 2 • U6(2): 2 we see
that L1 covers K(w 1 , v ) /O 2 (K(w 1 , v ) ) . Now from Figure 1 one can see that L1

has two orbits on the points from F(W1) collinear to u, both of length 891. Let
us consider the action of K(w 1 , v ) on E'2(v). The latter set consists of points
that are not collinear to v but lie on a common simplecton with v. O 2 (K(W 1 ,V ) )
preserving each simplecton passing through v, has all orbits of length 64 on E2(v)
and on the set of these orbits a primitive action of U6(2) : 2 of degree 693 is
induced. The stabilizer of an orbit of O 2 (K(w 1 ,v) ) induces on this orbit a rank
3 action with the subdegrees 1, 27, 36, and the image of O 2 (K(W 1 ,V) ) in this
action induces a regular elementary abelian normal subgroup. Now, by Lemmas



So the proof is done. D

As a consequence of the above lemma, we have the following.

LEMMA 8.4. Let u e F2
3(v) and w e P(u). Then w is at distance at most 2 from v.

Let u e F4
2(v). Then K(v,u) = 21+20 • U4(3):22 and it has eight orbits on

r(v). Let Oi, 1 < i < 8 be these orbits as in Lemma 7.2. Let y e F(v). We will
show that unless y e O2 the distance between u and y is at most 2. Let w be
the vertex from F(v) such that {w} = O4. The graph of valency 1782 on F(v)
as on Figure 1 will be denoted by Q.

By Lemmas 7.5 and 7.6, by the fact that L4 does not have transitive repre-
sentations of degree 28 and interchanging, if necessary, the indexes 1 and 2, we
come to the unique possibility:

By Lemmas 7.1 and 8.2, the integrality condition gives us the following
possibilities:

7.1 and 7.4, L1 has an orbits of length 693 on the vertices that are adjacent to
w1 and lie in A1. Thus the result follows. D

LEMMA 8.3. Let x e P(v) - A1. Then x is adjacent to a vertex from A1.

Proof. By Lemma 7.1 P(v) - A1 = A1 n A3 n A4. Let Li be the orbits of L1

from Lemma 8.2 and let Xi € fi, 1 < i < 4. Then, clearly, xi e Aa(i) for some
function a. We will show that for each j, 2 < j < 4 there is i, 1 < i < 4 such
that a(i) = j. This will imply the claim of the lemma.

Let i be the orbit of L = K(v,u) on the set of edges that contains the
edge w 1 , X i , 1 < i < 4. Let r(i,a(i)) be cardinality of the set of edges from
si containing a fixed vertex from Aa(i), 1 < i < 4. Then the following equality
holds:
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LEMMA 8.5. Let y G Oi for i=4, 5, or 6. Then in the subgraph of F induced by
F(v) the vertex y is adjacent to a vertex from O1.

Proof. If i=4 then the claim is obvious since O1 e E2(w).
If i=5 then the claim follows from the fact that the subgraph of f induced

by E2(w) = O1 U O5 is connected.
Let i=6. A vertex from E2(

w) is adjacent in Q to 27 vertices from E2(w)
(cf. Figure 1). By the remark after Lemma 7.2 there are no edges between O2

and O1. Now an easy counting shows that y e O6 is adjacent to 15 vertices from
O5 and to 12 vertices from O1. So the result follows. D

LEMMA 8.6. Let y e O7 U O8. Then there is a vertex x from O1 such that x • y is
of order 3.

Proof. It is easy to see from Figure 1 that for vertices a and b of Q the product
a • b is of order 3 if and only if a and b are at distance 3 in n. Let y e O8.
Then one can see from Figure 1 that y is at distance 3 from exactly half of the
vertices 3 from E2(w). Since K(v, w, y) covers K(v, w)/O 2 (K(v , w)), the vertices
at distance 3 from y are in distinct orbits of O2(K(v, w)) on E2(w). On the
other hand, such an orbit is either contained in O1 or disjoint from O1. This
implies that exactly half of the vertices from O1 are at distance 3 from y. Thus
the claim is proved for y e O8.

For a vertex x e O1 there are |O8| = 2,097,152 vertices in n that are at
distance 3 from x. By the above paragraph one-half of them is contained in O8.
Suppose that there no vertices in Oi that are at distance 3 from x. Since the
union of Oi for 1 < i < 6 has size less than |O8|/2 this leads to a contradiction.
Thus the proof is complete. D

Now Lemmas 8.5 and 8.6 imply the following.

LEMMA 8.7. Let u e F4(v) and y e F(v). Then either y € O2 or the distance
between u and y is less than 3.

Let us show now that F contains vertices at distance 3 from each other.
Let u e F4(v), Oi be the orbits of K(u,v) on F(v), 1 < i < 8, {w} = O4

and II be the subgraph containing the pair {u, v} (compare Lemma 6.10). Let
x e 02. Let us determine the number of vertices in II adjacent to x. By Lemma
6.10 F(x) n II is contained in {v} u F(v). By consideration of the subgraph
induced by F(v) it is easy to show that x is adjacent exactly to those vertices of
II - {v} that are contained in the (unique) simplecton passing through w and x.
This means that |.T(x) n n| = 56. Let us show that U contains a vertex z such
that [x, z] = 1 and x is not adjacent to z. Without loss of generality we assume
that II is stabilized by K1. The subgroup O2(K1) stabilizes S'2(w) as a whole
and all its orbits on this set are of length 64. This means that at least 4600/64
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involutions from U commute with x. Since the given number is greater than 56,
the result follows. It is easy to see that z should be at distance 3 from x. Now,
in view of Lemma 8.7, we have the following.

LEMMA 8.8. K(v) has a unique orbit F3(v) on the set of vertices at distance 3 from v
in F. A vertex from F4

2(v) is adjacent to 8064 vertices from F3(v). If u e F3(v) then
u is an involution commuting with v and K(v,u) acts transitively on F(v) n F4

2(u).

Let u € F3(v) and w e F4
2(v) n F(u). Then u is adjacent to 1782+44352

vertices from F(w) and at most 8063 of them are in F3(v). Thus we have the
following.

LEMMA 8.9. Let u e F3(v). Then the subgraph induced by F(v)nF 4
2 (u) has valency

at least 1782+44352-8063.

Now we are in a position to determine K(v,u). Since u commutes with v,
K(u, v) < CK(v)(u). On the other hand, by Lemma 7.2, the stabilizer of a vertex
in the action of K(u, v) on r(v)nF2

4(u) is isomorphic to 21+14. (2 x U4(2): 2). Now
by the structure of involution centralizers in 2.2E6(2):2 (cf. [22]) and description
of the maximal subgroups in F4(2) (cf. [4],[18]) we have the following (compare
Lemma 7.3).

LEMMA 8.10. Let u e F3(v). Then K(u, v) = 22 x F4(2) and it has exactly two
orbits on the set F(v).

Now, by Lemmas 8.4, 8.7, and 8.10, we see that diameter of F is exactly 3
and that the adjacency structure between the orbits of K(v) on F is as given
in Figure 3. This implies in particular that distinct vertices of F correspond to
distinct involutions and hence K(v) = CK(V).

Now it is not so difficult to show that K is nonabelian simple. First, notice
that the action of K on F is primitive. Really, the orbits of K(v) on F - {v}
are F(v) - F1(v), F2

3(v), F4
2(v), and F3(v). It follows from the construction of F

(cf. Lemmas 6.5, 6.6, 6.7, 8.10, and Figure 1) that each of these orbits contains
a pair of vertices that are adjacent in F. On the other hand F is connected.
Let N be a proper normal subgroup of K. Then N is transitive on F as a
nontrivial normal subgroup of a primitive group. Since the number of vertices
of T is even, the order of N is even as well. Let K = E = 2 • 2E6(2):2 and
K1 = 21+22 • €02 be subgroups of K as above, i.e., E n K 1 =22+20.U6(2) : 2.
Consider the intersections of N with E and K1. Since K1 contains a Sylow
2-subgroup of K and the order of N is even, we see that N n K = 1. But the
structure of K1 implies that any its nontrivial normal subgroup has a nontrivial
intersection with K1 nE. Hence NnE = 1. Also, NnE = E since otherwise N
would coincide with K due to its transitivity on F. The structure of E implies
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that it has exactly two proper normal subgroups. Namely, if M = E n N then
either M = Z(E) (the order 2 center) or M = E' (the index 2 commutant).
But, in any case, the normal closure of M n K1 in K1 being intersected with E,
contains MnK1 as a proper subgroup. This is a contradiction and so we have
the following.

PROPOSITION 8.11. Let K be a group satisfying the hypothesis of Theorem A. Then:

(i) K is nonabelian simple,
(ii) \K\ = \F2\,

(iii) K1 = 21+22.Co2 and E = 2 • 2E6(2): 2 are full involution centralizes in K.

Now we have two possibilities to show that K = F2. The first one is to
apply a characterization of the maximal parabolics amalgams corresponding to
flag-transitive actions on rank 5 P-geometries [24]. The second possibility is just
to apply the characterizations of F2 by the centralizers of involutions [1], [22],
[25].
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