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Abstract. A new combinatorial expression is given for the dimension of the space of invariants in the
tensor product of three irreducible finite dimensional sl(r + 1)-modules (we call this dimension the
triple multiplicity). This expression exhibits a lot of symmetries that are not clear from the classical
expression given by the Littlewood-Richardson rule. In our approach the triple multiplicity is given
as the number of integral points of the section of a certain "universal" polyhedral convex cone by a
plane determined by three highest weights. This allows us to study triple multiplicities using ideas
from linear programming. As an application of this method, we prove a conjecture of B. Kostant
that describes all irreducible constituents of the exterior algebra of the adjoint sl(r + 1)-module.
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1. Introduction

Let g be a semisimple complex Lie algebra of rank r, and Vl, Vm, Vv be
three irreducible finite-dimensional g-modules with highest weights A, p, v. The
multiplicity c£lv of Vm in the tensor product Vl ® Vv plays an important part in the
representation theory of g and its physical applications. For g = sl(r + 1) this
multiplicity is given by the classical Littlewood-Richardson rule (see e.g., [10]).
The results of this paper provide an alternative to the Littlewood-Richardson
rule.

In [2] we suggested the following geometric interpretation of cmlv (see also
[1], [7], [8]). We associate to g a convex polyhedral cone K c L and a linear
map pr: L —> R3r, where L is a real vector space of dimension N = 1/2 (dim
g + 3r), and R3r is the space of triples of g-weights. Then cmlv is computed as
the number of integral points in the section of K by the plane pr - 1 ( \ , j , , i / ) .

The choice of K is not unique; in [1], [7], [8] it is constructed by means of the
Gelfand-Tsetlin patterns whereas in [2] it is given in terms of partitions of weights
into the sum of positive roots. In the present work we give a new construction
of K for g = sl(r + 1) that is, in a sense, the most symmetric. More precisely,
instead of cmlv we consider clmv = dim(Vl ® Vm ® Vv)g, the dimension of the space
of g-invariants in the triple tensor product. We call clmv the triple multiplicity;
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evidently clmv = cm*
lv, where n* is the highest weight of the module V* dual to

Vm (since there is a natural isomorphism Homg(V*, Vl ® Vv) 3 (Vl ® Vm ® Vv)g).
Clearly clmv is invariant under all 6 permutations of (A, p,v) and also under the
replacement of (A,m,v) by (A*,^*,i*). These transformations generate a group
of 12 symmetries; our construction of K will make evident 6 of them.

As an application of our approach to multiplicities we determine (for g =
sl(r + 1)) the spectrum of the g-module A*(g), the exterior algebra of the
adjoint g-module. The Weyl character formula implies that the g-module A*(g)
is isomorphic to the direct sum of 2r copies of the g-module (Vp ® Vp), where p is
the half-sum of all positive roots of g. Therefore, Vm is an irreducible constituent
of A*(g) if and only if cm

pp# 0. B. Kostant conjectured (private communication)
that cm

p # 0 if and only if the weight (2p - /z) is a nonnegative integral linear
combination of simple roots of g. Using our expression of triple multiplicities,
we reduce the proof of this conjecture (for g = sl(r + 1)) to a problem of
linear programming, i.e., to the study of compatibility of certain systems of linear
inequalities. Such an approach allows us also to obtain more precise information,
i.e., to describe all /i such that cm

pp = 1.
Our main result on multiplicities is stated and proven in Section 2 (Theorem 1).

The results on cm
pp are collected in Section 3; the main results here are Theorems 6

and 14 describing all (i such that cm
pp > 0 (respectively, cm

pp = 1).
Our proof of Theorems 6 and 14 is based on general criteria for existence and

uniqueness of solutions of a system of linear inequalities. For the convenience
of the reader we discuss these criteria in the Appendix. Although they must
be well known to experts, we were not able to find the statements in the form
needed for our purposes in the literature, thus we provide brief sketches of the
proofs here.

2. A symmetric expression for triple multiplicity

We fix a natural number r and put T - Tr = {(i, j, k) € Z3
+: i + j + k = 2r - 1}.

Put also H = Hr - {(i,j,k) € Tr: all i, j, k are odd} and G = Gr = Tr - Hr.
Thus Tr is the set of vertices of a regular triangular lattice filling the regular
triangle with vertices (2r - 1,0, 0), (0, 2r - 1, 0), and (0, 0, 2r - 1); this triangle is
decomposed into the union of elementary triangles having all three vertices in
Gr and of elementary hexagons centered at points of Hr (see Figure 1).

Let a = (1, -1,0), 0 = (0, 1, -1), and 7 = (-1,0, 1) so that a + ft + 7 = 0.
Clearly, for any rj € Hr six points 7 ± a, r/±/3, 17 ±7 lie in GT (they are vertices of
the elementary hexagon centered at 77). Consider the vector space RGr consisting
of families (x(£)) (f 6 Gr) of real numbers. Let L c RGr be the vector subspace
defined by the equations

8

for any r? e Hr. Geometrically this means that if [£1,&2] and [J1,J2] are two



TRIPLE MULTIPLICITIES FOR sl(r + 1)

Figure 1. Sets Gr and Hr for r = 3. The points of Gr are depicted as circles, and the points of Hr

as stars.

Note that the points of Gr contributing to (2) lie on the boundary of our
triangle (see Figure 1).

THEOREM 1. Let X = J^lqwq ,n = J^mqwq,v = £>nqwq be the three highest
sl(r + 1)-weights. Then the triple multiplicity clmv is equal to # ( K z f t p r - 1 ( X , M, v)),
i.e., to the number of families (x(£)), £ € Gr, of nonnegative integers satisfying (1)
and (2).

9

opposite edges of an elementary hexagon then x(f1) + x(&2) = x(f1) + x(e2). We
define a convex cone K c L to be the intersection L n RGr, i.e., the set of all
points x € L such that x(£) > 0 for all £; let also KZ = L n ZGr

+.
Now let g = sl(r + 1). We identify the lattice P of integral g-weights with Zr

using as a standard basis the family w1, . . . ,wr of fundamental weights of g in a
standard numeration (see [3]). This identification takes the semigroup P+ of the
highest weights to Zr

+. We recall that the triple multiplicity cA/nv forA,m,v e P+

is defined as dim(Vl ® Vm ® Vv)
g.

We define a linear projection pr: L —> R3r = (P®R)3 by the formulas
pr(x) = (l1, . . . ,lr; m1, . . . , mr; n1 , . . . , nr), where
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Proof. We shall deduce Theorem 1 from the results of [2] expressing cmlv in
terms of so-called g-partitions. By a g-partition of weight 0 we mean a family
(ma) of nonnegative integers indexed by all positive roots a of g, such that
2a maa = 0. For g = sl(r + 1) positive roots correspond in a standard way to
pairs 1 < p < q <r + 1, and we write mpq instead of ma. Following [2], for any
sl(r + 1)-partition m = (mpq) we put Apq = Apq(m) = mpq - mp+1,q+1 (with the
convention A0q = -m1,q+1, <dp,r+1 = mp,r+1).

PROPOSITION 2. (=Theorem 2.1 from [2]). The multiplicity cmlv is equal to the
number of sl(r + 1)-partitions (mpq) of weight (A + v - n) satisfying the inequalities
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for all (p, q) such that 1<p<q<r + 1.

To prove Theorem 1 it remains to establish a bijective correspondence between
KzC\pr- 1( \ ,n*,v) and the set of partitions from Proposition 2. Notice that the
weight n* has the form p* = mrw1 + mr-1w2 + ... + m1wr. To any (x(£)) 6
KZ r pr-1(\,ti,*,v) we associate an sl(r + 1)-partition (mpq) by the rule

Conversely, to any partition (mpq) of weight A + v - ^ satisfying (3) and (4) we
associate a point (x(f)) defined by (5) and

It is straightforward to verify that these formulas give the desired correspon-
dence. This proves Theorem 1. D

Remarks.

(a) Obviously, the sets Gr and Hr are invariant under all permutations of indices
(i,j,k). Therefore, we have a natural action of S3 on RGr, and it is evident that
L, K, and KZ are invariant under this action. Let s1 = (1, 2) and s2 = (2,3)
be two standard generators of S3. Equations (2) imply at once that if
pr(x) = (X,n,v) then p r (S 1 ( x ) ) = (A*,V*,M*), and pr(s2(x)) = (/*,l*V*). We
see that our expression of triple multiplicities makes evident the following
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symmetries: clmv = cl*v*m* = cm*l*v* = cvlm = cmvl = cv*m*l*. The remaining
symetries also can be derived from Theorem 1, e.g., we can prove that
clmv = CMAv by constructing an explicit bijection between K z \ p r - 1 ( l , n , v) and
KZ D pr-1(m, A, v) but this requires some work.

(b) Consider the set A = {(A, m, v) e Z3r
+: cluv # 0}. One can prove that A is a

finitely generated semigroup (this can be done by means of invariant-theoretic
arguments (F. Knop, August 1989, private communication)). Theorem 1 makes
this statement for g = sl(r + 1) evident. Indeed, in this case A = pr(Kz),
and it is enough to show that Kz is a finitely generated semigroup but this
is a consequence of the following general statement: if K c RN is the set of
solutions of a finite system of homogeneous linear equations and inequalities
with rational coefficients, then KZ = Kr\ZN is a finitely generated semigroup.

In [2] we suggested an analogous (conjectural) expression for cM
LV for other

classical Lie algebras. This would also imply at once that A is a finitely
generated semigroup. It would be very interesting to describe this semigroup
explicitly.

(c) We hope that the expression for triple multiplicities given by Theorem 1 will
be useful for the explicit computation of so-called fusion coefficients (see
[11]).

(d) In the classical Littlewood-Richardson rule [10] an sl(r + 1)-weight A is
represented by a partition A = ( A 1 . . . , Ar+1), where A1 > A2 >

 . . . > Ar+1 are
nonnegative integers. The coordinates l1, . . . ,lr of A used in Theorem 1 are
given by lq = lq - lq+1. A direct relationship between our Theorem 1 and
the classical Littlewood-Richardson rule has been recently established by C.
Carre [4].

We conclude this section by several equivalent versions of Theorem 1. First,
we construct an isomorphism A : L —> RN, where N = r(r + 5)/2. We extend Hr
to the set Hr = { ( i , j , k ) : i, j, k are odd integers, -1 < i, j, k < 2r-1,i + j + k =
2r — 1}. Definitions imply at once the following.

LEMMA 3. For any £ e Gr the set {£ - a, f - b, £ - 7} meets Hr at a unique point
(see Figure 2).

It is easy to see that #Hr = N, and we write y e RN as (y(n)), n € Hr. We
put A(x) = y, where y(n) is defined as follows. If n E Hr then y(N) is equal
to each of the three expressions in (1), and if 77 € ~Hr - Hr, i.e., exactly one
coordinate of 77 is (-1) then y(n) = x(f), where $ is the unique point among
77 + a,r) + P,T + 7 lying in Gr (see Lemma 3).

PROPOSITION 4.

(a) A is a vector space isomorphism L = RN.

11
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Figure 2. Sets Gr and Hr for r = 3. The points of Gr are depicted as circles, and the points of Hr

as stars. The map Gr -> Hr from Lemma 3 is shown by arrows.

(b) The image A(K) of the cone K c L is defined by the inequalities y(n) > 0 for all
rj € H r -H r , and £p>0 y(n-2pa) > 0, £p>0 y(n-2pb) > 0, Sp>0y(n-2py) > 0
for all r € Hr, the summations over p e Z+ such that the corresponding point
lies in Hr. Furthermore, A(KZ) = A(K) n ZN.

(c) The isomorphism A takes pr : L —> R3r to the linear map RN —> R3r (denoted
also by pr) given by

the summations over all (i, j, k) € Hr indicated above.

Proof. Let us construct the inverse isomorphism ^ : RN —> L. Let y = (y(n)) €
RN. By Lemma 3, for any £ e Gr there is the unique element of {a, b, 7}, say
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a, such that (f - a) e Hr. Then we put £(y)(0) = £y(£ -a - 2pa), the sum
over all p e Z+ such that (£ - a - 2pa) 6 Hr (for (£ - b) 6 Hr or (£ - 7) € Hr

the definition is similar). The facts that £(y) belongs to L, and that ]£ and
A are mutually inverse, are verified directly. The proof of b) and c) is also
straightforward. Q

Using this proposition we can reformulate Theorem 1 as follows: clmv is
equal to #(A(KZ) < p r - 1 ( X , n , v)), i.e., to the number of families of integers
(y(n)), n £ Hr, satisfying (8) and the inequalities of Proposition 4 b).

In the next section we use one more equivalent version of Theorem 1. Let
a1 , . . . , ar be the simple roots of g = sl(r + 1), and w1 , . . . ,wr the fundamental
weights of g in a standard numeration. The transition matrix between these
two bases of the space of g-weights is the Cartan matrix of g [3] i.e., if m =
m1w1 + . . . + mrwr = g1a1 + . . . + grar then the coefficients mp and gp are related
by mp = -gp+1 + 2gp - gp-1 (with the convention g0 = gr+1 - 0).

PROPOSITION 5. Let A = £lPWp, v = £npwp be two highest weights for sl(r + 1),
and suppose a highest weight n is expressed as m = A + v-Sgpap. Then cmlv is equal
to the number of families (gqp)(1 < P <q < r + 1) of nonnegative integers satisfying
the following conditions for all p, q:

(with the convention gqp = 0 unless 1<p<q<r + 1).

Proof. It suffices to establish a bijective correspondence between the set of all
(gqp) from our proposition and the set KZ n pr-1(A,^*,v) (see Theorem 1). To
any family (gq) we associate a point (x(£)), £ € Gr so that x(2(q-p) -1, 2(r +1 -
q), 2(p -1)) is the left-hand side of (10), x(2(q -1 - p), 2(r + 1 - q), 2p -1) is the
left-hand side of (11), and x(2(q -1 -p), 2(r + 1 - q) + 1, 2(p -1)) is the left-hand
side of (12). We have to verify that these values of x(£) satisfy (1) and (2) (with
mp replaced by mr+1-p). This can be done by straightforward calculations. The
inverse map is given by the formula gq = £ x(2(q'-1-p'), 2(r+1-q')+1,2(j/-1)),
the sum over all (p', q') such that 1 < p' < p and 1<q' - p'< q - p. D

Note that the index p plays the same part in (5) to (7) and in (9) to (12) but
this is not so for q.

13



3. Kostant conjecture for sl(r + 1)

The main goal of this section is to prove the following theorem.

THEOREM 6. Let g = s l(r + 1), \L be a highest g-weight, and p be the half-sum of
all positive roots of g. Then the following conditions are equivalent:

(a) Vm is an irreducible constituent of A*(g)
(b) Cm > 0
(c) n is a weight of V2p

(d) (2p - ft) is a linear combination of simple roots with coefficients in Z+.

Note that the equivalences (a) «*• (6) and (c) <& (d) are well known. Further-
more, the implication (b) =>• (d) is evident. In fact, for any g the multiplicity cm

can be nonzero only if (A + v — n) is a linear combination of simple roots with
coefficients in Z+. It remains to prove (d) =$• (b).

We shall use Proposition 5 in the case when A = v = p. So from now on we
assume that lp = np = 1 for all p.

PROPOSITION 7. Let \i = 2p - Ygpap, where g1 , . . . ,gr € Z. Then \i is a highest
weight if and only if
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(with the convention go = gr+1 = 0).

Proof. The left-hand side of (13) is the coefficient mp in the decomposition
M = 2 mpwp. d

Propositions 5 and 7 reduce the proof of the remaining part of Theorem 6
to the next statement concerning integral programming.

PROPOSITION 8. Let g1, . . . , gr e Z+. Then the following conditions are equivalent:

(a) (g1, . . . , gr) satisfies (13);
(b) there exists a family (gq) of nonnegative integers satisfying conditions (9) to (12)

(with all np,lp equal to 1).

Proof. First we observe that by induction on q we can deduce from (12) the
inequalities

Now let us introduce some terminology. A vector (g 1 , . . . , gr) € Zr
+ satisfying

(13) will be called admissible. Denote the vector (gq
1 , . . . , gq

q-1) by g(q). We shall



say that a pair (g ( q ) , g ( q - 1 ) ) is admissible if g(q) and g(q-1) satisfy (10), (11), and
(14).

LEMMA 9. If a pair (g(q), g ( q - 1 ) ) is admissible then both g(q) and g ( q - 1 ) are admissible.

Proof of Lemma 9. The inequality (13) for g(q) is simply the sum of (10) and
(11) with the same p and q. To get (13) for g(q-1) it suffices to add (10) and
(11) with the same q and p shifted by 1. D

The implication (6) =>• (a) in Proposition 8 follows at once from Lemma
9. To prove (a) =*• (6) choose an admissible g(r+1); we have to construct
g(r), g(r-1), . . . , g(2) satisfying (10) to (12). This can be done by repeated application
of the next two lemmas.

LEMMA 10. For any admissible g(q) £ Zq-1
+ there exists g(q-1) e Z (q -2)

+ such that
( g ( q ) , g ( q - 1 ) ) is admissible.

LEMMA 11. For any admissible pair (g ( q ) , g ( q - 1 ) ) there exists g ( q - 2 ) 6 Z(q-3) such
that ( g ( q - 1 ) , g ( q - 2 ) ) is admissible, and the triple ( g ( q ) , g ( q - 1 ) , g ( q - 2 ) ) satisfies (12).

Our proof of both lemmas is based on the following.

LEMMA 12. Suppose we are given real numbers g+
p, g

-
p(0 < p < k), d+,d-

p(0 < p <
k - 1). Then the system of linear inequalities
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in real variables g0 , . . . ,gk has a solution if and only if (gp
+,g-

p, d+p,d-
p) satisfy

for all 0 < p < t < k. Moreover, if all g+
p, g

-
p, d

+
p, d

-
p are integers satisfying (16), then

(15) has an integral solution.

The proof will be given in the Appendix.

Proof of Lemma 10. It is easy to see that the conditions on g(q-1) assuring
the admissibility of (g(q), g(q-1)) can be written in the form (15) with k = q - 1,
g-

p = 0, g+
p = min(gq

p,g
q
p+1), d

-
p = gq

p+1 - gq
p+2 - 1, d+

p = gq
p - gq

p+1 + 1 (recall that
we use the convention gq

0 = gq = 0). It remains to verify that the inequalities
(13) for g(q) imply that the data just defined satisfy (16).

The inequality d- < d+ is just (13), and the last two inequalities in (16) can
be written as



Indeed, it is easy to verify that (right-hand side of (17')) - (left-hand side of
(170) = 1/t-p+1 EP<s<t(s -p)(2 + gq

s-1 - 2gq
s + gq

s+1), which proves (17'), the proof
of (18') is analogous. This completes the proof of Lemma 10. D

Proof of Lemma 11. We see again that the conditions on g(q-2) to be satisfied
can be written in the form (15) with k = q - 2, g-

p = max(gq-1
p + gq-1

p+1 - g
q

p+1, 0),

g+
p = min(gq-1

p,g
q-1

p+1), d
-
p = gq-1

p+1 - gq-1
p+2-1, d+

p = gq-1
p - gq-1

p+1 + 1. It remains to
verify that the inequalities (10), (11), and (14) for (g ( q ) , g(q-1)) imply that these
data satisfy (16).

The inequality d-
p < d+

p again coincides with (13). The inequality g-
p <

gt
+ + 53p<s<t d

+
s can be rewritten as
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In fact, the stronger inequalities hold:

If gq-1
t <gq-1

t+1 then (19) is a consequence of (14). It remains to prove

But (19') follows at once from (17') (wiht q replaced by q -1), and the left-hand
side of (19") is equal to

which is nonnegative by (10) and (14). The last inequality in (16) is proven the
same way. O

Proposition 8 and hence Theorem 6 are proven.

By our method we can obtain more information about the multiplicities cm
pp,

namely to find all // such that cm
pp = 1. To formulate the result consider the

convex polytope P(2p) c Rr which is the convex hull of all dominant weights
\L of the form \L = 2p - 52gpap, where gp e Z+ for p = 1, . . . ,r. The following
result is due to B. Kostant (private communication).
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PROPOSITION 13. The polytope P(2p) is combinatorially equivalent to an r-cube.
Vertices of P(2p) are in a bijective correspondence with subsets I C {1, . . . ,r}: a
vertex vI corresponding to I is equal to p + wIp, where wI is the maximal element
in the Weyl group generated by reflections sai (i € I).

Remarks.

(a) The result of Proposition 13 can be extended to any regular dominant weight
A instead of 2p.

(b) For g = sl(r + 1) the polytope P(2p) is naturally identified with the Newton
polytope of the discriminant of a polynomial of degree (r + 1) in one variable
(see [9]).

THEOREM 14. For g = sl(r + 1) the multiplicity cm
pp is equal to 1 if and only if u is

a vertex of P(2p).

Proof. The "if" part follows at once from the well known inequality cm
lv < K l ,m-V ,

where Kl,m-v is the multiplicity of weight (u - v) in Vl (see, e.g., [2]). Indeed,
we have cp+wIp

pp < Kp,wIp = Kp,p = 1.
To prove the "only if" part we shall use the following criterion for uniqueness

of a solution of a system (15). Suppose we are given real numbers 9 p , 9 p ( 0 < p <
k),d+

p,d-
p(0 < p < k - 1 ) satisfying (16). Consider the set [0,k] = {0,1, . . . , k}.

Define a subset F of [0, k] as follows: u e F if and only if for some p and t with
0 < P < u < t < k we have either g-

p = g+
t + £p<s<t d

+
s or g+

p = g-
t + Sp<s<t

Denote also by E the set of pairs {p, p + 1} C [0, k] such that d- = d+
p; we

represent {p,p + 1} as an edge connecting points p and p + 1. D

LEMMA 15. In the conditions of Lemma 12 the system (15) has a unique solution
if and only if any p € [0, k] can be connected with a point from F by a sequence of
edges from E. Furthermore, if all g+

p, g
-
p, d

+
p, d

-
p are integers then the same conditions

are necessary and sufficient for the system to have a unique integer solution.

Lemma 15 will be proven in the Appendix.
Now let g(r+1) = (gr+1

1,..., g
r+1

r) € Zr
+ and p = 2p - ,̂gr+1

p ap. By Proposition
7, g(r+1) is admissible if and only if n is dominant. The next lemma follows at
once from Proposition 5 and Lemmas 10 and 11,

LEMMA 16. If cm
pp = 1 then there is a unique vector g(r) e Zr-1

+ such that (g(r+1),g(r))
is admissible.

LEMMA 17. Suppose there is a unique vector g(r) e Zr-1
+ such that (g(r+1), g(r))

is admissible. Then at least one of the following two conditions is satisfied: (a)
gp

(r+1) = 0 for some p € [1, r]; (b) n = muwu for some u € [1, r] and mu € Z+.

17



18

Proof of Lemma 17 . Recall that (g ( r + 1 ) ,g ( r )) is admissible if and only if g(r)

satisfies the system of type (15) with k = r, g-
p = 0, g+

p = min(gr+1
p,g

r+1
p+1),

d-
p = gr+1

p+1 - g
r+1

p+2 -1, d+
p = gr+1

p -g
r+1

p+1 + 1 (see the proof of Lemma 10). Let us
apply Lemma 15 to these data.

By our conventions, g-
p = g+

p = 0 for p = 0, r, so {0,r} C F. Consider
two cases: a) r n [1, r - 1] ^ </>. Analysing the proof of Lemma 10 we can
easily understand when the inequalities (17) and (18) become equalities, and this
implies that either g(r+1) satisfies (a), or ^ = 0 (which is a special case of (b)).

b) r = {0,r}. By Lemma 15, E must contain all edges {p - l,p} except
maybe one edge {u - 1, u}. But we have d+

p-1 - d
-
p-1 = mp, so mp = 0 for p ^ u,

which is exactly (b). D

We shall treat cases (a) and (b) in Lemma 17 separately. In the case (a)
we shall reduce the statement of Theorem 14 to the smaller values of r. To
do this we need some notation. Denote by Pr the polytype {(g1, . . . ,gr) e Rr:
2p - £gP

a
p € P(2p)}. For (g1, ..., gr) e Zr

+ n Pr put c(g1, ... ,gr) = cm
pp, where

m = 2p - £gPap.

PROPOSITION 18. A point (g 1 , . . . ,gr) with gp = 0 lies in Pr if and only if
(g1, . . . , gp-1) € Pp-1 and (gp+1 , . . . , gr) € Pr-p. If in addition all gk are nonnegative
integers then c(g1 , . . . , gr) = c(g1, . . . ,gp-1)c(gp+1, . . . , gr).

Proof. The first statement follows at once from definitions. The second one
follows readily from Proposition 5 (this is also a special case of a general result,
see [2], Proposition 1.3). D

PROPOSITION 19. A point v = £ mpwp = 2p - 2 gpap € P(2p) is a vertex of P(2p)
if and only if min(gp, mp) = 0 for all p.

Proof. It is easy to see that for v = p + wIp we have gp = 0 for p $ I,
and mp = 0 for p £ I. Conversely, suppose that v e P(2p) is such that
min(gp, mp) = 0 for all p. It is clear that gp and mp cannot be both equal
to 0. Therefore, if I = {p : mp = 0} then {p:gp = 0} = [1, r] - /. Then
we have 2p = £peI gpap + J2P#I mpwp. But it is easy to see that the vectors
ap(p e I),wp(p & I) are linearly independent, hence v = p + wIp as required. D

Propositions 18 and 19 imply the statement of Theorem 14 in the case (a)
of Lemma 17 by induction on r. It remains to consider the case (b), when n is
proportional to a fundamental weight.

Let /i = mwu, where m e Z+,u e [1, r]. Put n = mu/(r + 1). Direct calculation
shows that the vectors g(r+1) and g(r) from Lemma 17 take the form:
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(it is easy to see that the expressions in (20) coincide for p = t = u). It follows
that n must be an integer and 0 < n < u. Futhermore, if n = 0 or n = u then fj,
is a vertex of P(2p) according to Proposition 19. It remains to verify

LEMMA 20. Let g(r+1) and g(r) be defined by (20) and (21), where u € [1,r],n e
[1, u - 1] are such that m = n(r +1)/u e N Then there are at least two different
vectors g(r-1) such that the triple (g ( r + 1 ) ,g ( r ) ,g ( r - 1 ) ) satisfies the conditions of Lemma
11.

Proof. The vectors g(r-1) in question are integral solutions of the system (15) with
k = r-1, g-p = max(grp + grp+1 - gr+1p+1 ,0), gp+ = min(grp,grp+1), d-p = grp+1 -grp+2 -1,
d+p = grp - grp+1 + 1 (see the proof of Lemma 11). By Lemma 15 it suffices to
verify the inequalities d+p > d-p for p = u - 2, u - 1 and
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for p < u - 1 < t.
It follows from (21) that d+u-2 - d-u-2 = n, d+u-1 - d-u-1 = m - n, both obviously

positive. To prove the first inequality in (22) it suffices to examine the proof of
(19) given above and to check that in our case the inequality in (19) is strict.
The second part of (22) is proven in the same way. D

Theorem 14 is proven.

Remark. Let 7 = (g1 , ...,gr) € Zr+ be an admissible vector. Denote by G(7) the
set of all families g = (g(q) = (gqp)), 2 < q < r + 1 from Proposition 8. We supply
G(7) with the following partial order: g = (g(q)) > h = (h(q)) if there exists some
t such that g(q) = h(q) for q > t, g(t) # h(t) and gtp > htp for all p. One can show
that for any 7 the set G(7) has a unique maximal element gmax(7) and a unique
minimal element gmin(7). This follows from the fact that any system of type (15)
has the unique maximal and the unique minimal solution with respect to the
componentwise partial order, which can be proven directly.

Appendix. Systems of linear inequalities and proofs of Lemmas 12 and 15

We shall deduce Lemmas 12 and 15 from general existence and uniqueness criteria
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(b) Under the assumptions of a), A(F, c) consists of one point if and only if the
union of all positive circuits C such that (A2) becomes an equality has rank l.

(c) Suppose that all fj e (Zl)*, i.e., have integral coefficients, and cj e Z for all j.
Suppose also that each subset of F which is a basis of (Rl)* is also a Z-basis of
(Zl)*. Then all vertices of A(F,c) lie in Zl.

All statements of Theorem A.1 are well known in linear programming. Since
we have not found the statements exactly in this form in literature let us give a
brief sketch of the proofs. First note that if A(F, c) # 0 then obviously £ bjCj > 0
for any linear relation J^bjfj = 0 with all bj > 0. The converse statement is also
true (see, e.g., [6]). Therefore, a) is a consequence of the following.

PROPOSITION A.2. [5]. Any linear relation £ b j f j = 0 with all bj > 0 can be
represented as a sum of positive relations Y f j € C a j f j

 = 0 corresponding to positive
circuits C.

Now suppose that A(F, c) ^ 0 and consider the statement A.1 b). If (A.2)
becomes an equality for a positive circuit C then fj(x) = cj for any fj e C,
x e A(F, c). Therefore, if the union of such circuits has full rank then x satisfies
a system of linear equations of full rank hence is unique. Let us outline the proof
of the converse statement. So we suppose that A(F, c) consists of one point
x. Consider the subset 5 = {fj € F:fj(x) = cj} and let K be the convex cone
generated by 5. Let Kv = {y: fj(y) > 0 for all fj € S} be the dual cone. We
claim that Kv = {0}. Indeed, if Kv contains some y # 0 then (x - ey) e A(F, c)

with real parameters c = (C1 , . . . , CN). Denote by A(F,c) c Rl the polyhedral set
of solutions of (A1). Since rk(F) = l is is easy to see that if A(F, c) is nonempty
then it has a vertex.

A subset C c F is called a circuit if the forms fj e C are linearly dependent,
and C is minimal with this property (the terminology comes from the matroid
theory). Clearly, for any circuit C a linear relation of the form ^fj€Cajfj = 0 is
unique up to a scalar multiple. We say that the relation is positive if all aj > 0,
and that C is positive if it admits a positive relation.

THEOREM A.1.

(a) A(F, c) # 0 if and only if for any positive circuit C and a positive relation
SfjeC ajfj = 0 we have

for systems of linear inequalities. Suppose we are given a set F = (f1 , . . . , fN)
of linear forms on Rl of rank l. Consider the system of linear inequalities
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for sufficiently small e > 0. It follows that K - (KV)V = (Rl)*. So A.1 b) is a
consequence of Proposition A.2 and the following.

PROPOSITION A.3. [5] Let S c Rl be a finite subset of rank l. Then the convex
cone generated by S coincides with Rl if and only if there is a subset S' c S such
that rk(S') = l and some linear combination of the elements of S' with positive
coefficients is equal to 0.

Finally, part A.1 c) is evident since each vertex of A(F, c) is uniquely deter-
mined from a system of linear equation of the form {fj(x) = cj}, where fj runs
over a certain subset of F, which forms a basis in (Rl)*.

Proofs of Lemmas 12 and 15 . We apply Theorem A.l. in the following situation:
Rk+1 = Rk+1 with coordinates g0 , . . . ,gk; F = (g0 ,-g0 , . . . , gk ,-gk , g0 -g1 ,-(go -
g1), . . . ,gk-1 - g k , - (g k - 1 - g k ) ) ; c = (g0

+,-g0
-, . . . , g+

k,-g-
k,d+

0,-d-
0, ..., d+

k-1,-d
-
k-1).

For any subset S c F put r(S) = {p e [0, k]: S contains gp or (-gp)} C [0, k] and
let E(S) be the set of all pairs {p,p+ 1} C [0, k] such that S contains (gp -gp+1)
or -(gp- gp+1). As in Lemma 15 we represent {p,p+ 1} as an edge connecting
the points p and p + 1. D

LEMMA A.4. A subset S c F is of rank k + 1 if and only if any p e [0, k] can be
connected with a point from r(S) by a sequence of edges from E(S). Any such S
of cardinality k + 1 is a Z-basis of Zk+1..

The proof is straightforward.
Now let us list all positive circuits of F. For any p e [0, k - 1] put Cp =

{gp-1 - 9p,-(gP-1 - 9P)}. For any p,t such that 0 < p < t < k put Cpt =
{gp,-(gp-gp+1), . . . , -(9t~i-gt),-gt}, and Ctp - {-gp ,gp-gp + 1 , . . . ,gt-i-9t,g t}.
Clearly, all Cp, Cpt, and Ctp are positive circuits; the corresponding positive linear
relations have all coefficients equal to 1.

LEMMA A.5. The circuits Cp, Cpt, and Ctp exhaust all positive circuits of F.

This follows easily from Lemma A.4. .
Taking into account Lemmas A.4 and A.5 we see that Lemma 12 is a special

case of Theorem A.1 a), c), and Lemma 15 is a special case of Theorem A.1 b),
c).

Acknowledgements

We are grateful to B. Kostant for calling our attention to his beautiful conjecture
and to M. Duflo who pointed out an error in the first version of this paper. We
also thank anonymous referees for their helpful remarks and suggestions.

21



22

References

1. A.D. Berenstein and A.V. Zelevinsky, "Involutions on Gelfand-Tsetlin patterns and multiplicities
in skew gln-modules," Doklady AN SSSR, vol. 300, no. 6, pp. 1291-1294, 1988 (in Russian).

2. A.D. Berenstein and A.V. Zelevinsky, "Tensor product multiplicities and convex polytopes in
partition space," Journal of Geometry and Physics, vol. 5, no. 3, pp. 453-472, 1988.

3. N. Bourbaki, Groupes et algebres de Lie, Ch. IV, V, VI. Hermann: Paris, 1968.
4. C. Carre, "Le decodage de la regie de Littlewood-Richardson dans les triangles de Berenstein-

Zelevinsky," preprint, April 1991.
5. C. Davis, "Theory of positive linear dependence," American Journal of Mathematics, vol. 76, pp.

733-746, 1954.
6. D. Gale, The theory of linear economic models, McGraw-Hill, New York, 1960.
7. I.M. Gelfand and A.V. Zelevinsky, "Polytopes in the pattern space and canonical basis in

irreducible representations of gl3," Functional Analysis and Applications, vol. 19, no. 2, pp. 72-75,
1985 (in Russian).

8. I.M. Gelfand and A.V. Zelevinsky, "Multiplicities and regular bases for gln," in Group theoretical
methods in physics, Proc. of the third seminar, Yurmala, May 22-24, 1985. Nauka, Moscow, vol. 2,
pp. 22-31, 1986 (in Russian).

9. I.M. Gelfand, A.V. Zelevinsky, and M.M. Kapranov, "Newton polytopes of the classical resultant
and discriminant," Advances in Mathematics, vol. 84, no. 2, pp. 237-254, 1990.

10. I. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.
11. E. Verlinde, "Fusion rule and modular transformation in 2d conformal field theory," Nuclear

Physics B, vol. 300, pp. 360-376, 1988.

BERENSTEIN AND ZELEVINSKY


