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Abstract. All of the automorphisms of the Fibonacci poset Z (r ) are determined (r ∈ N). A problem of Richard
P. Stanley from 1988 is thereby solved.
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1. Introduction—To be young again

Young’s lattice Y, the set of Ferrers shapes partially ordered in a certain fashion, is a poset
of tremendous combinatorial significance. As is well known, it is closely connected with
the representation theory of the symmetric groups Sr (r ∈ N).

In [9], Richard P. Stanley investigated lattices that share many of the interesting combina-
torial properties of Y , the Fibonacci posets Z (r ) (r ∈ N). These are posets whose elements
are finite words generated from the alphabet {11, 12, . . . , 1r , 2}, where one defines the
covering relation as follows: y covers x in Z (r ) if either

(1) x = 2kv and y = 2k1iv, or
(2) x = 2k1iv and y = 2k2v

for some i ∈ { 1, 2, . . . , r} and v ∈ Z (r ). In other words, one can either delete the first 1
or convert a 2 into a 1 (as long as no other 1’s appear before it). See figures 1 and 3.

The results in this paper were first obtained by the second author, Dr. SungSoon Kim, and then independently
obtained by the first author. The first author would therefore like to thank Dr. SungSoon Kim for graciously
inviting him to co-author this paper. The first author was supported by (U.S.) National Science Foundation Grant
DMS-9971352.
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Figure 1. The Fibonacci poset Z (1).

In [9], Problem 7, Stanley asks:

Problem ([9]) What is the automorphism group Aut (Z (r )) of the Fibonacci poset Z (r )?

(Admittedly, Stanley adds, “We suspect that Problem 7 should not be too difficult.”)
We solve the problem by explicitly determining all of the automorphisms of Z (r )

(Theorem 4.5).

2. Definitions

Throughout this paper, r will denote a positive integer.
For basic terminology, see [2].
Let P be a poset; let p, q ∈ P . We say q covers p (denoted p <· q) if p < q and for all

r ∈ P, p ≤ r < q implies p = r ; p is a lower cover of q and q is an upper cover of p.
An element is join-irreducible if it has exactly one lower cover; the set of such elements is
denoted J (P).

A poset with a least element is locally finite if, for all p ∈ P , there are only finitely many
elements of P below p. The rank of an element in such a poset is one less than the size of
the largest chain whose top element is p.

In a lattice L , the least upper bound of x, y ∈ L is denoted x ∨ y.
An automorphism τ̄ of a poset P is an order-preserving bijection whose inverse is also

order-preserving. Equivalently, if P is locally finite, a bijection τ̄ : P → P is an automor-
phism if, for all p, q ∈ P, p <· q implies τ̄ (p) <· τ̄ (q) and vice versa.



AUTOMORPHISM GROUP 199

Let ε denote the empty word. The length |w| of a word w is the number of symbols in a
reduced form of w.

If G and X are sets, G X denotes the set of tuples (gx )x∈X where gx ∈ G for all x ∈ X .
Let Sr denote the symmetric group on r letters.

3. Facts about the Fibonacci poset Z(r )

The following facts come from [9], Section 5:
The Fibonacci poset Z (r ) is a locally finite modular lattice with least element ε. The

rank of a word is the sum of its “letters.” The lattice Z (r ) has the additional property that,
if w ∈ Z (r ) has exactly k lower covers, then it has exactly k + r upper covers. These facts
make Z (r ) an r-differential poset.

Indeed, Z (r ) is the only r -differential (locally finite, modular) lattice such that every
complemented interval has rank at most 2. It can be constructed inductively by “reflection”
([9], Section 6): One constructs Z (r ) rank by rank, reflecting the last layer one has built,
then adding r new join-irreducible upper covers for each element [figures 2(a)–(c)].

One deduces that, for Z (1), the number of elements of each rank is a Fibonacci number.
In [9], Section 6, Stanley observes that the symmetric group Sr acts on Z (r ).

Example 3.1 The 3-cycle σ = (123) induces an automorphism σ̄ : Z (3) → Z (3) which
sends, for instance, w = 11122112213 to σ̄ (w) = 12132122211.

“However,” Stanley writes, “Z (1) has (at least) an additional automorphism ω, defined
by

ω(v11) = v2

ω(v2) = v11

ω(w) = w otherwise”

[i.e., if w is not of the form v11 or v2 for some v ∈ Z (1)]. The fact that ω is an automorphism
is “obvious” by reflecting figure 1 about the vertical axis; but we prove it rigorously in
Lemma 4.4.

Our list of references contains other papers dealing with the Fibonacci poset.

4. The automorphism group of the Fibonacci poset Z(r ): The solution to Stanley’s
problem

In this section we solve Stanley’s problem (see Section 1) by finding all of the automorphisms
of Z (r ) (Theorem 4.5).

The idea is that each word w ∈ Z (r ) has a set Cw of r join-irreducible upper covers; and
an automorphism τ̄ of Z (r ) must send Cw to Cτ̄ (w). Hence, to each w we can associate an
element of Sr . As Z (r ) is a locally finite lattice, the action of τ̄ on J (Z (r )) determines τ̄ .
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(a) (b)

(c)

Figure 2. (a) Building Z (r ) by reflection. (b) Building Z (r ) by reflection. (c) Building Z (r ) by reflection.

Figure 3. The Fibonacci poset Z (2).
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Lemma 4.1 (Proposition 2 of [4]) The set J (Z (r )) of join-irreducibles of Z (r ) is

{1iv | 1 ≤ i ≤ r ; v ∈ Z (r )} if r ≥ 2,

{1v | v ∈ Z (1)} ∪ {2} if r = 1.

Proof: Clearly each element listed is join-irreducible. Now let w ∈ J (Z (r )). Suppose w

is not of the above form: then w = 2v for some v ∈ Z (r ). If r ≥ 2, then w has at least two
lower covers, 11v and 12v, a contradiction. Hence r = 1.

If w = 21u for some u ∈ Z (1), then w has the two lower covers 11u and 2u; if w = 22u
for some u ∈ Z (1), then w has the two lower covers 12u and 21u.

Lemma 4.2 Let �τ = (τw)w∈Z (r ) be a fixed element of SZ (r )
r . Define a map τ̄ : Z (r ) → Z (r )

inductively on the length of the argument, as follows: For all w ∈ Z (r ), let

τ̄ (w) =
{

2k if w = 2k (k ≥ 0),

2k1τv (i)τ̄ (v) if w = 2k1iv [k ≥ 0; 1 ≤ i ≤ r ; v ∈ Z (r )].

Then τ̄ belongs to Aut (Z (r )) and τ̄ (2) = 2.

Proof: It is clear that τ̄ is a bijection whose inverse is v̄ for some �v ∈ SZ (r )
r . Thus it suffices

to prove that if x, y ∈ Z (r ) and x <· y, then τ̄ (x) <· τ̄ (y).
It is obvious that, for all v ∈ Z (r ), τ̄ (2v) = 2τ̄ (v).

Case 1. x = 2kv and y = 2k1iv [k ≥ 0; 1 ≤ i ≤ r ; v ∈ Z (r )]

Then τ̄ (x) = 2k τ̄ (v) and τ̄ (y) = 2k1τv(i)τ̄ (v), so τ̄ (x) <· τ̄ (y).

Case 2. x = 2k1iv and y = 2k2v [k ≥ 0; 1 ≤ i ≤ r ; v ∈ Z (r )]

Then τ̄ (x) = 2k1τv (i)τ̄ (v) and τ̄ (y) = 2k2τ̄ (v), so τ̄ (x) <· τ̄ (y).

Let τ̂ ∈ Aut (Z (r )) be such that τ̂ (2) = 2. Since τ̂ maps J (Z (r )) bijectively onto itself,
but fixes 2, then, by Lemma 4.1, for all w ∈ Z (r ) and 1 ≤ i ≤ r, τ̂ (1iw) = 1 jv for
some j ∈ {1, 2, . . . , r} and v ∈ Z (r ). We will show that v depends only on w and not
on i :

Lemma 4.3 Let τ̂ ∈ Aut (Z (r )) be such that τ̂ (2) = 2. For all w ∈ Z (r ), define τw ∈ Sr

as follows: For 1 ≤ i ≤ r, τ̂ (1iw) = 1τw(i)τ̂ (w).
Let �τ = (τw)w∈Z (r ). Define τ̄ as in Lemma 4.2.
Then τ̂ = τ̄ .

Proof: From what was said before the statement of the proposition, v must be τ̂ (w), as
w is the unique lower cover of 1iw, so τ̂ (w) is the unique lower cover of 1 jv, which is v.
Thus τw ∈ Sr is well defined.
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Claim For all v ∈ Z (r ), τ̂ (2v) = 2τ̂ (v).

Proof of Claim (by induction on |v|): The claim follows from the definition of τ̂ if v = ε.

Case 1. v = 1i u [1 ≤ i ≤ r ; u ∈ Z (r )].

Then 2u, 111i u <· 21i u = 2v, so 2u ∨ 111i u = 2v. By the induction hypothesis, τ̂ (2u) =
2τ̂ (u) and we know that τ̂ (111i u) = 1 j 1k τ̂ (u) [where 1 ≤ j, k ≤ r and τ̂ (v) = 1k τ̂ (u)].
Note that 2τ̂ (u), 1 j 1k τ̂ (u) <· 21k τ̂ (u), so 2τ̂ (u) ∨ 1 j 1k τ̂ (u) = 21k τ̂ (u) and hence τ̂ (2v) =
21k τ̂ (u) = 2τ̂ (v).

Case 2. v = 2u [u ∈ Z (r )].

Then 211u, 112u <· 22u = 2v, so 211u ∨ 112u = 2v. By Case 1, τ̂ (211u) = 2τ̂ (11u) =
21 j τ̂ (u) for some j ∈ {1, 2, . . . , r}. Also, τ̂ (112u) = 1k τ̂ (2u) = 1k2τ̂ (u) for some k ∈
{1, 2, . . . , r}.

Note that 21 j τ̂ (u), 1k2τ̂ (u) <· 22τ̂ (u), so 21 j τ̂ (u) ∨ 1k2τ̂ (u) = 22τ̂ (u) and hence τ̂ (2v) =
22τ̂ (u) = 2τ̂ (v),

The lemma follows, as τ̂ and τ̄ agree on all words in Z (r ).
The following result is asserted without proof in [9], Problem 7.

Lemma 4.4 The map ω of Section 3 belongs to Aut (Z (1)).

Proof: As ω2 = idZ (1), it suffices to prove that if x, y ∈ Z (1) and x <· y, then ω(x) <· ω(y).

Case 1. x = 2kv and y = 2k1v [k ≥ 0; v ∈ Z (1)].

If v = u11, u2, or u21 for some u ∈ Z (1), then ω(x) <· ω(y). If v = 1, then ω(x) =
ω(2k1) = 2k1 <· 2k2 = ω(2k11) = ω(y).

Else, v = ε. If k = 0, then ω(x) = ω(ε) = ε <· 1 = ω(1) = ω(y). If k ≥ 1, then
ω(x) = ω(2k) = 2k−111 <· 2k−121 = 2k1 = ω(2k1) = ω(y).

Case 2. x = 2k1v and y = 2k2v [k ≥ 0; v ∈ Z (1)].

If v = u11, u2, u21, or ε for some u ∈ Z (1),then ω(x) <· ω(y).
Else, v = 1, so ω(x) = ω(2k11) = 2k2 <· 2k21 = ω(2k21) = ω(y).

Theorem 4.5 The automorphism group of Z (1) is isomorphic to Z2, the non-trivial au-
tomorphism being ω : Z (1) → Z (1) defined for all w ∈ Z (1) by:

ω(w) =




u2 if w = u11 [u ∈ Z (1)],

u11 if w = u2 [u ∈ Z (1)],

w otherwise.
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The automorphism group of Z (r ) for r ≥ 2 is in one-to-one correspondence with SZ (r )
r .

Given τ̄ = (τw)w∈Z (r ) ∈ SZ (r )
r , define τ̄ : Z (r ) → Z (r ) for all w ∈ Z (r ) by induction

on |w|:

τ̄ (w) =
{

2k if w = 2k (k ≥ 0),

2k1τv (i)τ̄ (v) if w = 2k1iv [k ≥ 0; 1 ≤ i ≤ r ; v ∈ Z (r )].

In general, Aut (Z (r )) is not isomorphic to the product group SZ (r )
r .

Proof: If τ̄ ∈ Aut (Z (1)), then τ̄ (2) is either 2 or 11. By Lemmas 4.2 and 4.3, only the
identity automorphism fixes 2, and w2 = idZ (1), so Aut (Z (1)) = {idZ (1),ω}.

If r ≥ 2, then τ̄ (2) = 2 for all τ̄ ∈ Aut (Z (r )), since every other element of rank 2 is, by
Lemma 4.1, join-irreducible. Hence the form of τ̄ follows from Lemmas 4.2 and 4.3.

Note that if τ̄ and v̄ are automorphisms associated with the sequences �τ = (τw)w∈Z (r ), �v =
(vw)w∈Z (r ) ∈ SZ (r )

r , and v ∈ Z (r ) is a minimal element such that τv 	= vv (say, τv(i) = j 	=
k = vv(i)), then τ̄ (1iv) = 1 j τ̄ (v) 	= 1k τ̄ (v) = 1k v̄(v) = v̄(1iv). Hence, each automorphism
constructed is unique.

To prove the last statement, note that SZ (2)
2 has exponent 2. But consider the map τ̄ :

Z (2) → Z (2) where, for all w ∈ Z (2),

τw =
{

(12) if w = ε or w = 11,

(1)(2) otherwise.

(See figure 3.)
Hence τ̄ (1111) = 1212, τ̄ (1212) = 1211, so τ̄ 2(1111) 	= 1111 and τ̄ 2 	= idZ (2). Therefore

Aut (Z (2)) 	∼= SZ (2)
2 .

Collecting all the observations above, we can conclude as follows.

Corollary 4.6 The automorphism group Aut (Z (r )) is isomorphic to Z2 
 Sr .

Proof: Let us denote the reflection of ω of Z (1) and let ti = (i, i + 1)(i = 1, . . . , r − 1)
permutting the 1i ’s. Then one can see that all the automorphisms of Z (r ) are the products
of ti and s under the following conditions:

order relations:

t2
i = s2 = 1 (i = 1, . . . , r − 1)

and the braid relations:

ti t j = t j ti (for all i, j = 0, . . . , r − 1 such that |i − j | > 1, t0 = s),

st j = t j s ( j = 2, . . . , r − 1), st1st1 = t1st1s,

ti ti+1ti = ti+1ti ti+1 (i = 1, . . . , r − 1).
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Hence we can conclude that Aut (Z (r )) ∼= Z2 
 Sr which is the Weyl group of type
Br .

Remark According to the Shephard–Todd notation, this is G(2, 1, r ), which is a special
case of the complex reflection group of type G(d, 1, r ) = Zd 
 Sr with d = 2.

For further detailed verifications of the relations of s and ti in the proof above, please
consult the second author.

The problem of Stanley from 1988 is thereby solved.
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