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Abstract. A Sturmian word is a map W : N → {0, 1} for which the set of {0, 1}-vectors Fn(W ) := {(W (i),
W (i + 1), . . . , W (i + n − 1))T : i ∈ N} has cardinality exactly n + 1 for each positive integer n. Our main result
is that the volume of the simplex whose n + 1 vertices are the n + 1 points in Fn(W ) does not depend on W . Our
proof of this motivates studying algebraic properties of the permutation πα,n (where α is any irrational and n is any
positive integer) that orders the fractional parts {α}, {2α}, . . . , {nα}, i.e., 0 < {πα,n(1)α} < {πα,n(2)α} < · · · <

{πα,n(n)α} < 1. We give a formula for the sign of πα,n, and prove that for every irrational α there are infinitely
many n such that the order of πα,n (as an element of the symmetric group Sn) is less than n.
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1. Introduction

A binary word is a map from the nonnegative integers into {0, 1}. The factors of a binary
word W are the column vectors (W (i), W (i + 1), . . . , W (i + n − 1))T , where i ≥ 0 and
n ≥ 1. In particular, the set of factors of length n of a binary word W is defined by

Fn(W ) := {(W (i), W (i + 1), . . . , W (i + n − 1))T : i ≥ 0}.
Obviously, |Fn(W )| ≤ 2n for any binary word W . It is known [6, Theorem 1.3.13] that if
|Fn(W )| < n + 1 for any n, then W is eventually periodic. If |Fn(W )| = n + 1 for every
n—the most simple non-periodic case—then W is called a Sturmian word. Sturmian words
arise in many fields, including computer graphics, game theory, signal analysis, diophantine
approximation, automata, and quasi-crystallography. The new book of Lothaire [6] provides
an excellent introduction to combinatorics on words; the second chapter is devoted to
Sturmian words.

Throughout this paper, W is always a Sturmian word, n is always a positive integer, and
α is always an irrational between 0 and 1. A typical example of a Sturmian word is given by

cα(i) := �(i + 2)α� − �(i + 1)α� =
{

1, i + 1 ∈ {�k/α� : k ∈ Z+};
0, i + 1 	∈ {�k/α� : k ∈ Z+}.

the so-called characteristic word with slope α. The integer sequences (�k/α�)∞k=1 are called
Beatty sequences; the study of Beatty sequences is intimately related to the study of Sturmian
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words, and the interested reader can locate most of the literature through the bibliographies
of [3, 12, 14].

In this paper, we consider the n + 1 factors in Fn(W ) to be the vertices of a simplex in
Rn . Our main result, Theorem 1, is proved in Section 2.

Theorem 1.1 If W is a Sturmian word, then the volume of the simplex Fn(W ) is 1
n! .

The remarkable aspect of Theorem 1 is that the volume of the simplex Fn(W ) is inde-
pendent of W . The key to the proof of Theorem 1 is to study Fn(W ) for all Sturmian words
W simultaneously. The primary tool is the representation theory of finite groups.

Sturmian words are examples of one-dimensional quasicrystals, at least with respect to
some of the ‘working definitions’ currently in use. In contrast to the study of crystals,
group theory has not been found very useful in the study of quasicrystals. According to
Senechal [9], “The one-dimensional case suggests that symmetry may be a relatively unim-
portant feature of aperiodic crystals.” Thus, the prominent role of symmetric groups in the
proof of Theorem 1 comes as a surprise.

The proof of Theorem 1 reveals a deep connection between the simplex Fn(cα) and
algebraic properties of the permutation πα,n of 1, 2, . . . , n that orders the fractional parts
{α}, {2α}, . . . , {nα}, i.e.,

0 < {πα,n(1)α} < {πα,n(2)α} < · · · < {πα,n(n)α} < 1.

The definition of πα,n has a combinatorial flavor, and accordingly some attention has
been given to its combinatorial qualities. Using the geometric theory of continued fractions,
Sós [11] gives a formula for πα,n in terms of n, πα,n(n), and πα,n(1) (see Lemma 3.1.1).
Boyd and Steele [2] reduce the problem of finding the longest increasing subsequence in
πα,n to a linear programming problem, which they then solve explicitly. Schoißengeier [8]
used Dedekind eta sums to study πα,n and give his formula for the star-discrepancy of
nα-sequences.

Here, motivated by the appearance of πα,n in our study of the simplex Fn(W ), we initiate
the study of algebraic properties of πα,n. If σ is an element of a group (with identity element
id, we let ord(σ ) be the least positive integer t such that σ t = id, or ∞ if no such integer
exists. We use this notation with permutations, matrices, and congruence classes (the class
will always be relatively prime to the modulus). For any permutation σ , let sgn(σ ) be the
sign of σ , i.e., sgn(σ ) = 1 if σ is an even permutation and sgn(σ ) = −1 if σ is an odd
permutation. Our main results concerning πα,n are stated in Theorems 1 and 1, and proved
in Section 3.

Theorem 1.2 For every irrational α, there are infinitely many positive integers n such
that ord(πα,n) < n.

Theorem 1.3 For every irrational α and positive integer n,

sgn(πα,2n) = sgn(πα,2n+1) =
n∏

�=1

(−1)�2�α�.
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In particular, although πα,n is “quasi-random” in the sense of [4], it is highly structured
in an algebraic sense.

Sections 2 and 3 are logically independent and may be read in either order. In Section 2,
we consider Sturmian words and the simplex Fn(W ). Section 3 is devoted to proving
Theorems 1 and 1. Section 4 is a list of questions raised by the results of Sections 2
and 3 that we have been unable to answer. A Mathematica notebook containing code for
generating the functions and examples in this paper is available from the author.

2. Sturmian words

2.1. Introduction to Sturmian words

An excellent introduction to the theory of Sturmian words is given in [6, Chapter 2]. We
restate the results needed in this paper in this subsection.

If α ∈ (0, 1) is irrational and β is any real number, then the words sα,β and s ′
α,β defined

by

sα,β(i) := �(i + 1)α + β� − �iα + β�
s ′
α,β(i) := �(i + 1)α + β
 − �iα + β


are Sturmian, and every Sturmian word arises in this way [6, Theorem 2.3.13]. The irrational
number α is called the slope of the word, and the word cα := sα,α is called the characteristic
word of slope α. It is easily shown [6, Proposition 2.1.18] that Fn(W ) depends only on the
slope of W , and so it is consistent to write Fn(α) in place of Fn(W ). In fact, we shall use
the equation Fn(α) = Fn(sα,β) for all β. It is often easier to think in terms of ‘where the 1s
are’; elementary manipulation reveals that

cα(i) =

 1 i + 1 ∈

{⌊
k

α

⌋
: k ≥ 1

}
0 otherwise.

The n + 1 elements of Fn(α) are n-dimensional vectors, naturally defining a simplex in
Rn . Whenever a family of simplices arises, there are several questions that must be asked.
Can the simplex Fn(α) be degenerate? If Fn(α) is not degenerate, can one express its volume
as a function of n and α? Under what conditions on α, β, n is Fn(α) ∼= Fn(β)?

The first and second questions are answered by Theorem 1, which we prove in
Section 2.5 below. Computer calculation suggests a simple answer to the third question,
which we state as a conjecture in Section 4.

Example The characteristic word with slope e−1 ≈ 0.368 begins

(ce−1 (0), ce−1 (1), ce−1 (2), . . .)

= (0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, . . .).
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Note that

ce−1 (i) =
{

1 i + 1 ∈ {�ne� : n ≥ 1} = {2, 5, 8, 10, . . .}
0 otherwise.

The set of factors of ce−1 of length 6, arranged in anti-lexicographic order, is

F6(ce−1 ) = F6(e−1) =







1

0

1

0

0

1




,




1

0

0

1

0

1




,




1

0

0

1

0

0




,




0

1

0

1

0

0




,




0

1

0

0

1

0




,




0

0

1

0

1

0




,




0

0

1

0

0

1







.

2.2. Definitions

To analyze a simplex, one first orders the vertices (we order them anti-lexicographically).
Then, one translates the simplex so that one vertex is at the origin (we move the last factor
to �0). Finally, one writes the coordinates of the other vertices as the columns of a matrix.
If this matrix is non-singular, then the simplex is not degenerate. In fact, the volume of the
simplex is the absolute value of the determinant divided by n!. We are thus led to define the
matrix Mn(α), whose j-th column is �v j − �vn+1, where Fn(α) = {�v1, �v2, . . . , �vn+1} ordered
anti-lexicographically.

Example

M6(e−1) =




1 1 1 0 0 0

0 0 0 1 1 0

0 −1 −1 −1 −1 0

0 1 1 1 0 0

0 0 0 0 1 1

0 0 −1 −1 −1 −1




.

When a list of vectors is enclosed by parentheses, it denotes a matrix whose first column
is the first vector, second column the second vector, and so on. For example,

Mn(α) := (�v1 − �vn+1, �v2 − �vn+1, . . . �vn − �vn+1).

We also define Vk to be the n × n matrix all of whose entries are 0, save the k-th column,
which is �ek−1 − 2�ek + �ek+1.
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We shall make frequent use of Knuth’s notation:

[[Q]] =
{

1 Q is true;

0 Q is false.

We denote the symmetric group on the symbols 1, 2, . . . , n by Sn . We use several notations
for permutations interchangeably. We use standard cycle notation when convenient, and
frequently use one-line notation for permutations, i.e.,

σ = [σ (1), . . . , σ (n)].

Thus, if a list of distinct numbers is surrounded by parentheses then it is a permutation in
cycle notation, and if the numbers 1, 2, . . . , n are in any order and surrounded by brackets
then it is a permutation in one-line notation. We multiply permutations from right to left.
Also, set Pσ = (pi j ), with pi j = [[ j = σ (i)]]. This is the familiar representation of Sn as
permutation matrices.

One permutation we have already defined is πα,n. For notational convenience we set
πα,n(0) := 0 and πα,n(n + 1) := n + 1. Also, set Pj := { jα} for 0 ≤ j ≤ n, and set
Pn+1 := 1. Thus

0 = Pπα,n(0) < Pπα,n(1) < Pπα,n(2) < · · · < Pπα,n(n) < Pπα,n(n+1) = 1.

We write �ei (1 ≤ i ≤ n) be the n-dimensional column vector with every component 0
except the i-th component, which is 1. We set �en+1 = �0, the n-dimensional 0 vector. We
denote the identity matrix as I := (�e1, �e2, . . . , �en). Let �δi := �ei+1 − �ei (1 ≤ i ≤ n). In
particular, �δn = −�en .

We will also use the notation h(�v) for the Hamming weight of the {0, 1}-vector �v, i.e.,
the number of 1’s.

Set

D(σ ) := {1} ∪ {k: σ−1(k − 1) > σ−1(k)}.

In other words, D(σ ) consists of those k for which k − 1 does not occur before k in
[σ (1), σ (2), . . . , σ (n)]. For example, D([1, 3, 5, 4, 2, 6]) = {1, 3, 5}.

Set

�wσ
1 :=

∑
i∈D(σ )

�ei

and for 1 ≤ j ≤ n, set

�wσ
j+1 := �wσ

j + �δσ ( j).
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We now define two matrices: the n × (n + 1) matrix

Lσ := ( �wσ
1 , �wσ

2 , . . . , �wσ
n , �wσ

n+1

)
,

and the square n × n matrix

Mσ := ( �wσ
1 − �wσ

n+1, �wσ
2 − �wσ

n+1, . . . , �wσ
n − �wσ

n+1

)
.

Proposition 2.3.1 below shows that Mn(α) = Mπα,n , justifying our definitions.

Example Set n = 5 and σ = [5, 2, 3, 1, 4] = (1, 5, 4)(2)(3). We find that D(σ ) =
{1, 2, 5}, and so �wσ

1 = �e1 + �e2 + �e5. By definition �wσ
2 = �wσ

1 + �δσ (1) = �wσ
1 + �e6 − �e5 =

�e1 + �e2, and so on. Thus

Lσ =




1 1 1 1 0 0

1 1 0 0 1 1

0 0 1 0 0 0

0 0 0 1 1 0

1 0 0 0 0 1




and Mσ =




1 1 1 1 0

0 0 −1 −1 0

0 0 1 0 0

0 0 0 1 1

0 −1 −1 −1 −1




.

Note that the first column of Mσ is �e1; that this is always the case is proven in Lemma 2.4.2.
Further, the second column of Mσ is �e1 + �δσ (1), the third is �e1 + �δσ (1) + �δσ (2), and so forth.
This pattern holds in general and is proved in Lemma 2.4.3 below. It is not immediate from
the definitions that Lσ is always a {0, 1}-matrix or that Mσ is a {−1, 0, 1}-matrix; we prove
this in Lemma 2.4.4.

In Lemma 2.4.5 we prove that if σ 	= τ then Mσ 	= Mτ . The proof relies on recon-
structing σ and Lσ from Mσ . This reconstruction proceeds as follows. The ‘−1’ entries of
Mσ are in the second and fifth rows; this gives �wσ

6 = �e2 + �e5, which is the last column of
Lσ . In fact, the j-th column of Lσ is the j-th column of Mσ plus �e2 + �e5. Once we know
the columns of Lσ := ( �wσ

1 , �wσ
2 , . . . , �wσ

6 ), we can use the definition of �wσ
j+1 to find σ ( j).

For example, �δσ (4) = �wσ
5 − �wσ

4 = �e2 − �e1 = �δ1, and so σ (4) = 1.
Lemma 2.4.6 generalizes the observation that

M[1,2,4,3,5] = M(4,3) =




1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 −1 0

0 0 0 1 1




= I + V4.

With φ =
√

5−1
2 , we compute that πφ,5 = [5, 2, 4, 1, 3] = (1, 5, 3, 4)(2), and one may

directly verify that Mπφ,5 = Mφ(5). This is no accident, by Proposition 2.3.1 below
Mα(n) = Mπα,n for all α and n. The equation

M(4,3)Mπφ,5 = M(4,3)(1,5,3,4)(2) = M(1,5,4)(2)(3),
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which is the same as


1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 −1 0

0 0 0 1 1







1 1 1 1 0

0 0 −1 −1 0

0 0 1 1 1

0 0 0 −1 −1

0 −1 −1 0 0




=




1 1 1 1 0

0 0 −1 −1 0

0 0 1 0 0

0 0 0 1 1

0 −1 −1 −1 −1




,

is an example of the isomorphism of Proposition 2.4.1.

2.3. The Matrices Mn(α) and Mπα,n

Proposition 2.3.1 Mn(α) = Mπα,n .

Proof: For brevity, we write π in place of πα,n. First observe that �wπ
1 , �wπ

2 , . . . , �wπ
n+1 are

in anti-lexicographic order by definition, and so for 1 ≤ i < j ≤ n + 1 we have �wπ
i 	= �wπ

j .
We know from [6, Proposition 2.1.18] that Fn(α) = Fn(sα,β) for every β, and from [6,
Theorem 2.1.13] that |Fn(α)| = n + 1. Thus, it suffices to show that �wπ

j ∈ Fn(sα,β) for
some β. In fact, we shall show that(

sα,β j (1), sα,β j (2), . . . , sα,β j (n)
) = �wπ

j

with β j := −P1 − Pπ ( j).
Using the identities �x� = x − {x} and {x − y} = {x} − {y} + [[{x} < {y}]], we have

sα,β j (i) = ⌊
(i + 1)α − P1 − Pπ ( j)

⌋ − ⌊
iα − P1 − Pπ ( j)

⌋
= α − Pi + Pi−1 − [[

Pi < Pπ ( j)
]] + [[

Pi−1 < Pπ ( j)
]]

= [[Pi < Pi−1]] − [[
Pi < Pπ ( j)

]] + [[
Pi−1 < Pπ ( j)

]]
. (1)

The last equality follows from the knowledge that sα,β j (i) ∈ Z, and consequently if Pi <

Pi−1 then α − Pi + Pi−1 > α > 0 must in fact be 1, and if Pi > Pi−1 then α − Pi + Pi−1 <

α < 1 must in fact be 0.
We first consider j = 1. We have P1 > P0, P1 ≥ Pπ (1), and P0 < Pπ (1), whence

sα,β1 (1) = 1 = [[1 ∈ D(π )]]. For 2 ≤ i ≤ n, we have Pi ≥ Pπ (1) and Pi−1 ≥ Pπ (1), whence

sα,β1 (i) = [[Pi < Pi−1]] = [[π−1(i) < π−1(i − 1)]] = [[i ∈ D(π )]].

Therefore, (sα,β1 (1), sα,β1 (2), . . . , sα,β1 (n)) = �wπ
1 .

Now suppose that 2 ≤ j ≤ n + 1. Since �wπ
j is defined by �wπ

j − �wπ
j−1 = �δπ ( j−1) =

�eπ ( j−1)+1 − �eπ ( j−1), we need to show that sα,β j (i) − sα,β j−1 (i) = [[i = π ( j − 1) + 1]] − [[i =
π ( j − 1)]]. By Eq. (1), we have

sα,β j (i) − sα,β j−1 (i) = −[[
Pi < Pπ ( j)

]] + [[
Pi−1 < Pπ ( j)

]] + [[
Pi < Pπ ( j−1)

]]
− [[

Pi−1 < Pπ( j−1)
]]
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= ([[
Pi−1 < Pπ ( j)

]] − [[
Pi−1 < Pπ ( j−1)

]]) − ([[
Pi < Pπ ( j)

]]
− [[

Pi < Pπ ( j−1)
]])

= [[i − 1 = π ( j − 1)]] − [[i = π ( j − 1)]].

We remark that in the same manner one may prove that if

1 − {πα,n( j)α} ≤ {iα + β} < 1 − {πα,n( j − 1)α},

then

(sα,β(i), sα,β(i + 1), . . . , sα,β(i + n − 1)) = �wπα,n

j .

From this it is easy to prove that Fn(sα,β) does not depend on β and has cardinality n +1, the
two results of [6] that we used. There is another fact that can be proved in this manner that we
do not use explicitly but which may help the reader develop an intuitive understanding of the
simplices Fn(W ). If r, r ′ are consecutive Farey fractions of order n+1 and r < α < γ < r ′,
then Fn(α) = Fn(β).

2.4. A curious representation

Proposition 2.4.1 The map σ �→ Mσ is an isomorphism.

The proof we give of this is more a verification than an explanation. We remark that there
are several anti-isomorphisms involved in our choices. We have chosen to multiply permu-
tations right-to-left rather than left-to-right. We have chosen to consider the list [a, b, c, . . .]
as the permutation taking 1 to a, 2 to b, 3 to c, etc., rather than the permutation taking a to
1, b to 2, c to 3, etc. Finally, we have chosen to define the vectors �wσ to be columns rather
than rows. If we were to change any two of these conventions, then we would still get an
isomorphism.

We begin with some simple observations about Mσ before proving Proposition 2.4.1.
We defined �wσ

j+1 := �wσ
j + �δσ ( j). An easy inductive consequence of this definition is that

�wσ
j+1 = �wσ

1 + ∑ j
i=1

�δσ (i) for 1 ≤ j ≤ n; we use this repeatedly and without further fanfare.

Lemma 2.4.2 �wσ
1 − �wσ

n+1 = �e1.

Proof: Since �wσ
n+1 = �wσ

1 + ∑n
i=1

�δσ (i), all we need to show is that
∑n

i=1
�δσ (i) = −�e1. As

{1, 2, . . . , n} = {σ (1), σ (2), . . . , σ (n)}, we have

�wσ
n+1 − �wσ

1 =
n∑

i=1

�δσ (i) =
n∑

i=1

�δi =
n∑

i=1

(�ei+1 − �ei ) = �en+1 − �e1 = −�e1.
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Lemma 2.4.3 The j-th column of Mσ is �e1 + ∑ j−1
i=1

�δσ (i).

Proof: The j-th column of Mσ is defined as �wσ
j − �wσ

n+1. If j = 1, then this lemma
reduces to Lemma 2.4.2. If j > 1, then Lemma 2.4.2 gives

�wσ
j − �wσ

n+1 =
(

�wσ
1 +

j−1∑
i=1

�δσ (i)

)
− ( �wσ

1 − �e1
) = �e1 +

j−1∑
i=1

�δσ (i).

Lemma 2.4.4 The entries of Lσ are 0 and 1. The entries of Mσ are −1, 0, and 1.

Proof: It is easily seen from Lemma 2.4.3 that Mσ is a {−1, 0, 1}-matrix, and this also
follows from the more subtle observation that Lσ is a {0, 1}-matrix. To prove that Lσ

is a {0, 1}-matrix is the same as showing that each �wσ
j (1 ≤ j ≤ n + 1) is a {0, 1}-

vector. This is obvious for �wσ
1 := ∑

i∈D(σ ) �ei . We have �wσ
j+1 = �wσ

1 + ∑ j
i=1

�δσ (i); define
�v, ci by �v := ∑ j

i=1
�δσ (i) = ∑n

i=1 ci �ei .
The i-th component of �v can only be affected by �δi−1 (which adds 1 to the i-th compo-

nent) and �δi (which subtracts 1). It is thus clear that ci is (-1), (0), (0), or (1) depending,
respectively, on whether (only i), (i −1 and i), (neither i −1 nor i), or (only i −1) is among
{σ (1), σ (2), . . . , σ ( j)}. To show that �wσ

j+1 = �wσ
1 + �v is a {0, 1}-vector, we need to show

two things. First, if ci = −1 then i ∈ D(σ ) (and so the i-th component of �wσ
1 is 1). Second,

if ci = 1 then i 	∈ D(σ ) (and so the i-th component of �wσ
1 is 0).

If ci = −1, then i is and i−1 is not among {σ (1), . . . , σ ( j)}. This means that σ−1(i−1) >

j ≥ σ−1(i), and so by the definition of D, i ∈ D(σ ). If, on the other hand, ci = 1, then
i − 1 is and i is not among {σ (1), . . . , σ ( j)}. This means that σ−1(i − 1) ≤ j < σ−1(i),
and so by the definition of D, i 	∈ D(σ ).

Lemma 2.4.5 The map σ �→ Mσ is 1 − 1.

Proof: Given Mσ , we find σ . We first note that moving from Lσ to σ is easy since
�wσ

j+1 − �wσ
j = �δσ ( j). Some effort is involved in finding Lσ from Mσ . We need to find �wσ

n+1.
Every row of Lσ contains at least one 0 (explanation below). Thus Mσ will contain a

−1 in exactly those rows in which �wσ
n+1 contains a 1, and we are done. We have �wσ

j+1 =
�wσ

j + �δσ ( j) = �wσ
j + �eσ ( j)+1 − �eσ ( j). The σ ( j)-th row of �eσ ( j)+1 is 0, and �wσ

j , �eσ ( j) are
{0, 1}-vectors, so the σ ( j)-th row of �wσ

j+1 is either 0 or −1. But by Lemma 2.4.4, Lσ is a
{0, 1}-matrix, whence the σ ( j)-th row of the ( j + 1)-st column of Lσ is 0.

Recall that Vk is defined to be the matrix all of whose entries are 0, save the k-th column,
which is �ek−1 − 2�ek + �ek+1.

Lemma 2.4.6 M(k,k−1) = I + Vk, for 2 ≤ k ≤ n.
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Proof: Follow the definitions. With σ = (k, k −1), we have D(σ ) = {1, k}, �w(k,k−1)
j = �e j

+�ek for n ≥ j 	= k, �w(k,k−1)
k = �ek−1 + �ek+1 and �w(k,k−1)

n+1 = �ek .

We have laid the necessary groundwork, and turn now to proving Proposition 2.4.1.

Proof: We have already seen in Lemma 2.4.5 that the map σ �→ Mσ is 1 − 1; all
that remains is to show that this map respects multiplication, i.e., for any σ, τ ∈ Sn ,
MτMσ = Mτσ . Since we may write τ as a product of transpositions of the form (k, k −1)
it is sufficient to show that M(k,k−1)Mσ = M(k,k−1)σ for every k (2 ≤ k ≤ n) and σ ∈ Sn .

We need to split the work into two cases: σ−1(k − 1) < σ−1(k) and σ−1(k − 1) >

σ−1(k). In each case we first describe the rows of M(k,k−1)Mσ −Mσ using Lemma 2.4.6,
and then compute the columns of M(k,k−1)σ − Mσ from the definition. We will find that
M(k,k−1)Mσ − Mσ = M(k,k−1)σ − Mσ in each case, which concludes the proof. Since
the two cases are handled similarly, we present only the first case.

Suppose that σ−1(k − 1) < σ−1(k). By Lemma 2.4.6, M(k,k−1)Mσ − Mσ = VkMσ .
The matrix Vk is zero except in the (k − 1, k), (k, k), and (k + 1, k) positions (note: we
sometimes refer to positions which do not exist for k = n; the reader may safely ignore this
detail), where it has value 1, −2, 1, respectively. Thus VkMσ is zero except in the (k −1)-st
and (k + 1)-st rows (which are the same as the k-th row of Mσ ), and the k-th row (which
is −2 times the k-th row of Mσ ).

We now describe the k-th row of Lσ . By the hypothesis of this case, k 	∈ D(σ ), so the
k-th row of �wσ

1 is 0. Since �wσ
j+1 = �wσ

1 + ∑ j
i=1

�δσ (i), the k-th row of �wσ
j is 0 for 1 ≤ j ≤

σ−1(k − 1), is 1 for σ−1(k − 1) < j ≤ σ−1(k), and is 0 for σ−1(k) < j ≤ n + 1. This gives
the k-th row of Mσ as σ−1(k − 1) ‘0’s followed by σ−1(k) − σ−1(k − 1) ‘1’s, followed by
n − σ−1(k) ‘0’s.

We now compute M(k,k−1)σ − Mσ . The columns of L(k,k−1)σ are given by �w(k,k−1)σ
j+1 =

�w(k,k−1)σ
1 + ∑ j

i=1
�δ(k,k−1)σ (i) (except the first, but the first column of Mτ is �e1, independent

of τ ). Now (k, k − 1)σ (i) = σ (i) for i 	∈ {σ−1(k), σ−1(k − 1)}, so that
∑ j

i=1
�δ(k,k−1)σ (i) =∑ j

i=1
�δσ (i) for j < σ−1(k − 1) and for j ≥ σ−1(k). For σ−1(k − 1) ≤ j < σ−1(k),

j∑
i=1

�δ(k,k−1)σ (i) =
(

j∑
i=1

�δσ (i)

)
− �δk−1 + �δk .

Thus the ( j + 1)-st column of M(k,k−1)σ − Mσ is

( �w(k,k−1)σ
j+1 − �w(k,k−1)σ

n+1

) − ( �wσ
j+1 − �wσ

n+1

) =
j∑

i=1

�δ(k,k−1)σ (i) −
j∑

i=1

�δσ (i),

which is �0 for j < σ−1(k −1) and for j ≥ σ−1(k), and −�δk−1 +�δk = �ek−1 −2�ek + �ek+1 for
σ−1(k − 1) ≤ j < σ−1(k). We have shown that M(k,k−1)Mσ − Mσ = M(k,k−1)σ − Mσ

in the case σ−1(k − 1) < σ−1(k).
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2.5. Proof of Theorem 1

Proof of Theorem 1: The volume of the n-dimensional simplex whose vertices have
coordinates �v1, �v2, . . . , �vn+1 is 1

n! times the absolute value of the determinant of the matrix

(�v1 − �vn+1, �v2 − �vn+1, . . . , �vn − �vn+1).

In our case, this means that the volume of the simplex Fn(α) is 1
n! | det(Mn(α))|. We will

show that det(Mn(α)) = ±1.
Now Mn(α) = Mπα,n by Proposition 2.3.1, and for any integer t we have (Mπα,n )t =

Mπ t
α,n

by Proposition 2.4.1. Since πα,n ∈ Sn , a finite group, there is a positive integer t such
that π t

α,n is the identity permutation (which we denote by id). Thus

(detMn(α))t = (
detMπα,n

)t = det
(
Mt

πα,n

) = det
(
Mπ t

α,n

) = det(Mid) = det I = 1.

Consequently, detMn(α) is a t-th root of unity, and since the entries of Mn(α) are integers,
detMn(α) = ±1.

2.6. The character of the representation

We review the needed facts and definitions from the representation theory of finite groups
(an excellent introduction is [7]). A representation of a finite group G is a homomorphism
R : G → SLm(C) for some m ≥ 1. The representation is said to be faithful if the
homomorphism is in fact an isomorphism. Thus, Proposition 2.4.1 implies that {Mσ : σ ∈
Sn} is a faithful representation of Sn . The character of R is the map g �→ tr(R(g)), with
tr being the trace function. We will use Corollary 1.9.4(5) of [7], which states that if two
representations R1,R2 of G have the same character, then they are similar, i.e., there is
a matrix Q such that ∀g ∈ G(Q−1R1(g)Q = R2(g)). Any such matrix Q is called an
intertwining matrix for the representations R1,R2.

Proposition 2.6.1 The representations {Pσ : σ ∈ Sn} and {Mσ : σ ∈ Sn} are similar.

Proof: The character of {Pσ : σ ∈ Sn} is obviously given by tr (Pσ ) = #{i : σ (i) = i}. We
will show that tr (Mσ ) = #{i : σ (i) = i} also, thereby establishing that the representations
are similar.

We first note that tr (Mσ ) = tr (Lσ ) − h( �wσ
n+1), since every “1” in �wσ

n+1 is subtracted
from exactly one diagonal position when we form Mσ from Lσ by subtracting �wσ

n+1 from
each column. We show below that

tr(Lσ ) = h
( �wσ

1

) − 1 + #{i : σ (i) = i}, (2)

so by Lemma 2.4.2 we have

tr (Mσ ) = h
( �wσ

1

) − 1 + #{i : σ (i) = i} − h
( �wσ

n+1

) = #{i : σ (i) = i},

which will conclude the proof.
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Until this point we have found it convenient to think of Lσ in terms of its columns. That
is not the natural viewpoint to take in proving Eq. (2), however. The difference between the
( j + 1)-st and j-th columns of Lσ is �δσ ( j) = �ei+1 − �ei ; we think of this relationship as a “1”
moving down from the i-th row to the (i + 1)-st row. In looking at the matrix Lσ we see
each “1” in the first column continues across to the east, occasionally moving down a row
(southeast), or even ‘off’ the bottom of the matrix. We call the path a “1” takes a snake.

Example 2.1 With σ = [1, 4, 5, 8, 2, 3, 9, 6, 10, 7], we find

Lσ =




1 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

1 1 0 0 0 0 1 1 1 1 1

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0

1 1 1 1 0 0 0 0 0 0 1

0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0




The matrix Lσ has 3 snakes beginning in positions (1, 1), (4, 1), and (8, 1). The first snake
occupies the positions (1, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 6), (4, 7), (4, 8), (4, 9), (4, 10),
and (4, 11).

Only the last snake moves off the bottom of Lσ ; after all, n only occurs once in a
permutation. The other snakes, of which there are h( �wσ

1 )−1, begin on or below the diagonal
and end on or above the diagonal. Thus each must intersect the diagonal at least once.
Moreover, each fixed point of σ will keep a snake on a diagonal for an extra row. Thus,
tr (Lσ ) = h( �wσ

1 ) − 1 + #{i : σ (i) = i}.

We turn now to identifying the intertwining matrices, i.e., the matrices Q such that
Q−1MσQ = Pσ for every σ ∈ Sn .

Proposition 2.6.2 The n ×n matrix Q = (qi j ) satisfies Q−1MσQ = Pσ for every σ ∈ Sn

iff there are complex numbers a, b with (na + b)bn−1 	= 0 and q11 = a + b, q1k = a,

qkk = b, qk,k−1 = −b (2 ≤ k ≤ n).

Proof: We first note that it is sufficient to restrict σ to a generating set of Sn . To see
this, let Sn = 〈σ1, . . . , σr 〉. If Q satisfies Q−1MσQ = Pσ for every σ ∈ Sn , then clearly
Q−1MσiQ = Pσi (1 ≤ i ≤ r ). In the other direction, if Q satisfies Q−1MσiQ = Pσi
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(1 ≤ i ≤ r ) and σ = σi1σi2 . . . σis , then

Q−1MσQ = Q−1
(
Mσi1

Mσi2
. . .Mσis

)
Q =

s∏
j=1

(
Q−1Mσi j

Q
)

=
s∏

j=1

Pσi j
= P∏s

j=1 σi j
= Pσ .

Thus we can restrict our attention to the transpositions (k, k − 1) (2 ≤ k ≤ n). We
identified M(k,k−1) in Lemma 2.4.6 as M(k,k−1) = I + Vk , where Vk is the matrix all of
whose entries are zero, save the k-th column, which is �ek−1 − 2�ek + �ek+1.

We suppose that Q = (qi j ) satisfies M(k,k−1)Q = QP(k,k−1) to find linear constraints
on the unknowns qi j . We will find that these constraints (for 2 ≤ k ≤ n) are equivalent
to q11 = a + b, q1k = a, qkk = b, qk,k−1 = −b (2 ≤ k ≤ n). The determinant of Q is
easily seen to be (na +b)bn−1, so that as long as this is nonzero, Q−1MσQ = Pσ for every
σ ∈ Sn .

We have M(k,k−1)Q = IQ + VkQ, so that M(k,k−1)Q = QP(k,k−1) is equivalent to
VkQ = Q(P(k,k−1) − I). This is a convenient form since most entries in the matrices Vk

and P(k,k−1) − I are zero. The entries of the product VkQ are 0 except for the (k − 1)-st,
k-th, and (k + 1)-st rows which are equal to the k-th row of Q, to −2 times the k-th row of
Q, and to the k-th row of Q, respectively. The entries of the product Q(P(k,k−1) − I) are 0
except for the (k − 1)-st and k-th columns, which are equal to the k-th column of Q minus
the (k − 1)-st column of Q, and to the (k − 1)-st column of Q minus the k-th column of
Q, respectively. The entries which are zero in one matrix or other lead to the families of
equations qkj = 0 (for j 	∈ {k − 1, k}) and q jk = q j,k−1 (for j 	∈ {k − 1, k, k + 1}). The
entries which are non-zero in both products give the six equations


qk,k−1 qkk

−2qk,k−1 −2qkk

qk,k−1 qkk


 =




qk−1,k − qk−1,k−1 qk−1,k−1 − qk−1,k

qkk − qk,k−1 qk,k−1 − qkk

qk+1,k − qk+1,k−1 qk+1,k−1 − qk+1,k


 ,

which are equivalent to qk−1,k−1 = qk−1,k+qk,k , qk,k−1 = −qkk , and qk+1,k−1 = qk+1,k+qkk .
Taking qnn = b and q1n = a, the result follows.

Corollary 2.6.3

Mσ =




1

−1 1 0

−1 1

. . .

0
. . .

−1 1




· Pσ ·




1

1 1 0

1 1 1
...

. . .

... 1
. . .

. . . . . . . . . 1 1




.
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Proof: Set a = 0, b = 1 in Theorem 2.6.2. All that needs to be checked is that Q−1 is as
claimed, i.e., the n × n matrix with “1”s on and below and the diagonal and “0”s above the
diagonal.

We remark that, since it is easy to recoverLσ fromMσ (see the proof of Lemma 2.4.4) this
Corollary gives a simple method for computing the factors of length n of a Sturmian word
with slope α given only the permutation ordering {α}, . . . , {nα} (we don’t even need α).
Also, we note that the matrix with “1”s on and below the diagonal is a summation operator,
and its inverse is a difference operator. If one could prove Corollary 2.6.3 directly, this
would provide a second proof of Theorem 1.

2.7. The simplex Fn(W )

Stolarsky and Porta [personal communication] observed experimentally that Mn(α) has
determinant ±1, and moreover that the roots of its characteristic polynomial are roots of
unity. The first observation was proved in the course of the proof of Theorem 1 in Section 2.5.
The second observation also follows from the fact that Mn(α) lies in a finite group.

We now summarize the results of this paper as they relate to Mn(α) and Fn(α).

Theorem 2.1 Let α ∈ (0, 1) be irrational, and n ≥ 1 an integer.
(i) The volume of the simplex Fn(α) is 1

n! .
(ii) det(Mn(α)) = ±1.

(iii) Mn(α) = Mπα,n = QPπα,nQ−1 (see Theorem 2.6.2 for the definition of Q);
(iv) det(M2n(α) = det(M2n+1(α)) = ∏n

�=1(−1)�2�α�.
(v) If πα,n(n) = n, then

ord(Mn−1(α)) = ord(Mn(α)) = ord(πα,n(1) mod n).

(vi) If πα,n(1) = n, then

ord(Mn−1(α)) = ord(−πα,n(n) mod n)

and

ord(Mn(α)) = ord(−πα,n(n) mod gn),

where g is the smallest positive integer such that gcd(n,
πα,n(n)+1

g ) = 1.

Items (i) and (ii) are proved in Section 2.5. Item (iii) is a combination of Theorem 2.6.2 and
Proposition 2.3.1. Items (iv), (v) and (vi) are immediate consequences of Proposition 2.3.1,
the facts det(Mσ ) = sgn(σ ) and ord(Mσ ) = ord(σ ), and Theorem 3.1. They are included
here for the purpose of listing everything known about Mn(α) in one place.
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3. Ordering fractional parts

3.1. Statement of results

Table 1 gives the sign and multiplicative order of πe,n for 2 ≤ n ≤ 136. Visually in-
specting the table, one quickly notices that sgn(πe,2n) = sgn(πe,2n+1) for all n, and that
ord(πe,n) is surprisingly small for n = 70, 71, 109, 110. The first several convergents to
e are 2, 3, 8

3 , 11
4 , 19

7 , 87
32 , 106

39 , 193
71 ; the value 71 is the denominator of a convergent, and

110 = 71 + 39 is the sum of two denominators. Note also that for some values of n,
ord(πe,n) is extraordinarily large, e.g., ord(πe,123) = 22383900. None of these observations
are peculiar to the irrational e. Some of these observations are explained by Theorem 3.1
below, and the others remain conjectural.

As in Section 2, we make frequent use of Knuth’s notation:

[[Q]] =
{

1 Q is true;

0 Q is false.

Lemma 3.1.1, giving πα,n in terms of only πα,n(1), πα,n(n), and n, is proved by Sós
in [11]. Her method of proof is similar to our proof of Lemma 3.3.1 below. The lemma is
also proved—in terse English—in [10]. We will derive Theorem 3.1 from Sós’s Lemma.

Lemma 3.1.1 (Sós) Let α be irrational, n a positive integer, and π = πα,n. Then

π (k + 1) = π (k) + π (1) [[π (k) ≤ π (n)]] − π (n) [[n < π (1) + π (k)]]

for 1 ≤ k < n.

The surprising Three-Distance Theorem is an easy corollary: If α is irrational, the n + 2
points 0, {α}, {2α}, . . . , {nα}, 1 divide the interval [0, 1] into n +1 subintervals which have
at most 3 distinct lengths. Alessandri and Berthé [1] give an excellent and up-to-date survey
of generalizations of the Three-Distance Theorem.

The primary goal of this section is to prove Theorem 3.1, which refines Theorem 1, and
to prove Theorem 1. Corollary 3.2.1 is of independent interest.

Theorem 3.1 Let α 	∈ Q and n ∈ Z+.
(i) If πα,n(n) = n, then ord(πα,n−1) = ord(πα,n) = ord(πα,n(1) mod n).

(ii) If πα,n(1) = n, then ord(πα,n−1) = ord(−πα,n(n) mod n), and

ord(πα,n) = ord(−πα,n(n) mod gn),

where g is the least positive integer such that gcd(n,
πα,n(n)+1

g ) = 1.
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Table 1. Algebraic properties of πα,n with α = e and 2 ≤ n ≤ 136.

n sgn(πα,n) ord(πα,n) n sgn(πα,n) ord(πα,n) n sgn(πα,n) ord(πα,n)

2 −1 2 47 −1 44 92 1 2107
3 −1 2 48 −1 540 93 1 13244
4 −1 2 49 −1 120 94 −1 18810
5 −1 4 50 1 680 95 −1 20034
6 −1 6 51 1 1848 96 −1 3348
7 −1 6 52 −1 50 97 −1 11256
8 1 7 53 −1 90 98 −1 1702
9 1 6 54 −1 962 99 −1 188

10 −1 10 55 −1 1848 100 1 957
11 −1 10 56 −1 588 101 1 2100
12 −1 12 57 −1 276 102 −1 102
13 −1 36 58 1 165 103 −1 2052
14 −1 40 59 1 1260 104 −1 1950
15 −1 14 60 −1 1848 105 −1 1260
16 1 15 61 −1 2040 106 −1 5964
17 1 3 62 −1 62 107 −1 13860
18 1 3 63 −1 15640 108 1 54366
19 1 15 64 1 2040 109 1 10
20 1 77 65 1 424 110 −1 10
21 1 12 66 −1 966 111 −1 2310
22 −1 12 67 −1 1476 112 −1 720
23 −1 12 68 −1 56 113 −1 3738
24 1 4 69 −1 232 114 1 1938
25 1 4 70 −1 14 115 1 112
26 1 36 71 −1 14 116 −1 92820
27 1 48 72 1 6840 117 −1 11220
28 1 6 73 1 406 118 −1 5520
29 1 24 74 −1 390 119 −1 60060
30 −1 210 75 −1 780 120 −1 14280
31 −1 4 76 −1 192 121 −1 1680
32 −1 4 77 −1 228 122 1 6240
33 −1 180 78 −1 32130 123 1 22383900
34 −1 210 79 −1 390 124 −1 820820
35 −1 420 80 1 630 125 −1 215460
36 1 120 81 1 72 126 −1 9360
37 1 37 82 1 2728 127 −1 17160
38 −1 12 83 1 6138 128 1 68640
39 −1 12 84 1 152 129 1 47888
40 −1 40 85 1 6669 130 −1 7276
41 −1 1980 86 −1 31920 131 −1 508
42 −1 414 87 −1 400 132 −1 6720
43 −1 42 88 1 192 133 −1 4914
44 1 580 89 1 14616 134 −1 1560
45 1 168 90 1 18585 135 −1 11752
46 −1 1120 91 1 25080 136 1 3045
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3.2. The multiplicative order of the permutation

Theorem 3.1 follows from Sós’s Lemma.

Proof of Theorem 3.1(i): Suppose that πα,n(n) = n. We have

πα,n(k) =
{

πα,n−1(k) 1 ≤ k ≤ n − 1;

k k = n,

and so obviously ord(πα,n−1) = ord(πα,n). We show that the length of every orbit divides
ord(πα,n(1) mod n), and that the length of the orbit of 1 is exactly ord(πα,n(1) mod n).
From Sós’s Lemma (Lemma 3.1.1), we have in this case for 1 ≤ k < n the congruence
πα,n(k + 1) ≡ πα,n(k) + πα,n(1) (mod n). By induction, this gives πα,n(k) ≡ kπα,n(1)
(mod n) for 1 ≤ k ≤ n. Thus, the orbit of the point k is

k, kπα,n(1), kπα,n(1)2, kπα,n(1)3, . . .

The length of the orbit of k divides ord(πα,n(1) mod n), and in particular the orbit of 1 has
length equal to ord(πα,n(1) mod n).

Proof of Theorem 3.1(ii): Suppose that πα,n(1) = n. Sós’s Lemma gives

πα,n(k) ≡ (1 − k)πα,n(n) (mod n).

For 1 ≤ k < n we have

πα,n−1(k) = πα,n(k + 1) ≡ (1 − (k + 1))πα,n(n) = −kπα,n(n) (mod n).

Thus for r ≥ 1 we have π r
α,n−1(k) ≡ k(−πα,n(n))r (mod n). The length of the orbit of k

under πα,n−1 divides ord(−πα,n(n) mod n), and in particular the orbit of 1 has length equal
to ord(−πα,n(n) mod n). This proves that ord(πα,n−1) = ord(−πα,n(n) mod n).

For notational convenience, set x = −πα,n(n). Now from

πα,n(k) ≡ (1 − k)πα,n(n) = (k − 1)x (mod n)

it is readily seen by induction that for R ≥ 0 we have

π R
α,n(k) ≡ kx R − (x + x2 + · · · + x R) (mod n). (3)

Let r be the least positive integer for which ∀k(π r
α,n(k) = k), i.e., let r be the least common

multiple of the length of the orbits of πα,n. We must show that r = ord(x mod gn).
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Define the integer γ by gγ = x − 1, and note that gcd(γ, n) = 1. We may rearrange
Eq. (3), setting R = r , as

xr − 1

x − 1
≡ (k − 1)(xr − 1) (mod n), (4)

the division being real, not modular. With k = 1, Eq. (4) becomes 0 ≡ xr −1
x−1 = xr −1

gγ

(mod n), which holds iff xr −1
g ≡ 0 (mod n). This, in turn, holds iff there is an integer β

with βn = xr −1
g , i.e., βng = xr −1. Thus r is a multiple of ord(x mod gn), and in particular

r ≥ ord(x mod gn).
We claim that ∀k(πord(x mod gn)

α,n (k) = k), so that r ≤ ord(x mod gn), which will conclude
the proof. We have

xord(x mod gn) − 1

x − 1
= βgn

gγ
= βn

γ

and

(k − 1)
(
xord(x mod gn) − 1

) ≡ 0 (mod n),

so that substituting r = ord(x mod gn) into Eq. (4) we write βn
γ

≡ 0 (mod n), which holds
for all k since gcd(γ, n) = 1. Thus r ≤ ord(x mod gn).

For quadratic irrationals one can easily identify the convergents and intermediate fractions
and, if the denominators have enough structure, explicitly compute ord(πα,n) when n or n+1
is such a denominator. We have for example

Corollary 3.2.1 Let φ =
√

5−1
2 , and fn be the n-th Fibonacci number. Then for n ≥ 2,

ord
(
πφ,−1+f2n

) = ord
(
πφ,f2n

) = 2

and

ord
(
πφ,−1+f2n+1

) = ord
(
πφ,f2n+1

) = 4.

Proof: From the continued fraction expansion of φ we know that πφ, f2n ( f2n) = f2n and
πφ, f2n (1) = f2n−1. The identity f 2

2n−1 − f2n f2n−2 = 1 shows that ord( f2n−1 mod f2n) = 2
for n ≥ 2, whence by Theorem 3.1(i) we have ord(πφ,−1+ f2n ) = ord(πφ, f2n ) = 2.

The continued fraction expansion of φ also tells us πφ, f2n+1 (1) = f2n+1 and
πφ, f2n+1 ( f2n+1) = f2n . The identity f 2

2n − f2n+1 f2n−1 = −1 shows ord(− f2n mod f2n+1) =
4 for n ≥ 2, whence by Theorem 3.1(ii), ord(πφ,−1+ f2n+1 ) = 4.

We defined g to be the least positive integer such that gcd( f2n+1,
f2n+1

g ) = 1. In particular,
g| f2n + 1, and so the identity

(− f2n)4 − 1 = f2n−1( f2n − 1) f2n+1( f2n + 1) ≡ 0 (mod g f2n+1)
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shows that ord(− f2n mod g f2n+1) divides 4, and the identity (− f2n)2 − f2n+1 f2n−1 = −1
shows that

ord(− f2n mod g f2n+1) ≥ ord(− f2n mod f2n+1) = 4,

whence ord(− f2n mod g f2n+1) = 4 and by Theorem 3.1(ii), ord(πφ, f2n+1 ) = 4.

3.3. The sign of the permutation

Recall that a k-cycle is even exactly if k is odd. We define ρ(n, k) to be the (n − k)-cycle

ρ(n, k) := (n, n − 1, . . . , k + 1) = (n, n − 1)(n − 1, n − 2) · · · (k + 2, k + 1).

Define also

Bα(k) := #{q: 1 ≤ q < k, {qα} < {kα}},

which counts the integers in [1, k) that are ‘better’ denominators for approximating α from
below. Clearly,

πα,n = πα,n−1 ρ(n, Bα(n))

= ρ(1, Bα(1)) ρ(2, Bα(2)) . . . ρ(n, Bα(n))

=
n∏

k=1

ρ(k, Bα(k))

so that πα,n is the product of
∑n

k=1(k − Bα(k) − 1) transpositions. We will show that for k
odd, Bα(k) ≡ 0 (mod 2), which will be used to demonstrate that sgn(πα,2n) = sgn(πα,2n+1).

Our proof of Lemma 3.3.1 is similar in spirit to Sós’s proof of Lemma 3.1.1.

Lemma 3.3.1 For k ≥ 3 and 0 < α < 1/2, α irrational, Bα(k) + B1−α(k) = k − 1, and

Bα(k) − 2Bα(k − 1) + Bα(k − 2) =




1 − k, {kα} ∈ [0, α);

k − 1, {kα} ∈ [α, 2α);

0, {kα} ∈ [2α, 1).

Proof: Observe that 0 < {qα} < {kα} iff {k(1 − α)} < {q(1 − α)} < 1, so that q with
1 ≤ q < k is in either the set {q : 1 ≤ q < k, {qα} < {kα}} or in the set {q : 1 ≤ q <

k, {q(1 − α)} < {k(1 − α)}}, and is not in both. Thus, Bα(k) + B1−α(k) = k − 1.
We think of the points 0, {α}, . . . , {kα} as lying on a circle with circumference 1, and la-

beled P0, P1, . . . , Pk , respectively, i.e., Pj := 1
2π

e2π jα
√−1 = 1

2π
e2π{ jα}√−1. “The arc Pi Pj ”

refers to the half-open counterclockwise arc from Pi to Pj , containing Pi but not Pj . We
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say that three distinct points A, B, C are in order if B 	∈ C A. We say that A, B, C, D are
in order if both A, B, C and C, D, A are in order. Essentially, if when moving counter-
clockwise around the circle starting from A, we encounter first the point B, then C , then
D, and finally A (again), then A, B, C, D are in order.

By rotating the circle so that Pi �→ Pi+1 (0 ≤ i ≤ k), we find that each P on the arc
Pk−2 Pk−1 is rotated onto a P on the arc Pk−1 Pk . Specifically, the number of P0, P1, . . . , Pk−2

on Pk−2 Pk−1 is the same as the number of P1, P2, . . . , Pk−1 on Pk−1 Pk . Set

X := {P0, P1, . . . , Pk−2} and Y := {P1, P2, . . . , Pk−1},

so that what we have observed is

|X ∩ Pk−2 Pk−1| = |Y ∩ Pk−1 Pk |. (5)

Also, we will use

Bα(k) = |Y ∩ P0 Pk |.

Now, first, suppose that {kα} ∈ [0, α), so that the points P0, Pk, Pk−2, Pk−1 are in order
on the circle. We have

X ∩ Pk−2 Pk−1 = X ∩ (P0 Pk−1 \ P0 Pk−2)

= (X ∩ P0 Pk−1) \ (X ∩ P0 Pk−2)

|X ∩ Pk−2 Pk−1| = |(X ∩ P0 Pk−1)| − |(X ∩ P0 Pk−2)|
= (Bα(k − 1) + 1) − (Bα(k − 2) + 1)

= Bα(k − 1) − Bα(k − 2),

and similarly

Y ∩ Pk−1 Pk = (Y ∩ Pk−1 P0) ∪ (Y ∩ P0 Pk)

= (Y \ (Y ∩ P0 Pk−1)) ∪ (Y ∩ P0 Pk)

|Y ∩ Pk−1 Pk | = (|Y | − |Y ∩ P0 Pk−1|) + |Y ∩ P0 Pk |
= (k − 1 − Bα(k − 1)) + Bα(k)

= Bα(k) − Bα(k − 1) − (1 − k),

so that Eq. (5) becomes Bα(k − 1) − Bα(k − 2) = Bα(k) − Bα(k − 1) − (1 − k), as claimed
in the statement of the theorem.

Now suppose that {kα} ∈ [α, 2α), so that the points P0, Pk−1, Pk, Pk−2 are in order. By
arguing as in the above case, we find

X ∩ Pk−2 Pk−1 = (X \ (X ∩ P0 Pk−2)) ∪ (X ∩ P0 Pk−1),
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and so |X ∩ Pk−2 Pk−1| = Bα(k − 1) − Bα(k − 2) + (k − 1). Likewise,

Y ∩ Pk−1 Pk = (Y ∩ P0 Pk) \ (Y ∩ P0 Pk−1)

so that |Y ∩ Pk−1 Pk | = Bα(k) − Bα(k − 1). Thus, in this case Eq. (5) becomes Bα(k − 1) −
Bα(k − 2) + (k − 1) = Bα(k) − Bα(k − 1), as claimed in the statement of the theorem.

Finally, suppose that {kα} ∈ [2α, 1), so that the points P0, Pk−2, Pk−1, Pk are in order.
We find

X ∩ Pk−2 Pk−1 = (X ∩ P0 Pk−1) \ (X ∩ P0 Pk−2)

and |X ∩ Pk−2 Pk−1| = Bα(k − 1) − Bα(k − 2). Also,

Y ∩ Pk−1 Pk = (Y ∩ P0 Pk) \ (Y ∩ P0 Pk−1)

and so |Y ∩ Pk−1 Pk | = Bα(k) − Bα(k − 1). As claimed, we have Bα(k − 1) − Bα(k − 2) =
Bα(k) − Bα(k − 1).

Lemma 3.3.2 makes explicit the connection between Lemma 3.3.1, arithmetic properties
of Bα , and the permutation πα,n.

Lemma 3.3.2 Let α ∈ (0, 1) be irrational and n ∈ Z+. If k is odd, then Bα(k) is even. If
k is even, then Bα(k) ≡ �kα� + 1 (mod 2).

Proof: By Lemma 3.3.1, Bα(k) + B1−α(k) = k − 1. Thus for odd k, Bα(k) + B1−α(k) is
even, and so either both Bα(k) and B1−α(k) are even or both are odd. This means that, for
odd k, without loss of generality we may assume that 0 < α < 1

2 .
Reducing the recurrence relation in Lemma 3.3.1 modulo 2, under the hypothesis that k

is odd, we find that Bα(k) ≡ Bα(k − 2) (mod 2). Since Bα(1) = 0, we see that Bα(k) ≡ 0
(mod 2) for all odd k.

Now suppose that k is even and 0 < α < 1
2 . The recurrence relation in Lemma 3.3.1

reduces to

Bα(k) + Bα(k − 2) ≡ [[{kα} ∈ [0, 2α)]] (mod 2).

Set β = 2α, k = 2� and B ′(i) = Bα(2i). We have

Bα(k) = Bα(2�) = B ′(�)

≡ B ′(� − 1) + [[{�β} ∈ [0, β)]] (mod 2)

≡ B ′(1) +
�∑

i=2

[[{iβ} ∈ [0, β)]] (mod 2)

= Bα(2) + ��β�
= 1 + �2�α� = 1 + �kα� ,
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since
∑�

i=2[[{iβ} ∈ [0, β)]] (with β ∈ (0, 1)) counts the integers in the interval (β, �β]. This
proves the lemma for 0 < α < 1

2 and k even.
Now suppose that k is even and 1

2 < α < 1. By Lemma 3.3.1, Bα(k) = k−1− B1−α(k) ≡
1 + B1−α(k) (mod 2). By the argument (for 0 < α < 1

2 ) given above, B1−α(k) ≡ 1 +
�k(1 − α)� (mod 2). We have

Bα(k) ≡ �k(1 − α)� (mod 2)

= k − �kα� − {k(1 − α)} − {kα}
≡ �kα� + 1 (mod 2),

where we have used {k(1 − α)} + {kα} = 1 (since α is irrational).

Proof of Theorem 1: We have πα,2n+1 = πα,2n ρ(2n + 1, Bα(2n + 1)). The permutation
ρ(2n + 1, Bα(2n + 1)) is the product of 2n + 1 − Bα(2n + 1) − 1 transpositions, which is
an even number by Lemma 3.3.2. Thus sgn(πα,2n+1) = sgn(πα,2n).

By Lemma 3.3.2, for all integers k

k − Bα(k) + 1 ≡
{

0, k odd;

�kα� , k even.

Since the sign of the permutation ρ(k, Bα(k)) is (−1)k−Bα (k) and (−1)2n = 1, we have

sgn(πα,2n) = (−1)2nsgn

(
2n∏

k=1

ρ(k, Bα(k))

)
=

2n∏
k=1

(−1)sgn(ρ(k, Bα(k)))

=
2n∏

k=1

(−1)(−1)k−Bα (k) =
2n∏

k=1

(−1)k−Bα (k)+1 =
n∏

�=1

(−1)�2�α�.

4. Unanswered questions

The most significant question we have been unable to answer is why the matrices formed
from Sturmian words in Section 2 lie in a common representation of Sn . We made two choices
with little motivation: we ordered the factors anti-lexicographically; and we subtracted the
last factor from the others. What happens if we order the factors differently, or subtract the
second factor from the others? Understanding why the structure revealed in Section 2 exists
might allow us to predict other phenomena.

Lucas Wiman [personal communication] has proved that

{
Mn−1

(
c

n

)
: gcd(c, n) = 1

}
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is isomorphic to the multiplicative group modulo n, and asks if this is the largest subset of
{Mn−1(α): 0 < α < 1} that is a group.

We have shown that the volume of the simplex Fn(α) is independent of α. When are two
such simplices actually congruent?

Conjecture For α, β ∈ (0, 1) be irrational, Fn(α) ∼= Fn(β) (as simplices) iff Fn(α) =
Fn(β) or Fn(α) = Fn(1 − β).

We have verified this conjecture for n ≤ 20 by direct computation. At least, can any such
simplex be cut and reassembled (in the sense of Hilbert’s 3rd Problem: see Eves [5] for the
basic theory and Sydler [13] for a complete characterization) into the shape of another?

While we have identified the matrix Mn(α), there are many interesting questions that we
remain unable to answer. We don’t believe that there is a bound on

∑N
n=1 det(Mn(α)) =∑N

n=1 sgn(πα,n) that is independent of N , but this sum must grow very slowly. We suspect
that

∣∣∣∣∣
N∑

n=1

sgn(πα,n)

∣∣∣∣∣ � log N

for almost all α. For example, with α =
√

5−1
2 and N < e13 ≈ 442413,

∣∣∣∣∣
N∑

n=1

sgn(πα,n)

∣∣∣∣∣ < 10.

In Section 3.1 we showed that ord(πα,n) is regularly extremely small relative to the average
order of a permutation on n symbols. For each irrational α, are there infinitely many values
of n for which ord(πα,n) is exceptionally large?

One might hope for an explicit formula for ord(πα,n) in terms of the base-α Ostrowski
expansion of n, but this seems to be extremely difficult. Are metric results more approach-
able? Specifically, what is the distribution of ord(πα,n) and sgn(πα,n) for α taken uniformly
from (0, 1)?

Since ord(πα,n) appears to vary wildly, it may be advantageous to consider its average
behavior. Can one give an asymptotic expansion of

∑N
n=1 ord(πα,n)? What can be said about

I (n) := ∫ 1
0 ord(πα,n) dα? Surprisingly, although I (n) seems to be rapidly increasing, it is

not monotonic, e.g., I (35) > I (36) > I (37). Is this the ‘law of small numbers,’ or are there
infinitely many values of n for which I (n + 1) > I (n)? We are not aware of any non-trivial
bounds, upper or lower, on I (n). Figure 1 shows I (n) for 1 ≤ n ≤ 60.

Bα is an interesting function in its own right. We gave a formula for Bα(n) (mod 2) in
Lemma 3.3.2. Is it possible to give a nice formula for Bα(n) for other moduli? It seems
likely that there are arbitrarily large integers which are not in the range of Bα , although we
have been unable to show that it does not contain all nonnegative integers. For example,
B(

√
5−3)/2(k) 	= 3, B√

2(k) 	= 7 and Be−1 (k) 	= 23 for k ≤ 107. It is perhaps noteworthy
that the least k for which Be−1 (k) = 25 is k = 22154, a reminder that Bα can take new,
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Figure 1. I (n) for 1 ≤ n ≤ 60.

small values even at large k. From the theory of continued fractions we know that there are
infinitely many k for which Bα(k) = 0. Is there an x 	= 0 and irrational α for which there
are infinitely many k such that Bα(k) = x?
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