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Abstract. We consider the permutation group algebra defined by Cameron and show that if the permutation
group has no finite orbits, then no homogeneous element of degree one is a zero-divisor of the algebra. We
proceed to make a conjecture which would show that the algebra is an integral domain if, in addition, the group
is oligomorphic. We go on to show that this conjecture is true in certain special cases, including those of the form
H Wr S and H Wr A, and show that in the oligormorphic case, the algebras corresponding to these special groups
are polynomial algebras. In the H Wr A case, the algebra is related to the shuffle algebra of free Lie algebra theory.
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1. Introduction

Let G be a permutation group on an (infinite) set �. Cameron [1] defined a commutative,
associative, graded algebra A(G) which encodes information about the action of G on finite
subsets of �. Such algebras have much combinatorial interest, but little is known about
them. The algebra has some trivial zero divisors if G has any finite orbits, yet the question
of what happens when G has no finite orbits is the subject of several conjectures due to
Cameron [1], and we will be exploring two of them. The first is:

Conjecture 1.1 If G has no finite orbits, then ε is a prime element in A(G).

Here ε is a certain element in the degree one component of the algebra, defined in the
next section, and ‘prime’ is meant in the ring-theoretic sense: if ε divides f g, then ε divides
f or g. The following weaker conjecture would follow from this, as we explain at the end
of Section 2.

Conjecture 1.2 If G has no finite orbits, then A(G) is an integral domain.

The first conjecture would give us insight into the following combinatorial question. If
the number of orbits of G on unordered k-element subsets of � is nk , then for which groups
does nk = nk+1 < ∞ hold? We will not study this question directly here; more information
can be found in [1] and [2, Section 3.5].
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We first show that no homogeneous element of degree one in the algebra is a zero-divisor.
Unfortunately, it is not obvious how to extend this argument to higher degrees. We then go
on to give a conjecture which would, if proven, yield a proof of the weaker Conjecture 1.2,
and show that it holds in two interesting classes of permutation groups. It also turns out
in these two cases that the algebra A(G) is a polynomial algebra, and we determine an
explicit set of polynomial generators. It will follow that the stronger conjecture also holds
in these cases. Although these results do not help to answer the question raised in the
previous paragraph (as in these cases, nk < nk+1 for all k), they do provide further evidence
to support the conjectures.

2. The graded algebra of a permutation group

We now give the definition of the algebra under consideration. Let G be a permutation group
acting on �. Let K be a field of characteristic 0 (either Q or C will do). Define Vn(G) to be
the K -vector space of all functions from n-subsets of � to K which are invariant under the
natural action of G on n-subsets of �. Define the graded algebra

A(G) =
∞⊕

n=0

Vn(G)

with multiplication defined by the rule that for any f ∈ Vm(G) and g ∈ Vn(G), the product
f g ∈ Vm+n(G) is such that for any (m + n)-subset X ⊆ �,

( f g)(X ) =
∑
Y⊆X
|Y |=m

f (Y )g(X\Y ).

It is easy to check that, with this multiplication, A(G) is a commutative, associative, graded
algebra.

If G has any finite orbits, then this algebra contains zero-divisors. For let X ⊆ � be
a finite orbit, |X | = n, and let f ∈ Vn(G) be the characteristic function of this set (so
f (X ) = 1 and f (Y ) = 0 for Y �= X ); then clearly f 2 = 0.

Considering Conjecture 1.2, it is clear that there are no zero-divisors in V0(G), as multi-
plying by an element of V0(G) is equivalent to multiplying by an element of K .

We also note that if there is a zero-divisor in A(G), so that f g = 0 with 0 �= f, g ∈ A(G),
then we can consider the non-zero homogeneous components of f and g with lowest degree;
say these are fm of degree m and gn of degree n respectively. Then the term of degree m +n
in f g will be precisely fm gn , and as f g = 0, we must have fm gn = 0. So we may restrict our
attention to considering homogeneous elements, and showing that for any positive integers
m and n, we cannot find non-zero f ∈ Vm(G) and g ∈ Vn(G) with f g = 0.

Furthermore, we will show in the next section that V1(G) contains no zero-divisors as
long as G has no finite orbits, so in particular, the element ε ∈ V1(G) defined by ε(x) = 1
for all x ∈ � is a non-zero-divisor. So if f is a homogeneous zero-divisor of degree m,
with f g = 0, and g is homogeneous of degree n > m, we also have (εn−m f )g = 0, so
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εn−m f �= 0 is a zero-divisor of degree n. Thus, if we wish, we can restrict our attention
to showing that, for each positive integer n, we cannot find non-zero f, g ∈ Vn(G) with
f g = 0.

Turning now to the stronger Conjecture 1.1, we see that the second conjecture follows
from this (as in [1]). For if f g = 0, with f and g homogeneous and non-zero, and deg f +
deg g is minimal subject to this, then ε | f g, so we can assume ε | f by primality. Thus
f = ε f ′, and deg f ′ = deg f − 1. Thus ε f ′g = 0, which implies f ′g = 0 by the above,
contrary to the minimality of deg f + deg g.

3. The degree one case

We intend to prove the following theorem.

Theorem 3.1 If G has no finite orbits, then V1(G) contains no zero-divisors.

In order to prove this theorem, we will make use of a technical proposition, which is
based on a theorem of Kantor [4]. We first quote a version of Kantor’s theorem, as we will
have use for it later.

Proposition 3.2 Let 0 ≤ e < f ≤ d − e. Let X be a set with |X | = d. We define (E, F)
for subsets E, F ⊂ X with |E | = e and |F | = f by

(E, F) =
{

1 if E ⊂ F

0 otherwise,

and the matrix M = ((E, F)), where the rows of M are indexed by the e-subsets of X and
the columns by the f -subsets.

Then rank M = (
d
e

)
.

The extension of this result is as follows.

Proposition 3.3 Let 0 ≤ e < f ≤ d − 2e. Let X be a set with |X | = d, and let E0 ⊂ X
with |E0| = e be a distinguished subset of X. Let w be a weight function on the ( f − e)-
subsets of X with values in the field K , satisfying the condition that w(X ′) = 1 whenever
X ′ is an ( f − e)-subset of X such that X ′ �⊆ E0. We define (E, F) for subsets E, F ⊂ X
with |E | = e and |F | = f by

(E, F) =
{

w(F\E) if E ⊂ F

0 otherwise,

and the matrix M = ((E, F)), where the rows of M are indexed by the e-subsets of X and
the columns by the f -subsets.

Then rank M = (
d
e

)
.
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Proof of Theorem 3.1: Let g ∈ V1(G) with g �= 0, and assume h ∈ Vn(G) with n ≥ 1
and gh = 0 (the n = 0 case has been dealt with in Section 2). We must show that h = 0,
so that for any Y ⊂ � with |Y | = n, we have h(Y ) = 0. We assume that a set Y has been
fixed for the remainder of this proof.

Since g �= 0, there exists some (infinite) orbit � ⊆ � on which g is non-zero; multiplying
by a scalar if necessary, we may assume that g(δ) = 1 for all δ ∈ �. By adjoining 2n + 1
elements of � to Y , we can choose X ⊂ � with |X | = 3n + 1, Y ⊂ X and X\Y ⊂ �.

Now for any (n + 1)-subset F ⊂ X , we have (hg)(F) = 0 as gh = hg = 0, so that

(hg)(F) =
∑
E⊂F|E |=n

h(E)g(F\E) = 0.

This can be thought of as a system of linear equations in the unknowns h(E) for E ⊂ X ,
|E | = n, with the matrix M = (mEF) given by mEF = g(F\E) if E ⊂ F , and mEF = 0
otherwise.

This is precisely the situation of the proposition if we let e = n, f = n + 1 (so that
f − e = 1), d = 3n + 1, E0 = Y and w(α) = g(α); note that w(α) = 1 whenever α /∈ E0.
(We write g(α) instead of the more correct g({α}); no confusion should arise because of
this.) Thus rank M = ( d

e ) and the system of equations has a unique solution, which must
be h(E) = 0 for all E ⊂ X with |E | = n, as this is a possible solution. In particular, this
means that h(Y ) = 0, and since Y was chosen arbitrarily, it follows that h = 0.

Hence g is not a zero-divisor.

Proof of Proposition 3.3: Let R(E) be the row of M corresponding to E . M has ( d
e ) rows,

so we must show that the rows are linearly independent. We thus assume that there is a
linear dependence among the rows of M , so

R(E∗) =
∑

E �=E∗
a(E)R(E) (1)

for some e-set E∗ and some a(E) ∈ K . We first note that R(E∗) itself is non-zero: this
follows as we can pick some F ⊃ E∗ with F\E∗ �⊆ E0; for this F , we have (E∗, F) = 1.

Let � be the subgroup of Sym(X ) which stabilises E0 pointwise and E∗ setwise. If σ ∈ �,
then

(Eσ , Fσ ) =
{

w((F\E)σ ) = w(F\E) if E ⊂ F

0 otherwise;

either way, (Eσ , Fσ ) = (E, F). (For the result w((F\E)σ ) = w(F\E), note that both sides
are equal to 1 unless F\E ⊆ E0, in which case σ fixes this set pointwise.) Thus (1) implies
that, for all F ,

(E∗, F) = (E∗, Fσ ) =
∑

E �=E∗
a(Eσ )(Eσ , Fσ )

=
∑

E �=E∗
a(Eσ )(E, F).
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Thus

R(E∗) =
∑

E �=E∗
a(Eσ )R(E).

It follows that

|�| R(E∗) =
∑
σ∈�

∑
E �=E∗

a(Eσ )R(E)

=
∑

E �=E∗
R(E)

∑
σ∈�

a(Eσ ). (2)

We now consider the orbits of � on the e-subsets of X , excluding E∗. The e-sets E1 and
E2 will lie in the same orbit if and only if E1 ∩ E0 = E2 ∩ E0 and |E1 ∩ E∗| = |E2 ∩ E∗|.
Thus every orbit is described by a subset E ′ ⊆ E0 and an integer 0 ≤ i ≤ e − 1. (We
cannot have i = e, as we are excluding E∗ from consideration.) Clearly not all possible
pairs (E ′, i) will actually correspond to an orbit (it is not hard to see that necessary and
sufficient conditions for this are |E ′ ∩ E∗| ≤ i ≤ min{e−1, e−|E ′\E∗|}), so that whenever
we consider or sum over such pairs below, we implicitly restrict attention to those which
correspond to an orbit. In such cases, we write E(E ′, i) for the orbit. Also, for each such
pair, pick some E(E ′, i) ∈ E(E ′, i). Then (2) implies

|�| R(E∗) =
∑
(E ′,i)

∑
E∈E(E ′,i)

R(E)
∑
σ∈�

a(Eσ )

=
∑
(E ′,i)

∑
E∈E(E ′,i)

R(E)
∑
σ∈�

a(E(E ′, i)σ )

=
∑
(E ′,i)

∑
σ∈�

a(E(E ′, i)σ )
∑

E∈E(E ′,i)

R(E),

so that

R(E∗) =
∑
(E ′,i)

b(E ′, i)
∑

E∈E(E ′,i)

R(E) (3)

with b(E ′, i) ∈ K , and clearly not all of the b(E ′, i) can be zero as R(E∗) is not zero.
We define a total order on the pairs (E ′, i) as follows. Extend the partial order given by ⊆

on the subsets of E0 to a total order ≤, and then define (E ′, i) ≤ (E ′′, j) if E ′ < E ′′ or
E ′ = E ′′ and i ≤ j . We now proceed to derive a contradiction by showing that (3) leads to
a system of linear equations for the b(E ′, i) which is triangular under this total order, with
non-zero diagonal entries, and deduce that all of the b(E ′, i) must be zero.

Let (Ē, n) be a pair corresponding to an orbit. Since 2e + f ≤ d, there exists an f -set
F(Ē, n) satisfying F(Ē, n) ∩ E0 = Ē and |F(Ē, n) ∩ E∗| = n. (Simply take E(Ē, n) and



30 GILBEY

adjoin f − e points lying in X\(E0 ∪ E∗).) As n ≤ e − 1, it follows that F(Ē, n) �⊇ E∗, so
(E∗, F(Ē, n)) = 0. Hence by (3) we have

0 =
∑
(E ′,i)

b(E ′, i)
∑

E∈E(E ′,i)

(E, F(Ē, n)) (4)

for all such pairs (Ē, n).
We note that F(Ē, n)∩ E0 = Ē , and further that E ∈ E(E ′, i) implies that E ∩ E0 = E ′;

thus for the term (E, F(Ē, n)) in Eq. (4) to be non-zero, where E ∈ E(E ′, i), we require
E ′ ⊆ Ē , hence also E ′ ≤ Ē . Furthermore, if (E, F(Ē, n)) �= 0, we must have i ≤ n as
E ⊂ F(Ē, n). Thus if (Ē, n) < (E ′, i), we have

∑
E∈E(E ′,i)

(E, F(Ē, n)) = 0. (5)

Also, there is an e-set E ⊂ F(Ē, n) satisfying E ∩ E∗ = F(Ē, n) ∩ E∗ and E ∩ E0 =
F(Ē, n) ∩ E0 = Ē ; just take the union of Ē with F(Ē, n) ∩ E∗ and sufficiently many
remaining points of F(Ē, n). For each such E , we have F(Ē, n)\E �⊆ E0, so (E, F(Ē, n)) =
1. Since K has characteristic zero, we deduce that

∑
E∈E(Ē,n)

(E, F(Ē, n)) �= 0, (6)

as the sum is over all sets of precisely this form.
It then follows from (4) and (5) that for each pair (Ē, n):

0 =
∑

(E ′,i)≤(Ē,n)

b(E ′, i)
∑

E∈E(E ′,i)

(E, F(Ē, n)).

Now this is a system of linear equations in the unknowns b(E ′, i) which is lower triangular.
Also, by (6), the diagonal entries are non-zero. It follows that the unique solution to this
system is that all of the b(E ′, i) are zero, which provides the required contradiction to Eq. (3)
above.

4. Oligomorphic-type cases: Our conjecture

We recall that an oligomorphic permutation group is a permutation group in which there
are only finitely many orbits on n-sets for each n. Two trivial, but important, examples
which we will make much use of in the following sections are S, the symmetric group on
the integers (which has only one orbit on n-sets for each n), and A, the group of order-
preserving permutations of the rationals (which again has only one orbit on n-sets for
each n, although it has n! orbits on n-tuples of distinct rationals). Some non-trivial examples
include the automorphism groups of the random graph and the random tournament, which
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will be described briefly in the following sections. For more information on oligomorphic
permutation groups, see Cameron [2].

In this section, we will be considering groups which satisfy a certain property. Since all
oligomorphic permutation groups do so all of the results and conjectures we describe will
apply, in particular, to such groups.

4.1. Ramsey orderings on orbits of n-sets

Cameron proved the following Ramsey-type result in [2, Proposition 1.10].

Lemma 4.1 Suppose that the n-sets of an infinite set X are coloured with r colours, all
of which are used. Then there is an ordering c1, . . . , cr of the colours and infinite subsets
X1, . . . , Xr , such that Xi contains an n-set of colour ci but no set of colour c j for j > i .

We use this as the inspiration for the following definition. If G is a permutation group
on �, we say that the orbits of G on n-sets of � can be Ramsey ordered if, given any
finite N > n, there is an ordering of the orbits cα , α ∈ A, where A is a well-ordered set,
and a corresponding sequence of (possibly infinite) subsets Xα ⊆ � with |Xα| ≥ N , and
such that Xα contains an n-set in the orbit cα but no n-set in an orbit cβ for β > α. (We
can take A to be a set of ordinals with the ∈-ordering if we wish; this is the reason for
using Greek letters.) This pair of sequences forms a Ramsey ordering. While the particular
Ramsey ordering may depend on N , we do not usually mention N unless we have to. The
reader may think throughout of N having a very large finite value. It turns out that this
makes certain constructions below simpler than if we required the Xα to be infinite sets.

Not every permutation group has such an ordering. For example, in the regular action
of Z on Z, there is no set with more than two elements, all of whose 2-subsets are in the
same orbit, so there cannot be a Ramsey ordering on 2-subsets. However, Cameron’s result
implies that if G is oligomorphic, then the orbits of G on n-sets can be Ramsey ordered for
each n.

It turns out that Ramsey orderings on n-sets naturally yield Ramsey orderings on m-sets
whenever m < n.

Proposition 4.2 Let G be a permutation group acting on an infinite set �. Let m < n
be positive integers, and assume that the n-set orbits of G can be Ramsey ordered, say cα

and Xα with α ∈ A are a Ramsey-ordering with N ≥ m + n. Then this ordering induces a
Ramsey ordering on the m-set orbits as follows. There is a subset B ⊆ A and a labelling of
the m-set orbits as dβ, β ∈ B, such that for each β ∈ B, an m-set in the orbit dβ appears
in Xβ, and that for each α ∈ A, Xα contains no m-sets in the orbit dβ for β > α.

We call the ordering of orbits dβ , β ∈ B together with the corresponding sets Xβ given
by this proposition the induced Ramsey ordering. Note that we use the same parameter N
in both orderings.

The proof uses the following application of Kantor’s theorem (Proposition 3.2 above),
shown to me by Peter Cameron.
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Lemma 4.3 Let m < n be positive integers, and let X be a finite set with |X | ≥ m + n.
Let the m-sets of X be coloured with colours from the set N. Given an n-subset of X, we
define its colour-type to be the multiset of colours of its ( n

m ) m-subsets. Then the number of
distinct m-set colours used in X is less than or equal to the number of distinct colour-types
among the n-subsets of X.

Proof: We note that only a finite number of colours appear among the m-subsets of X , as
they are finite in number. Without loss of generality, we may assume that the colours used
are precisely 1, 2, . . . , s.

As in Kantor’s theorem (Proposition 3.2), we let M be the incidence matrix of the m-
subsets versus n-subsets of X . By that theorem, as m < n and |X | ≥ m + n, this matrix
has rank ( |X |

m ), which equals the number of rows in the matrix. Thus, by the rank-nullity
theorem, M represents an injective linear transformation.

Now for each i = 1, . . . , s, let vi be the row vector, with entries indexed by the m-subsets
of X , whose j-th entry is 1 if the j-th m-subset has colour i , and 0 if it does not. Then vi M
is a row vector, indexed by the n-subsets of X , whose k-th entry is the number of m-subsets
of the k-th n-subset which have colour i .

Consider now the matrix M ′ whose rows are v1 M , . . . , vs M . Note that the k-th column
of this matrix gives the colour-type of the k-th n-subset of X . Its rank is given by

rank M ′ = dim 〈v1 M, . . . , vs M〉 = dim 〈v1, . . . , vs〉 = s,

as M represents an injective linear transformation, and the s vectors v1, . . . , vs are clearly
linearly independent. Now since the row rank and column rank of a matrix are equal, we
have s = rank M ′ ≤ number of distinct columns in M ′, which is the number of n-set
colour-types in X . Thus the number of m-set colours appearing in X is less than or equal
to the number of n-set colour-types in X , as we wanted.

Proof of Proposition 4.2: Let cα be any n-set orbit, and let X be a representative of this
orbit. We observe that the multiset of m-set orbits represented by the ( m

n ) m-subsets of X
is independent of the choice of X in this orbit (for let X̄ be another representative of the
orbit cα , with X̄ = g(X ), where g ∈ G. Then the set of m-subsets of X is mapped to the set
of m-subsets of X̄ by g, and so the multisets of m-set orbits represented by these two sets
are identical). In particular, we may say that an n-set orbit contains an m-set orbit, meaning
that any representative of the n-set orbit contains a representative of the m-set orbit.

We first claim that every m-set orbit appears in some Xα: take a representative of an m-set
orbit, say Y ⊂ �. Adjoin a further n −m elements to get an n-set X̄ . This n-set lies in some
orbit, so there is a representative of this orbit in one of the Xα , say X ⊂ Xα . Then this Xα

contains a representative of our m-set orbit by the above argument, as we wished to show.
Now if Y ⊂ � is a representative of an m-set orbit, we set

βY = min{ α : g(Y ) ⊂ Xα for some g ∈ G}.
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Note that this implies that the m-set orbit containing Y is contained in cβY but not in cα for
any α < βY . We set B = {βY : Y ⊂ � and |Y | = m}, and if Y is an m-set, then we set dβY to
be the orbit of Y . We claim that B satisfies the conditions of the proposition with this orbit
labelling. Certainly an m-set in the orbit dβY appears in XβY for each Y , by construction,
and for each α ∈ A, Xα contains no m-sets in the orbit dβ for β > α, again by construction.
However, for dβY to be well-defined, we require that βY1 �= βY2 if Y1 and Y2 lie in distinct
orbits. We now show this to be the case by demonstrating that given any α0 ∈ A, there can
only be one m-set orbit appearing in cα0 which has not appeared in any cα with α < α0.

So let α0 ∈ A, and let X ⊆ Xα0 have size m + n and contain an n-set in the orbit cα0 .
By the observation we made above, namely that the m-set orbits appearing in an n-set are
independent of the choice of the n-set in its n-set orbit, it suffices to show that our set
X contains at most one new m-set orbit. To use the lemma, we colour the m-subsets of X
as follows. If Y is an m-set with βY < α0, then Y is given colour 1. Those Y ⊂ X with
βY = α0 are given the colours 2, 3, . . . , with a distinct colour per m-set orbit. (Note that
any Y ⊂ X has βY ≤ α0, as all n-subsets of Xα0 lie in orbits cα with α ≤ α0.)

We now consider the possible colour-types of the n-sets of X . Note first that since the
m-sets in a given m-set orbit all have the same colour, the colour-type of an n-set depends
only upon the n-set orbit in which it lies. There is some n-subset of X in the orbit cα0 by
construction, and this has a certain colour-type. Any other n-subset X̃ ⊂ X is either in the
same orbit cα0 , and so has the same colour-type, or it is in some other orbit cα with α < α0.
In the latter case, every m-subset Y ⊂ X̃ must have βY ≤ α < α0, and so it has colour 1.
Thus the colour-type of such an n-set must be the multiset [1, 1, . . . , 1].

If every n-subset of X is in the orbit cα0 , then there is only one colour-type, and so there
can only be one m-set colour in X by the lemma, that is, only one m-set orbit with βY = α0.
On the other hand, if X contains an n-set in an orbit cα with α < α0, then there are at most
two colour-types in X : the all-1 colour-type and the colour-type of cα0 . Thus, by the lemma,
X contains at most two m-set colours. Colour 1 appears in cα , and so there is at most one
other colour present, that is, there is at most one m-set orbit with βY = α0. Thus dβY is
well-defined on m-set orbits, and we are done.

4.2. The Ramsey-ordering conjecture

Let G be a permutation group on � and let m and n be positive integers. Let d be an m-set
orbit and e an n-set orbit. If c is an (m + n)-set orbit, then we say that c contains a d ∪ e
decomposition if an (m + n)-set X in the orbit c can be written as X = Xm ∪ Xn with
Xm in d and Xn in e. We can easily show using a theorem of P. M. Neumann that if G has
no finite orbits, then for every pair (d, e), there exists an (m + n)-set orbit c containing a
d ∪ e decomposition, as follows.

Neumann [5] proved the following: Let G be a permutation group on � with no finite
orbits, and let � be a finite subset of �. Then there exists g ∈ G with g�∩� = ∅. It follows
trivially that if Y and Z are finite subsets of �, then there exists g ∈ G with gY ∩ Z = ∅
(just take � = Y ∪ Z ). In our case, let Xm and Xn be representatives of d and e respectively.
Then there exists g ∈ G with gXm ∩ Xn = ∅, and gXm ∪ Xn is an (m + n)-set with the
required decomposition, hence we can take c to be its orbit.
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We will be considering groups G which have a Ramsey ordering on their (m + n)-set
orbits. Let cα , α ∈ A be the ordering on (m + n)-sets, and let dβ , β ∈ B and eγ , γ ∈ C
be the induced Ramsey orderings on m- and n-sets respectively (where we assume N is
sufficiently large). We then define

β ∨ γ = min{ α : cα contains a dβ ∪ eγ decomposition}.
Here is our main conjecture.

Conjecture 4.4 Let G be a permutation group on � with no finite orbits and for which the
orbits on n-sets can be Ramsey ordered for every n. Then given positive integers m and n,
there exists some Ramsey ordering of the orbits on (m +n)-sets with N ≥ 2(m +n), say cα ,
α ∈ A with corresponding sets Xα ⊆ �, which induces Ramsey orderings dβ , β ∈ B and
eγ , γ ∈ C on the m-set orbits and n-set orbits respectively, and which satisfies the following
conditions for all β, β ′ ∈ B and γ, γ ′ ∈ C:

β ∨ γ < β ′ ∨ γ if β < β ′ and β ∨ γ < β ∨ γ ′ if γ < γ ′.

Note that the conditions of this conjecture also imply that if β < β ′ and γ < γ ′, then
β ∨ γ < β ∨ γ ′ < β ′ ∨ γ ′, so that β ∨ γ ≤ β ′ ∨ γ ′ implies that either β < β ′ or γ < γ ′

or (β, γ ) = (β ′, γ ′).
Given this conjecture, it is easy to show that A(G) is an integral domain for such groups.

For if f g = 0 with 0 �= f ∈ Vm(G) and 0 �= g ∈ Vn(G), let β0 be such that f (dβ) = 0 for
β < β0 but f (dβ0 ) �= 0, and let γ0 be such that g(eγ ) = 0 for γ < γ0 but g(eγ0 ) �= 0. (We
write f (dβ) to mean the value of f (Y ) where Y is any representative of the orbit dβ , and so
on.) Letting α0 = β0 ∨ γ0, we can consider f g(cα0 ). Now since f g = 0, this must be zero,
but we can also determine this explicitly. Letting X be a representative of cα0 , we have

f g(cα0 ) = f g(X ) =
∑
Y⊂X|Y |=m

f (Y )g(X\Y ).

Every term in the sum is of the form f (dβ)g(eγ ) where dβ ∪ eγ is a decomposition of cα0 ,
so that β ∨ γ ≤ α0 = β0 ∨ γ0. But by the conjecture, this implies that except for terms
of the form f (dβ0 )g(eγ0 ) �= 0, every term either has β < β0 so that f (dβ) = 0, or γ < γ0

so that g(eγ ) = 0, and hence every one of these terms is zero. Since there exist terms of
the form f (dβ0 )g(eγ0 ) by the choice of α0, we must have f g(cα0 ) �= 0. But this contradicts
f g = 0, and so A(G) is an integral domain.

Recall from Section 2 that we can assume m = n when showing that A(G) is an integral
domain (that is, f g = 0 where f, g ∈ Vn(G) implies f = 0 or g = 0); hence we can restrict
ourselves to proving the conjecture in the case m = n if this is easier.

5. Special cases (I): Wreath-S-like groups

5.1. Notational conventions

We gather here some notation that we will be using for the rest of this paper.
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We will make use of the lexicographical order on finite sequences and multisets, which
we define as follows. Let (X, <) be a totally ordered set. If x = (x1, . . . , xr ) and y =
(y1, . . . , ys) are two ordered sequences of elements of X , then we say that x is lexicograph-
ically smaller than y, written x <lex y, if there is some t with xi = yi for all i < t , but
either xt < yt or r + 1 = t ≤ s. If we now take a finite multiset of elements of X , say M ,
we write seq(M) to mean the sequence obtained by writing the elements of M (as many
times as they appear in M) in decreasing order. Then if M1 and M2 are finite multisets, we
define M1 <lex M2 to mean seq(M1) <lex seq(M2). Note that <lex is a total order on the set
of finite multisets, for seq(M1) = seq(M2) if and only if M1 = M2. If we need to explicitly
list the elements of a multiset, we will write [x1, x2, . . .]. We write M1 + M2 for the multiset
sum of the multisets M1 and M2, so if M1 = [x1, . . . , xr ] and M2 = [y1, . . . , ys], then
M1 + M2 = [x1, . . . , xr , y1, . . . , ys].

In the following sections, we will talk about a set of connected blocks for a permutation
group, the idea being that every orbit will correspond to a multiset or sequence of connected
blocks. The choice of terminology will be explained below, and is not related to blocks of
imprimitivity. Also, the individual words “connected” and “block” have no intrinsic meaning
in the context of the definitions in this paper. Every connected block � has a positive integral
weight (for which we write wt(�)), and the weight of a sequence or multiset of connected
blocks is just the sum of weights of the individual connected blocks. We well-order the
connected blocks of each weight, and denote the connected blocks of weight i by �

( j)
i ,

where j runs through some well-ordered indexing set. Without loss of generality, we assume
that �

(1)
1 is the least connected block of weight 1. We then define a well-ordering on all

connected blocks by �
( j)
i < �

( j ′)
i ′ if i < i ′ or i = i ′ and j < j ′. Using this ordering, we can

then talk about the lexicographic ordering on sequences or multisets of connected blocks.

5.2. Wreath-S-like groups

Our prototypical family of groups for this class of groups are those of the form G = H Wr S,
where H is a permutation group on � and S = Sym(Z), the symmetric group acting on a
countably infinite set (we take the integers for convenience). The action is the imprimitive
one, so G acts on � = � × Z. We extract those features of this group which are necessary
for the proof below to work.

Definition 5.1 We say that a permutation group G on � is wreath-S-like if there is a set of
connected blocks {�( j)

i } and a bijection φ from the set of orbits of G on finite subsets of � to
the set of all finite multisets of connected blocks, with the bijection satisfying the following
conditions (where we again blur the distinction between orbits and orbit representatives):

(i) If Y ⊂ � is finite, then wt(φ(Y )) = |Y |.
(ii) If Y ⊂ � is finite and φ(Y ) = [�( j1)

i1
, . . . , �

( jk )
ik

], we can partition Y as Y = Y1 ∪· · ·∪Yk

with |Yl | = il for each l. Furthermore, if Z ⊆ Y and Z = Z1 ∪ · · ·∪ Zk , where Zl ⊆ Yl

for each l, then we can write φ(Z ) as a sum of multisets φ(Z ) = M1 +· · ·+ Mk , where
wt(Ml) = |Zl | for each l and Ml = [�( jl )

il
] if Zl = Yl .
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Note that condition (ii) implies that φ(Yl) = [�( jl )
il

] for j = 1, 2, . . . , k. Essentially, this
condition means that subsets of Y correspond to “submultisets” of φ(Y ) in a suitable sense.

In the case of G = H Wr S mentioned above, we take the connected blocks of weight n
to be the orbits of the action of H on n-subsets of �. Then every orbit of G on finite subsets
of � can be put into correspondence with a multiset of H -orbits as follows. If Y ⊂ � is
an orbit representative, then φ(Y ) = [ πi (Y ) : πi (Y ) �= ∅], where the πi are projections:
πi (Y ) = {δ : (δ, i) ∈ Y }, and we identify orbits of H with orbit representatives. Note that
wt(φ(Y )) = |Y | as required, and that condition (ii) is also satisfied; in fact, in the notation

of the condition, we have Ml = [�
( j ′

l )
i ′
l

] for each l, for some appropriate i ′
l and j ′

l .
Another example is the automorphism group of the random graph. The random graph is

the unique countable homogeneous structure whose age consists of all finite graphs. It is also
known as the Fraı̈ssé limit of the set of finite graphs; see Cameron [2] for more information
on homogeneous structures and Fraı̈ssé’s theorem. We take the set of connected blocks to
be the isomorphism classes of finite connected graphs, where the weight of a connected
block is the number of vertices in it. Any orbit can be uniquely described by the multiset
of connected graph components in an orbit representative. Condition (i) is immediate, as
is condition (ii). Note, however, that there are examples in this scenario where Ml may not
be a singleton. For example, if Y = P2 is the path of length 2 (with three vertices), so that
φ(Y ) = [P2], and Z ⊂ Y consists of the two end vertices of the path, then φ(Z ) = [K1, K1].

This prototypical example explains the choice of terminology: the basic units in this
example are the connected graphs, so we have called our basic units connected blocks,
both to suggest this example and that of strongly connected components in tournaments as
considered in Section 6 below.

Cameron [3, Section 2] has shown that A(G) is a polynomial algebra if G is an oligo-
morphic wreath-S-like group, from which it follows that A(G) is an integral domain in this
case. It also follows that ε is a prime element, so both Conjectures 1.1 and 1.2 hold in this
case. The argument that A(G) is a polynomial algebra in the oligomorphic case is similar
to that presented below for wreath-A-like groups, only significantly simpler.

We now show, using a new argument based on Ramsey-orderings, that A(G) is an integral
domain in the wreath-S-like case, even without the assumption that G is oligomorphic. This
will also provide a basis for the arguments presented in the next section for wreath-A-like
groups.

Theorem 5.2 If G is wreath-S-like, then A(G) is an integral domain.

Proof: We claim that in such a situation, the conditions of Conjecture 4.4 are satisfied,
and hence A(G) is an integral domain.

Following the requirements of the conjecture, let m and n be positive integers and pick
any integer N ≥ 2(m + n). Denote the inverse of φ by ψ and let α run through all multisets
of connected blocks of total weight m +n, then we set cα = ψ(α) and let Xα be an N -set in
the orbit ψ(α + [�(1)

1 , . . . , �
(1)
1 ]), where the second multiset has N −(m +n) copies of �

(1)
1 .

We claim that this gives a Ramsey ordering of the orbits on (m +n)-sets, where the multisets
are ordered lexicographically (which gives a well-ordering on the multisets). Firstly, every
(m + n)-set orbit appears among the list by hypothesis, as ψ is a bijection. Secondly, by
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construction, there is an (m + n)-subset of Xα in the orbit ψ(α), namely partition Xα as
in condition (ii) of the definition, and remove all of the elements corresponding to the
copies of �

(1)
1 added. This subset will then map to α under φ, by condition (ii). Finally, any

(m + n)-subset of Xα can be seen to correspond to a multiset lexicographically less than or
equal to α, again using condition (ii) and the fact that �

(1)
1 is the least connected block, so

the subset will be in an orbit cβ with β ≤lex α, as required.
We note that the induced Ramsey orderings on m-set orbits and n-set orbits are given by

precisely the same construction. Specifically, let β be a multiset with wt(β) = n. Then the
orbit corresponding to the multiset β first appears in Xα0 where α0 = β + [�(1)

1 , . . . , �
(1)
1 ].

For assume that an n-set Z in the orbit ψ(β) appears in Xα . As we have φ(Z ) = β, β must
be a “submultiset” of α in the sense of condition (ii), and it is clear that the lexicographically
smallest such α is the one given by adjoining an appropriate number of copies of �

(1)
1 to β.

It is not difficult to show that β ∨ γ is precisely the multiset β + γ , and that β <lex β ′

implies β + γ <lex β ′ + γ , and therefore β ∨ γ <lex β ′ ∨ γ ; similarly, γ <lex γ ′ implies
β ∨ γ <lex β ∨ γ ′ (the argument is similar to that of Theorem 6.2 below). Thus the
conditions of the conjecture are satisfied by this Ramsey ordering, and hence A(G) is an
integral domain.

6. Special cases (II): Wreath-A-like groups

We can now apply the same ideas used for the wreath-S-like case to the next class of
groups, although the details are more intricate. The only essential difference between these
two classes is that here we deal with ordered sequences of connected blocks instead of
unordered multisets of connected blocks. We first define this class of groups and show that
their algebras are integral domains. We then show that in the oligomorphic case, they have
a structure similar to that of shuffle algebras, and deduce that they are polynomial rings.
With this information, we then look at some integer sequences which arise from this family
of groups.

6.1. Wreath-A-like groups

If we have two finite sequences S1 = (x1, . . . , xr ) and S2 = (y1, . . . , ys), then we write
S1 ⊕ S2 = (x1, . . . , xr , y1, . . . , ys) for their concatenation.

Definition 6.1 We say that a permutation group G on � is wreath-A-like if there is a set
of connected blocks {�( j)

i } and a bijection φ from the set of orbits of G on finite subsets
of � to the set of all finite sequences of connected blocks, with the bijection satisfying the
following conditions:

(i) If Y ⊂ � is finite, then wt(φ(Y )) = |Y |.
(ii) If Y ⊂ � is finite and φ(Y ) = (�( j1)

i1
, . . . , �

( jk )
ik

), we can partition Y as an ordered union
Y = Y1∪· · ·∪Yk with |Yl | = il for each l. Furthermore, if Z ⊆ Y and Z = Z1∪· · ·∪Zk ,
where Zl ⊆ Yl for each l, then we can write φ(Z ) as a concatenation of sequences
φ(Z ) = S1 ⊕ · · · ⊕ Sk , where wt(Sl) = |Zl | for each l and Sl = (�( jl )

il
) if Zl = Yl .
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As in the wreath-S-like case, condition (ii) implies that φ(Yl) = (�( jl )
il

) for l = 1, 2,
. . . , k.

Our prototypical family of groups for this class of groups are those of the form G =
H Wr A, where H is a permutation group on �, and A is the group of all order-preserving
permutations of the rationals. Again, the wreath product action is the imprimitive one, so
G acts on � = �×Q. As before, we take the connected blocks of weight n to be the orbits
of the action of H on n-subsets of �. Then every orbit of G on finite subsets of � can be
put into correspondence with a unique sequence of H -orbits as follows. If Y ⊂ � is an
orbit representative, we can apply an element of the top group A to permute Y to a set of
the form (�1 × {1}) ∪ (�2 × {2}) ∪ · · · ∪ (�t × {t}), where each �i is non-empty. Each
of the �i is a representative of some H -orbit, so we set φ(Y ) = (�1, �2, . . . , �t ), again
blurring the distinction between orbits and orbit representatives. It is again easy to see that
conditions (i) and (ii) of the definition hold in this case.

Another example is the automorphism group of the random tournament. In this context,
a tournament is a complete graph, every one of whose edges is directed, and the random
tournament is the Fraı̈ssé limit of the set of finite tournaments. A tournament is called
strongly connected if there is a path between every ordered pair of vertices. It can be
shown quite easily that every tournament can be decomposed uniquely as a sequence of
strongly connected components, where the edges between components are all from earlier
components to later ones. So here we take our set of connected blocks to be the isomorphism
classes of finite strongly connected tournaments (and again, the weight of a connected block
is the number of vertices in it), and if T is a finite subset of the random tournament, we
set φ(T ) to be the sequence of strongly connected components of T . Once more, it is easy
to see that conditions (i) and (ii) hold. Also, as in the case of the random graph, it may be
that a sub-tournament has more components that the original tournament; for example, the
cyclically-oriented 3-cycle is strongly connected, but any 2-element subset of it consists of
two strongly connected 1-sets.

A third example is the automorphism group of the “generic pair of total orders”. This is
the Fraı̈ssé limit of the class of finite sets, where each finite set carries two (unrelated) total
orders, which can be taken as a1 < a2 < · · · < an and aπ (1) ≺ aπ (2) ≺ · · · ≺ aπ (n) for
some permutation π ∈ Sn . Thus orbits of the Fraı̈ssé limit are described by permutations.
We can take the connected blocks for this group to be the permutations π ∈ Sn for which
there exists no k with 0 < k < n such that π maps {1, . . . , k} to itself. The details of this
example are not hard to check.

Theorem 6.2 If G is wreath-A-like, then A(G) is an integral domain.

Proof: The proof runs along very similar lines to that of Theorem 5.2. If α is a sequence
of connected blocks, we write [α] to denote the multiset whose elements are the terms of
the sequence with their multiplicities. We define an ordering on sequences by α < β if
[α] <lex [β] or [α] = [β] and α >lex β.

Again, we show that the conditions of Conjecture 4.4 are satisfied in this case. Let m
and n be positive integers and let N be a positive integer with N ≥ 2(m + n). Denoting the
inverse of φ by ψ and letting α run through all sequences of connected blocks of total weight
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m +n, we set cα = ψ(α) and let Xα be an N -set in the orbit ψ(α ⊕ (�(1)
1 , . . . , �

(1)
1 )), where

the second sequence has N − (m + n) copies of �
(1)
1 . We claim that this gives a Ramsey

ordering of the orbits on (m + n)-sets, where the sequences are ordered as described in the
previous paragraph. Firstly, every (m +n)-set orbit appears in the list by hypothesis, as ψ is
a bijection. Secondly, by construction, there is an (m + n)-subset of Xα in the orbit ψ(α),
namely partition Xα as in condition (ii) of the definition, and remove all of the elements
corresponding to the copies of �

(1)
1 appended. This subset will then map to α under φ, by

condition (ii).
To show the final condition of Ramsey orderings, we must show that any (m + n)-subset

of Xα is in an orbit corresponding to a sequence less than or equal to α. Using the notation
of condition (ii), we let α = (�( j1)

i1
, . . . , �

( jk )
ik

) and Xα = X1 ∪ · · · ∪ Xk ∪ Xk+1 ∪ · · · ∪ Xr ,
where Xk+1, . . . , Xr correspond to the appended copies of �

(1)
1 . Consider a subset Y =

Y1 ∪ · · · ∪ Yr ⊂ Xα with |Y | = m + n. If Yl �= Xl for some l with Xl �= �
(1)
1 , then

clearly [φ(Y )] <lex [α], as wt(Sl) < il , and the only new connected blocks which can
be used are copies of �

(1)
1 , which is the least connected block. So the remaining case to

consider is where some of the �
( jl )
il

are equal to �
(1)
1 , and for some or all of those, Yl = ∅,

whereas Ys = Xs for some s > k. But in such a case, while we have [φ(Y )] = [α], it is
clear that φ(Y ) ≥lex α. So in either case, we have φ(Y ) ≤ α, or equivalently Y ≤ cα , as
required.

We note that the induced Ramsey orderings on m-set orbits and n-set orbits are given by
precisely the same construction; in particular, the orbit given by the sequence β first appears
in Xα , where α = β ⊕ (�(1)

1 , . . . , �
(1)
1 ).

Finally, we must show that the remaining conditions of the conjecture are satisfied by
this Ramsey ordering. We will only show that β < β ′ implies β ∨ γ < β ′ ∨ γ ; the other
condition follows identically. We first deduce an explicit description of β ∨ γ .

A shuffle of two sequences, say (x1, . . . , xr ) and (y1, . . . , ys), is a sequence (z1, . . . , zr+s)
for which there is a partition of {1, 2, . . . , r + s} into two disjoint sequences 1 ≤ i1 < i2 <

· · · < ir ≤ r + s and 1 ≤ j1 < j2 < · · · < js ≤ r + s with zik = xk for 1 ≤ k ≤ r and
z jk = yk for 1 ≤ k ≤ s.

We first show that β ∨ γ is the lexicographically greatest shuffle of β with γ ; this is not
difficult although the argument is a little intricate. We let α0 be this greatest shuffle and
note that [α0] = [β] + [γ ]. Now let α be any sequence of connected blocks for which cα

contains a dβ ∪ eγ decomposition; we must show that α0 ≤ α (here dβ and eγ are the orbits
on m-sets and n-sets corresponding to β and γ respectively).

We let α = (A1, . . . , Ak) be this sequence of connected blocks, and let Y be a represen-
tative of the orbit cα . Write Y as an ordered union Y = Y1 ∪ · · · ∪ Yk as in condition (ii) of
the definition of wreath-A-like groups. Then any decomposition of cα into two subsets can
be written as

cα = Z ∪ Z ′ = (Z1 ∪ · · · ∪ Zk) ∪ (Z ′
1 ∪ · · · ∪ Z ′

k),

where Yl = Zl∪Z ′
l as a disjoint union for each l. Now if we requireφ(Z ) = β andφ(Z ′) = γ ,

this means that the sequences S1 ⊕ · · · ⊕ Sk and S′
1 ⊕ · · · ⊕ S′

k corresponding to Z and Z ′

respectively, as given by condition (ii), must equalβ andγ respectively. If {Zl , Z ′
l} = {Yl , ∅},

then [Sl] + [S′
l ] = [Al] by condition (ii), but if not, then [Sl] + [S′

l ] <lex [Al] by comparing
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weights. As M1 <lex M2 implies M1 + M <lex M2 + M for any multisets M1, M2 and M ,
it follows that [β] + [γ ] ≤lex [α] with equality if and only if {Zl , Z ′

l} = {Yl , ∅} for each l,
that is, [α0] ≤lex [α] with equality if and only if α is a shuffle of β and γ . And if α is such
a shuffle, then α ≤lex α0 by construction, so α0 ≤ α, as required.

Given this, we can now show that if β < β ′, then β ∨ γ < β ′ ∨ γ . We first consider
the case that [β] <lex [β ′], from which it follows that [β] + [γ ] <lex [β ′] + [γ ]. Since
[β ∨ γ ] = [β] + [γ ] and [β ′ ∨ γ ] = [β ′] + [γ ], we deduce that [β ∨ γ ] <lex [β ′ ∨ γ ], so
β ∨ γ < β ′ ∨ γ .

Now consider the other possible case, namely [β] = [β ′] but β >lex β ′. Note that
[β ∨ γ ] = [β ′ ∨ γ ] in this case, so we must show that β ∨ γ >lex β ′ ∨ γ . We let
β = (�1, . . . , �r ), β ′ = (�′

1, . . . , �
′
r ) and γ = (E1, . . . , Es) in the following. We also let

α = β ∨ γ = (A1, . . . , Ar+s) and α′ = β ′ ∨ γ = (A′
1, . . . , A′

r+s). Recalling that β ∨ γ

is the lexicographically greatest shuffle of β and γ , we can construct β ∨ γ by using the
following merge-sort algorithm (written in pseudo-code).

function MergeSort(β, γ )
{We have β = (�1, . . . , �r ) and γ = (E1, . . . , Es)}

i ← 1
j ← 1
while i ≤ r or j ≤ s do

if (i > r ) then {Ai+ j−1 ← E j ; j ← j + 1}
else if ( j > s) then {Ai+ j−1 ← �i ; i ← i + 1}
else if (E j ≥ �i ) then {Ai+ j−1 ← E j ; j ← j + 1}
else {Ai+ j−1 ← �i ; i ← i + 1}

od
return α = (A1, . . . , Ar+s)

Observe what happens if we run the algorithm on the pairs (β, γ ) and (β ′, γ ). Assume that
�i = �′

i for i < i0, but that �i0 > �′
i0

. Then they will run identically as long as i < i0.
When i = i0, they will both continue taking terms from γ until E j < �i0 or γ is exhausted.
Once this happens, the (β, γ ) algorithm will take �i0 next, so Ai0+ j−1 = �i0 , but the (β ′, γ )
algorithm will take max{�′

i0
, E j }, so A′

i0+ j−1 = max{�′
i0
, E j } < �i0 = Ai0+ j−1. Thus we

have β ∨ γ >lex β ′ ∨ γ , so β ∨ γ < β ′ ∨ γ as required.
It follows that A(G) is an integral domain, as we wanted.

6.2. Shuffle algebras

In the oligomorphic case, we can do better: the algebra A(G) is actually a polynomial algebra
if G is an oligomorphic wreath-A-like group. We show this by noting strong similarities be-
tween our algebra and standard shuffle algebras, and using well-known properties of shuffle
algebras, in particular that the Lyndon words form a polynomial basis for the shuffle algebra.

We start by briefly recalling the key facts we will need. We take these results from
Reutenauer’s book on free Lie algebras [6]. The references to definitions, theorems and so
forth are to his book.
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Let T be an alphabet. Although Reutenauer sometimes assumes the alphabet to be finite,
it will be clear that all of the results we use below work equally well in the infinite case:
since words are always of finite length and we only ever work with finitely many words at
once, we can always restrict attention to the finite subset of T containing the letters in use.

We write T ∗ for the set of words in the alphabet T . We write K〈T 〉 for the K -vector space
with basis T ∗. If we use the concatenation product (where the product of two words is just
their concatenation), then this is the ring of non-commuting polynomials over T . But there
is another product that we can define on words, and by extension on K〈T 〉, called the shuffle
product. This is explained in Section 1.4 of Reutenauer, and we now essentially quote parts
of it.

Let w = a1· · · an be a word of length n in T ∗, and let I ⊆ {1, . . . , n}. We denote by w|I
the word ai1 · · · aik if I = {i1 < i2 < · · · < ik}; in particular, w | I is the empty word if
I = ∅. (Such a word w | I called a subword of w.) Note that when

{1, . . . , n} =
p⋃

j=1

I j ,

then w is determined by the p words w|I j and the p subsets I j .
Given two words u1 and u2 of respective lengths n1 and n2, their shuffle product, denoted

by u1 �� u2, is the polynomial

u1 �� u2 =
∑

w(I1, I2),

where the sum is taken over all pairs (I1, I2) of disjoint subsets of {1, . . . , n} with I1 ∪ I2 =
{1, . . . , n} and |I j | = n j for j = 1, 2, and where the word w = w(I1, I2) is defined by
w | I j = u j for j = 1, 2. Note that u1��u2 is a sum of words of length n, each with
the same multiset of letters, and so is a homogeneous polynomial of degree n. Note also
that the empty word, denoted by 1, is the identity for the shuffle product, that the shuffle
product is commutative and associative, and that it is distributive with respect to addition.
Thus K〈T 〉 with the shuffle product is a commutative, associative algebra, called the shuffle
algebra.

Using the associative and distributive properties of the shuffle product, we can also give
an expression for the shuffle product of the words u1, . . . , u p, of respective lengths n1,
. . . , n p; their shuffle product is the polynomial

u1 �� · · · �� u p =
∑

w(I1, . . . , Ip),

where now the sum is taken over all p-tuples (I1, . . . , Ip) of pairwise disjoint subsets of
{1, . . . , n} with

⋃p
i=1 I j = {1, . . . , n} and |I j | = n j for each j = 1, . . . , p, and where the

word w = w(I1, . . . , Ip) is defined by w|I j = u j for each j = 1, . . . , p.
A word appearing in the shuffle product u1 �� · · · �� u p is called a shuffle of u1, . . . , u p.

Note that this is consistent with the definition of shuffle we used in the proof of Theorem 6.2
above. As an example, if a, b, c ∈ T , then ab �� ac = abac + 2aabc + 2aacb + acab, and
aabc and acab are both shuffles of ab and ac.



42 GILBEY

The next definition we need is that of a Lyndon word. Assume that our alphabet T is
totally ordered. Then a Lyndon word in T ∗ is a non-empty word which is lexicographically
smaller than all of its nontrivial proper right factors; in other words, w is a Lyndon word if
w �= 1 and if for each factorisation w = uv (concatenation product) with u, v �= 1, one has
w <lex v.

An alternative characterisation of Lyndon words is as follows [6, Corollary 7.7]. Given a
word w = a1 · · · an of length n, we can define the rotation operator ρ by ρ(w) = a2 · · · ana1.
Then a word w of length n ≥ 1 is Lyndon if and only if w <lex ρk(w) for k = 1, . . . ,
n − 1, which is to say that w is primitive (it does not have the form w = ur for some r > 1)
and that it is lexicographically smaller than any rotation (cyclic permutation) of itself. It
follows that Lyndon words are in bijective correspondence with primitive necklaces; see
[6, Chap. 7] for more information.

A key property of Lyndon words is that every word w ∈ T ∗ can be written uniquely
as a decreasing product of Lyndon words, so w = lr1

1 · · · lrk
k , where l1 >lex · · · >lex lk and

r1, . . . , rk ≥ 1 (this follows from Theorem 5.1 and Corollary 4.4, and can also easily be
proved directly—see Section 7.3).

Finally, Theorem 6.1 states that the shuffle algebra K〈T 〉 is a polynomial algebra generated
by the Lyndon words, and that for each word w, written as a decreasing product of Lyndon
words w = lr1

1 · · · lrk
k as in the previous paragraph, one has

S(w)
def= 1

r1! · · · rk!
l��r1
1 �� · · · �� l��rk

k = w +
∑

[u] = [w]
u <lex w

αuu, (7)

for some non-negative integers αu , where l��r means l �� · · · �� l with r terms in the product,
and, in this context, [u] means the multiset of letters in the word u.

Note that it is Eq. 7 which proves that K〈T 〉 is a polynomial algebra: the set T ∗ is a
K -vector space basis for K〈T 〉, and given any finite multiset M of elements of T , the matrix
relating the basis elements { w : w ∈ T ∗ and [w] = M } to { S(w) : w ∈ T ∗ and [w] = M }
is unitriangular when the words are listed in lexicographic order, so that { S(w) : w ∈ T ∗ }
also forms a basis for K〈T 〉. This argument is true whether T is finite or infinite.

We can now apply this to our case of oligomorphic wreath-A-like permutation groups.
Let G acting on � be such a group, as in Definition 6.1 above. We obviously take our
alphabet T to be the set of connected blocks of the action (as given by the definition of
wreath-A-like groups), so that T ∗ corresponds bijectively to the set of orbits of G on finite
subsets of �. The alphabet T has the standard ordering defined on connected blocks, and
the set T ∗ can then be ordered either by the lexicographic order (denoted <lex) or by the
order we defined at the start of Theorem 6.2 (denoted <).

Clearly A(G) can be regarded as a K -vector space, with the set of characteristic func-
tions of orbits on finite sets as basis. We will identify the connected block sequence
w = (�( j1)

i1
, . . . , �

( jk )
ik

) with the characteristic function of the corresponding orbit, writ-
ing w for both. Via this correspondence, we can identify A(G) with K〈T 〉 as vector spaces.
The grading on A(G) induces a grading on K〈T 〉: the homogeneous component Vn(G) is
identified with the subspace of K〈T 〉 spanned by {w ∈ T ∗ : wt(w) = n }. We then consider
the product that the vector space K〈T 〉 inherits via this identification. Let v ∈ T ∗ be another
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connected block sequence. We write v ��w for the product in A(G) and the induced prod-
uct in K〈T 〉. The notation is designed to indicate that this product is related to the shuffle
product, as we will see, and we call it the complete shuffle product (It is also somewhat
related to the infiltration product on K〈T 〉; see [6, Section 6.3]). Recalling the definition of
multiplication in A(G), we see that for any finite subset X ⊂ � with |X | = wt(v) + wt(w),

(v ��w)(X ) =
∑
Y⊆X|Y |=wt(v)

v(Y )w(X\Y ).

But v(Y ) is none other than the characteristic function which has value 1 if φ(Y ) = v and
0 otherwise, and similarly for w(Y\X ). So we have

(v ��w)(X ) = |{Y ⊆ X : φ(Y ) = v, φ(X\Y ) = w}|.

Thus, setting u = φ(X ) and writing u → v ∪ w if there is a Y ⊆ X with φ(Y ) = v and
φ(X\Y ) = w, we have

v ��w =
∑
u∈T ∗

βuu,

where βu > 0 if u → v ∪ w and βu = 0 otherwise.
Now we can characterise those u for which u → v ∪ w quite easily. Firstly, consider

the case that [u] = [v] + [w], that is, the set of connected blocks of u is the same as
those of w and v combined. Then u → v ∪ w if and only if u is a shuffle of v and w, by
condition (ii) of Definition 6.1, as in the proof of Theorem 6.2. In fact, the terms in v ��w

with [u] = [v] + [w] will be precisely v ��w, which is easy to see. Now consider those
terms with [u] �= [v] + [w]. If [u] <lex [v] + [w], then it is easy to see that we cannot have
u → v ∪ w, but it may be possible otherwise. We deduce that our product is given by:

v ��w = v ��w +
∑

wt(u)=wt(w)+wt(v)
[u]>lex[v]+[w]

βuu (8)

for some non-negative integers βu .
Now given w = lr1

1 . . . lrk
k written as a (concatenation) product of decreasing Lyndon

words, we can consider the complete shuffle product as we did for the normal shuffle
product above:

S̄(w)
def= 1

r1! · · · rk!
l��r1
1 �� · · · �� l��rk

k

= 1

r1! · · · rk!
l��r1
1 �� · · · �� l��rk

k +
∑

wt(u)=wt(w)
[u]>lex[w]

βuu
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= w +
∑

[u]=[w]
u<lexw

αuu +
∑

wt(u)=wt(w)
[u]>lex[w]

βuu

= w +
∑

wt(u)=wt(w)
u>w

αuu, (9)

where the αu and the βu are non-negative integers. To get the second line, we have repeatedly
used Eq. 8 to reduce the complete shuffle product to a normal shuffle product. Observe
that wt(lr1

1 · · · lrk
k ) = wt(w), hence the sum is over words with wt(u) = wt(w), and with

[u] >lex [w], since >lex is transitive and [u1] >lex [u2] implies [u1] + [u] >lex [u2] + [u]
for any word u. That the βu are non-negative is easy to see, and it is not that much harder to
see that they are integral, although we do not need this. In the third line, we have used Eq. 7,
and in the last line, we have set αu = βu in the case that [u] >lex [w], and used the relation
on words (sequences) defined in the previous section, namely u > w if [u] >lex [w] or
[u] = [w] and u <lex w.

It is also important to note that in our case, the set {u : wt(u) = wt(w)} is finite, as there
are only finitely many connected blocks of each weight, the same number as the number of
orbits on sets of size wt(w), so that the sums in Eq. 9 are all finite.

We now see, as above, that the matrix relating {w : w ∈ T ∗ and wt(w) = n} to
{S̄(w) : w ∈ T ∗ and wt(w) = n} is unitriangular when the words of weight n are listed in the
order we have defined. It follows that the S̄(w) form a vector space basis for A(G) = K〈T 〉,
and hence the set of Lyndon words is a set of polynomial generators for A(G). We summarise
these results as a theorem.

Theorem 6.3 If G is an oligomorphic wreath-A-like permutation group, then A(G) is
a polynomial ring, and the generators are those characteristic functions on orbits corre-
sponding to Lyndon words as described above.

We can now deduce:

Corollary 6.4 If G is an oligomorphic wreath-A-like permutation group, then the element
ε ∈ V1(G)is prime in A(G).

Proof: We have ε = �
(1)
1 + · · · + �

(r )
1 , where the �

( j)
1 are the orbits on 1-sets. As each

of the �
( j)
1 is a Lyndon word, A(G) = K [�(1)

1 , . . . , �
(r )
1 , �

(1)
2 , . . .]. It follows that we can

replace the polynomial generator �
(1)
1 by ε (as they are linearly related), giving

A(G) = K [ε, �(2)
1 , . . . , �

(r )
1 , �

(1)
2 , . . .]. It is clear, since we then have A(G)/(ε) ∼= K [�(2)

1 ,

. . . , �
(r )
1 , �

(1)
2 , . . .], that A(G)/(ε) is an integral domain, so ε is prime in A(G).

7. Non-oligomorphic groups

Throughout this paper, we have mostly focused on oligomorphic groups, proving results in
general where there was no problem in doing so. In this final section, we consider briefly
the issues arising in the non-oligomorphic case.
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As has already been pointed out above, the group Z acting regularly on Z does not have
a Ramsey ordering on 2-sets, so much of what we did above will not help us to understand
the algebra A(Z). It is easy to construct other similar examples.

A more difficult question is whether we have even got the “right” definition of the alge-
bra A(G) in the non-oligomorphic case. The definition we have been using was introduced
specifically to study the behaviour of oligomorphic groups. There are two finiteness condi-
tions which can be imposed on the algebra we consider.

Firstly, we have taken the direct sum A(G) = ⊕∞
n=0 Vn(G), which is the direct limit as

N → ∞ of the vector spaces
⊕N

n=0 Vn(G) (with the obvious direct maps). We could have
instead taken the cartesian sum

∑∞
n=0 Vn(G), being the inverse limit of the same family of

vector spaces (with the obvious inverse maps).
Secondly, and independently of the first choice, we could either take Vn(G) to be the

vector space of all functions from n-subsets of � to K which are fixed by G, as we have
until now, or we could take it to be the subspace of this consisting of those functions which
assume only finitely many distinct values on n-sets (the latter idea was suggested to me
by Peter Cameron). Note, though, that if there are infinitely many orbits on n-sets, this
vector space will still have uncountable dimension. It is not hard to check that if we use the
latter definition, the multiplication in the algebra is still well-defined. (Another seemingly
plausible choice, those functions in Vn(G) which are non-zero on only finitely many orbits
of G, can fail to produce a well-defined multiplication: consider, for example, the case of e2

with our favourite non-oligomorphic group, Z: it takes the value 2 on every 2-set.)
Thus we have four plausible algebras to choose from, and it is not clear which is the

“correct” one to use. More work is still required in this area.
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