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Abstract. The automorphism group of the Steiner triple system of order v ≡ 3 (mod 6), obtained from the
Bose construction using any Abelian Group G of order 2s + 1, is determined. The main result is that if G is not
isomorphic to Zn

3 × Zm
9 , n ≥ 0, m ≥ 0, the full automorphism group is isomorphic to Hol(G)× Z3, where Hol(G)

is the Holomorph of G. If G is isomorphic to Zn
3 × Zm

9 , further automorphisms occur, and these are described in
full.
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1. Introduction

A Steiner triple system of order v, D = STS(v), is an ordered pair (V,B) where V is
a set of elements or points, of cardinality v, and B is a collection of 3-element subsets
of V , called blocks or triples which collectively have the property that every 2-element
subset of V is contained in exactly one block. It is well-known that such systems exist if
and only if v ≡ 1 or 3 (mod 6), a fact first proved by Kirkman in 1847 [3]. Nearly 100
years later, in 1939, Bose [1] gave a particularly elegant construction in the case where
v = 6s + 3. Let G be an Abelian group of order 2s + 1, which we shall always write addi-
tively. It will be convenient to assume that s ≥ 1, thereby excluding the trivial case of the
STS(3).

Take V = G × Z3, and B to be the collection of blocks:

{(x, 0), (x, 1), (x, 2)}, x ∈ G,

{(x, 0), (y, 0), (z, 1)}, x, y, z ∈ G, x �= y, 2z = x + y,

{(x, 1), (y, 1), (z, 2)}, x, y, z ∈ G, x �= y, 2z = x + y,

{(x, 2), (y, 2), (z, 0)}, x, y, z ∈ G, x �= y, 2z = x + y.

Diagramatically the Bose construction can be represented as follows.
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The construction works because in an odd order Abelian group, given any two of the ele-
ment x , y, z, the equation 2z = x + y uniquely determines the third. The Bose construction
is capable of various modifications and generalisations; in particular the group G may be
replaced by any commutative idempotent Latin square L . In this latter scheme, the element
z is chosen to be z = L(x, y), the entry in row x and column y of L . However in this paper
we will be concerned only with the original construction based on an odd order Abelian
group as given by Bose.

The purpose of this paper is to determine the full automorphism group of a Steiner triple
system, D, constructed by the Bose method using an odd order Abelian group G. It is
clear from the definition of D that, if B = {(x, X ), (y, Y ), (z, Z )} ∈ B, then v + B =
{v + (x, X ), v + (y, Y ), v + (z, Z )} ∈ B for any v ∈ V ; also, that for any β ∈ Aut(G),

β(B) = {(β(x), X ), (β(y), Y ), (β(z), Z )} ∈ B

Thus the bijection [v, β] on V defined by

[v, β](x, X ) = v + (β(x), X )

clearly defines an automorphism of D.
One of the main results of this paper is that, unless G is a product of copies of Z3 and Z9,

all elements of Aut(D) are of this form. We shall call the automorphisms of form B �→ v+B
translations.

Before proceeding, some further terminology and definitions are appropriate. In the Bose
construction, there is a natural distinction between two types of block, those of the form
(x, 0), (x, 1), (x, 2) and the remainder. We will need to refer to and use this distinction
throughout this paper, and therefore, in analogy with the usual diagrammatic representation
of the Bose construction as given for example in [5], page 114, the former will be referred
to as vertical blocks, and the remainder as non-vertical. Also of importance will be the
signature of a block. Defining the label of an element to be the Z3 component, the signature
of a block is sum of the values of the labels of the block modulo 3. Observe that the signature
of a vertical block is zero, the signature of a non-vertical block is 1, and that no block has
signature 2.
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2. Block signatures and automorphism type

In this section we use the concept of block signature to begin to classify the types of
automorphism which can exist on a Bose design D, and show that two particular types of
automorphism exist only in the unique STS(9), the Bose design on Z3.

Lemma 2.1 If E is a 3 × 3 matrix of points of D such that the rows and columns are all
distinct blocks of D, then:
(a) all the rows of E have the same signature,
(b) all the columns of E have the same signature,
(c) if all the rows (columns) of E have signature 0, then all the columns (rows) have

signature 1.

Proof: Suppose that one row has signature 0, i.e. it is a vertical block. Then since all rows
and columns of E are distinct blocks of D, all the columns of E must be non-vertical. Hence
the sum of the signatures of the columns is 0 modulo 3, and so every row has signature 0.
Similarly, if one column has signature 0, then all rows are non-vertical, and every column
has signature 0. The third possibility is that all rows and columns have signature 1.

The next two lemmas use this result to classify the automorphisms of D by their actions
on the vertical blocks of D.

Lemma 2.2 A member of Aut(D) maps the vertical blocks of D either all to vertical blocks
or all to non-vertical blocks.

Proof: Let φ be any member of Aut(D), and x, y; x �= y any two elements of G. Apply
Lemma 2.1 to the image under φ of the matrix:

(x, 0) (x, 1) (x, 2)

(y, 0) (y, 1) (y, 2)( x+y
2 , 1

) ( x+y
2 , 2

) ( x+y
2 , 0

)

Suppose that under φ, the top row is mapped to a vertical (non-vertical) block. Then the
other rows are mapped similarly.

The above lemma allows the classification of automorphisms into the types vertical and
non-vertical, according to whether it maps all vertical blocks to vertical blocks or non-
vertical blocks.

We shall say that a vertical block is mapped even/oddly by an automorphism if it is
mapped to a vertical block, and the labels Z3 are permuted evenly/oddly.

Lemma 2.3 A vertical automorphism of D maps the vertical blocks of D either all even-
vertically or all odd-vertically.
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Proof: Let φ be a vertical automorphism of D, and consider the image under φ of the
matrix of Lemma 2.2. Suppose that some row is mapped even-vertically, and another odd-
vertically. We shall consider only the values of the labels of the individual elements, as
defined above, so we can write the values for these two rows as:

j j + 1 j + 2

i i + 2 i + 1

Since by Lemma 2.1 all the columns of the image matrix have signature 1, the third row
must have label values which are all 1 − i − j , which is not valid for a block of D.

Lemmas 2.2 and 2.3 enable us to classify automorphisms of D as even-vertical, odd-
vertical, or non-vertical according to whether it maps the vertical blocks of D even-
vertically, odd-vertically, or non-vertically.

The final result of this section shows that all the automorphisms of all but just one Bose
design are even-vertical.

Theorem 2.1 If any element φ of Aut(D) is either odd-vertical, or non-vertical, then
G ∼= Z3, and D is the unique STS(9).

Proof: We prove the result for odd-vertical automorphisms first. The automorphism acts
oddly on all vertical blocks. Suppose that x and y are non-zero elements of G, and that
x �= y and x �= 2y. Suppose the label values of the image of the block {(0, 0), (0, 1), (0, 2)}
are i, i + 2, i + 1. Now consider the image under φ of the matrix:

(2y − x, 0) (x, 0) (y, 1)

(x − 2y, 0) (−x, 0) (−y, 1)

(0, 1) (0, 1) (0, 2)

All columns and the first two rows of this matrix are non-vertical blocks, and by Lemma 2.2
transform to non-vertical blocks. The total of the signatures of the columns is zero. The
signatures of the top two rows are both 1. But the signature of the bottom row is (i + 2) +
(i + 2) + (i + 1) = 2, a contradiction. So one of the initial assumptions must be false.

We now prove the non-vertical case. If φ is non-vertical, then each vertical block is
the image under φ of a non-vertical block. Since the composition of a non-vertical au-
tomorphism with a translation is clearly still non-vertical, we can choose that the block
{(0, 0), (0, 1), (0, 2)} should be the image of the block {(x, 0), (−x, 0), (0, 1)} respec-
tively for some non-zero x ∈ G without affecting the non-vertical property of φ. Then by
Lemma 2.1, the image of the matrix:

(x, 2) (−x, 2) (0, 0)

(x, 1) (−x, 1) (0, 2)

(x, 0) (−x, 0) (0, 1)

has vertical blocks as rows and non-vertical blocks as columns.
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Now consider the matrix:

(2x, 0) (0, 0) (x, 1)

(−2x, 0) (0, 0) (−x, 1)

(0, 1) (0, 0) (0, 2)

The rows of this matrix all map to non-vertical blocks because the image of (0, 0) can only
be in one vertical block, namely the image of {(x, 2) (−x, 2) (0, 0)}. The last column maps
to a vertical block, and the image of the second column has signature zero, so that the first
column maps to a block also of signature zero, i.e. vertical. Hence, since (0, 1) �→ (0, 2),
(2x, 0) maps either to (0, 0) or (0, 1). But (0, 0) and (0, 1) are the images of (±x, 0), so
3x = 0, since x is non-zero.

Suppose now that G has another non-zero element, y �= x or 2x , and consider the matrix:

(
1
2 y, 0

)
(0, 2) (y, 2)(− 1

2 y, 0
)

(0, 2) (−y, 2)

(0, 1) (0, 2) (0, 0)

Then all the rows map to non-vertical blocks, because the image of (0, 2) is only included
in one vertical block, namely the image of {(x, 1), (−x, 1), (0, 2)}. In the same way the first
and last columns map to non-vertical blocks, because the only vertical block containing the
image of the point (0, 1) is the image of the block {(x, 0), (−x, 0), (0, 1)}, which is not equal
to {( 1

2 y, 0), (− 1
2 y, 0), (0, 1)} by the assumption on y, and similarly the only vertical block

containing the image of the point (0, 0) is the image of the block {(x, 2), (−x, 2), (0, 0)},
which is not equal to {(y, 2), (−y, 2), (0, 0)}. The image of the middle column has signature
zero, hence the sum of the row signatures does not equal that of the columns, and the initial
assumption must be false.

3. Standard automorphisms

In this section we shall be concerned with the way in which automorphisms of a Bose
design D permute the labels of vertical blocks. We shall call an automorphism group
standard if each of its elements is even-vertical and subjects the labels of every vertical
block to the same even permutation (which can equally well be represented as a trans-
lation by an element of Z3). A group of even-vertical automorphisms is non-standard if
it is not standard. The distinction is important, because it turns out that for most Bose
designs D, the full automorphism group is standard. In this section we shall prove that
the only groups G �= Z3 for which Aut D is non-standard are products of powers of Z3

and/or Z9, and will give a simple expression for the structure of Aut D in the standard
case.

We shall say that an even-vertical automorphism φ is standard on an element x of G if
φ permutes the labels of {(x, 0), (x, 1), (x, 2)} in the same way as those of {(0, 0), (0, 1),
(0, 2)}.
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Theorem 3.1 If Aut D is non-standard, then all elements of G are of order either 3 or 9,

and so G is isomorphic to a direct sum of copies of Z3 and/or Z9.

Proof: Note that if G = 0, then Aut(D) trivially has no non-standard elements, and we
henceforth assume that |G| ≥ 3. Suppose that φ is an automorphism of D, which acts
non-standardly on x ∈ G. Consider the matrix

(0, 0) (0, 1) (0, 2)

(x, 2) (x, 0) (x, 1)

(−x, 2) (−x, 0) (−x, 1)

Since the composition of φ with a translation still acts non-standardly on x , we may assume
that the top row maps to {(u, 0), (u, 1), (u, 2)} for some u ∈ G. Then the next row maps
to either {(v, 0), (v, 1), (v, 2)} or {(v, 1), (v, 2), (v, 0)} for some v ∈ G, in which case the
third row maps to either {(w, 1), (w, 2), (w, 0)} or {(w, 0), (w, 1), (w, 2)} respectively for
some w ∈ G. There is no loss of generality, because x can be renamed −x or vice-versa,
in assuming the former in each case. So the above matrix maps to

(u, 0) (u, 1) (u, 2)

(v, 0) (v, 1) (v, 2)

(w, 1) (w, 2) (w, 0)

Hence u + v = 2w. Suppose 3x �= 0. Then, by considering the blocks {(3x, 1), (−x, 1),
(x, 2)} and {(−3x, 0), (x, 0), (−x, 1)}, it follows that (3x, 1) maps to ((v + w)/2, 1), and
(−3x, 0) maps to (2v−w, 0). Now from the block {(9x, 0), (−3x, 0), (3x, 1)} it is deduced
that (9x, 0) maps to (2w − v, 0) = (u, 0). Hence 9x = 0, i.e. all elements of G which are
non-standard under φ have order either 3 or 9.

We next assert that if x, y, z ∈ G, and x + y = 2z, then for any even-vertical auto-
morphism φ of AutD, φ acts standardly either on all three of x, y, z, or one exactly of
them. This is because φ preserves signatures, and so φ either shifts all the labels of any
non-vertical block containing x, y and z by the same value, or all by different values. Now
suppose that φ acts non-standardly on x and standardly on y �= 0. Consider the block
{(x, 0), (y, 0), ( x+y

2 , 1)}. Then φ acts non-standardly on x+y
2 . Thus 9( x+y

2 ) = 0, giving
9y = 0, i.e. all elements, other than the identity, have order either 3 or 9.

The full automorphism group of every Bose design except for those designs constructed
from products of copies of Z3 and/or Z9 is therefore standard. The remaining automorphism
groups possess standard subgroups. The following result provides the structure for all
standard automorphism groups.

Recall that a semidirect product G×θ H is formed from two groups G, H , and a homomor-
phism θ : H → Aut (G), with the binary operator∗ : (g1, h1) ∗ (g2, h2) = (g1θ (h1)(g2), h1h2).
If H ∼= Aut (G), with θ the identity, then the semidirect product is called the Holomorph
of G, denoted by Hol(G) (see [4, p. 461]).
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Theorem 3.2 The group of standard automorphisms of D is isomorphic to Hol(G) × Z3,

and so is of order 3|G||Aut(G)|.

Proof: If g ∈ G, α ∈ Aut(G), and a is an element of Z3, then consider the map [g, α, a]
of elements of D defined by: [g, α, a] : (x, X ) → (g + α(x), X + a). [g, α, a] is clearly a
set isomorphism of the elements of D. It maps vertical blocks to vertical blocks, and also
non-vertical blocks to non-vertical blocks, because if x, y, z ∈ G, and x + y = 2z, then
(g + α(x))+ (g + α(y)) = 2g +α(x + y) = 2(g +α(z)), and because even permutations of
the labels preserve blocks. So [g, α, a] is an element of Aut(D), and is standard. Moreover
the mapping (g, α, a) �→ [g, α, a] is an injective map of the set G×Aut(G)×Z3 → Aut(D),
which is also a group homomorphism Hol(G) × Z3 → Aut(D) because for any element
(x, X ) of D,

[g, α, a][h, β, b](x, X ) = [g, α, a](h + β(x), X )

= (g + α(h) + αβ(x), X + a + b)

= [g + α(h), αβ, a + b](x, X )

We show that this is a surjection to the subgroup comprising the standard automorphisms
of D by constructing a corresponding triple (g, α, a) for any given standard automorphism.
Suppose φ is standard. The element a ∈ Z3 is immediately inferred. Since φ maps Z3 in
the same way for every element of G, φ uniquely defines a map φG : G → G, which is
a set isomorphism. φG(0) provides the first element of the triple. We need only provide an
automorphism of G for the second element. We assert that the map � : x �→ φG(x)−φG(0)
is an automorphism of G. This follows from the identity:

φ({(x, 0), (y, 0), (z, 1)}) = {(φG(x), a), (φG(y), a), (φG(z), 1 + a)}

for mapping of non-vertical blocks, applied to the blocks:

(x, 0) (−x, 0) (0, 1)

(y, 0) (0, 0)
(

1
2 y, 1

)
(x + y, 0) (−x, 0)

(
1
2 y, 1

)

which implies the identities:

φG(x) + φG(−x) = 2φG(0)

φG(y) + φG(0) = 2φG

(
1

2
y

)

φG(x + y) + φG(−x) = 2φG

(
1

2
y

)
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which implies:

φG(x + y) = φG(x) + φG(y) − φG(0),

Therefore �(x +y) = �(x)+�(y), and � is an isomorphism of G. Clearly [φG(0), �, a] =
φ, and we have the required isomorphism.

4. Non-standard automorphisms

As has been proved in the previous section, non-standard automorphisms are only possessed
by Bose designs constructed from groups G of the form: Zn

3 × Zm
9 , n + m �= 0. The non-

standard and standard automorphisms of a Bose design together also form an automorphism
group, which is the whole automorphism group unless G = Z3. We now derive the structure
for this group.

Lemma 4.1 If x, y ∈ Z3, then

(−2)x + (−2)y ≡ (−2)x+y + 1 (mod 9)

Proof: There are only nine cases to check, seven of which are trivial.

We can represent any even-vertical automorphism φ of D as a pair of maps (ψ, κ),
ψ : G → G, κ : G → Z3, where ψ is a set automorphism of G, and if (x, X ) is any point
of D,

φ : (x, X ) �→ (ψ(x), X + κ(x))

The next lemma characterises κ as a map of groups, and proves identities necessary for the
characterisation of the automorphism group.

Lemma 4.2 If G of the form: Zn
3 × Zm

9 , and φ = (ψ, κ) is any even-vertical automorphism
of D, then the following are true:
(a) If x, y, z ∈ G, and if x + y = 2z, then κ(x) + κ(y) + κ(z) ≡ 0(mod 3)
(b) The map G → Z3 defined by u �→ κ(u) − κ(0) is a homomorphism.
(c) If x, y, z ∈ G, and x + y = 2z, then

(−2)κ(x)ψ(x) + (−2)κ(y)ψ(y) + (−2)1+κ(z)ψ(z) = 0

(d) If x, y, z ∈ G, and x + y = 2z, then

(−2)κ(x) + (−2)κ(y) + (−2)1+κ(z) ≡ 0 (mod 9)

Proof:

(a) A non-vertical block {(x, 0), (y, 0), (z, 1)} will be mapped to a non-vertical block with
label values κ(x), κ(y), and 1 + κ(z) respectively. Since φ is a vertical automorphism,
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it preserves the signatures of blocks, so κ(x) + κ(y) + 1 + κ(z) ≡ 1(mod 3). The result
is also trivially true if x = y = z.

(b) We have to show that for any u, v ∈ G, κ(u + v) − κ(0) = κ(u) − κ(0) + κ(v) − κ(0),
i.e. κ(u + v) + κ(0) = κ(u) + κ(v). But, putting u + v = 2w, we have from (a) by
writing u + v = 2w = (u + v) + 0,

κ(u) + κ(v) + κ(w) = 0 = κ(u + v) + κ(0) + κ(w)

and the result follows.
(c) Observe from (a) that κ(x), κ(y), κ(z) are either all the same or all different. Consider

the mapping of the block {(x, X ), (y, X ), (z, X +1)} by (ψ, κ) to the block {ψ(x), X +
κ(x)), (ψ(y), X +κ(y)), (ψ(z), X +1+κ(z))}. If κ(x), κ(y), κ(z) are all the same, then
ψ(x)+ψ(y) = 2ψ(z), and hence ψ(x)+ψ(y)+(−2)ψ(z) = 0. If they are all different,
then suppose without loss of generality that κ(x) = 1+κ(z), and κ(y) = 2+κ(z), then
the image of {(x, X ), (y, X ), (z, X + 1)} is

{(ψ(x), X + 1 + κ(z)), (ψ(y), X + 2 + κ(z)), (ψ(z), X + 1 + κ(z))}

and so ψ(x) + ψ(z) = 2ψ(y), or ψ(x) + (−2)ψ(y) + ψ(z) = 0, so

(−2)1+κ(z)ψ(x) + (−2)2+κ(z)ψ(y) + (−2)1+κ(z)ψ(z) = 0

and the required result follows.
(d) It is only necessary to use (a), and to check the three cases where κ(x), κ(y), κ(z)

are: all the same, an even permutation of (0, 1, 2), and an odd permutation of the
same.

The previous two lemmas provide the material to identify the group of all even-vertical
automorphisms of D.

Theorem 4.1 If φ = (ψ, κ) is an even-vertical automorphism of D, then the map x �→
(−2)κ(x)(ψ(x)−ψ(0)) is an automorphism of G. The group of even-vertical automorphisms
of D is isomorphic to a group on the set Z3 × G × Hom(G, Z3) × Aut(G), by the map:

(κ, ψ)(x) �→ (κ(0), ψ(0), κ(x) − κ(0), (−2)κ(x)(ψ(x) − ψ(0)))

so that all even-vertical automorphisms φ = (ψ, κ) of D can be expressed in the form:

κ(x) = a + h(x), ψ(x) = g + (−2)−κ(x)α(x);

a ∈ Z3, h ∈ Hom(G, Z3), g ∈ G, α ∈ Aut(G)

Proof: That the map x �→ (−2)κ(x)(ψ(x) − ψ(0)) is a group homomorphism uses
Lemma 4.2 parts (c) and (d). Writing α(x) = (−2)κ(x)(ψ(x) − ψ(0)), (c) and (d) imply
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that if x + y = 2z (including x = y = z), then:

α(x) + α(y) − 2α(z) = (−2)κ(x)ψ(x) + (−2)κ(y)ψ(y) + (−2)1+κ(z)ψ(z)

− ψ(0)
(
(−2)κ(x) + (−2)κ(y) + (−2)1+κ(z)

)
= 0

So, in the same way as for Lemma 3.2, we can write:

α(2x) + α(2y) = 2α(x + y)

2α(x) = α(2x) + α(0)

2α(y) = α(2y) + α(0)

Since α(0) = 0, the sum of these three equations yields α(x) + α(y) = α(x + y) for all
x, y ∈ G, and α is a group homomorphism on G. To show that α is 1-1 it is sufficient
to show that α(x) = 0 iff x = 0, since α is a group homomorphism. However from its
definition, α(x) = 0 iff ψ(x) = ψ(0), so x = 0 since ψ is a set automorphism on G.

The above establishes the mapping from Aut(D) to Z3 × G × Hom(G, Z3) × Aut(G) as
a map of sets. The map is 1-1 because the first three components of the image determine
ψ(0) and κ , whilst these and the fourth component are sufficient to determine ψ .

We next show that the map is onto. We shall show that if a ∈ Z3, h ∈ Hom(G, Z3),
α ∈ Aut(G), and g ∈ G, then (ψ, κ), where κ : G �→ Z3 is defined as κ(x) = a +h(x), and
ψ : G �→ G is defined as ψ(x) = g + (−2)−κ(x)α(x), is an automorphism of D. Firstly we
assert that (ψ, κ) maps blocks to blocks. Clearly it maps vertical blocks to vertical blocks,
so in the following we have only to consider non-vertical blocks.

Observe that if x, y, z ∈ G such that x + y = 2z, then

κ(x) + κ(y) + κ(z) = 0

since the left-hand side is equal to:

3a + h(x) + h(y) + h(z) = h(x + y) − 2h(z) = h(x + y − 2z) = 0

Also,

(−2)κ(x)ψ(x) + (−2)κ(y)ψ(y) + (−2)1+κ(z)ψ(z) = 0

since the left-hand side is equal to:

= α(x) + α(y) − 2α(z) + (
(−2)κ(x) + (−2)κ(y) + (−2)1+κ(z)

)
g

= 0 + (
1 + (−2)κ(x)+κ(y) + (−2)1+κ(z)

)
g

= (
2 + (−2)κ(x)+κ(y)+1+κ(z)

)
g

= (
2 + (−2)3a+3h(z)+1

)
g = 0

since α ∈ Aut(G) and h ∈ Hom(G, Z3), and by Lemma 4.1.
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The first of these relationships once again shows that κ(x), κ(y), κ(z) are either all the
same or all different. If they are all the same, the second relationship gives ψ(x) + ψ(y) =
2ψ(z), and so (ψ, κ) maps the block {(x, X ), (y, X ), (z, X + 1)} to the block

{(ψ(x), X + κ(x)), (ψ(y), X + κ(x)), (ψ(z), 1 + X + κ(x))}
If κ(x), κ(y), κ(z) are all different, then 1 + κ(z) is equal either to κ(x) or to κ(y). With-
out loss of generality suppose the former. Then κ(y) = 1 + κ(x), and the second of the
relationships proved above implies

(−2)κ(x)ψ(x) + (−2)1+κ(x)ψ(y) + (−2)κ(x)ψ(z) = 0

Hence ψ(x) + ψ(z) + (−2)ψ(y) = 0 since (−2)κ(x) �= 0, so ψ(x) + ψ(z) = 2ψ(y), and
(ψ, κ) maps the block {(x, X ), (y, X ), (z, X + 1)} to the block

{(ψ(x), X + κ(x)), (ψ(z), X + κ(x)), (ψ(y), 1 + X + κ(x))}
It follows that (ψ, κ) maps blocks to blocks.

Secondly we show that (ψ, κ) is 1-1. This follows because if (ψ, κ)(x, X ) = (ψ, κ)(y, Y ),
then (−2)−κ(x)α(x) + g = (−2)−κ(y)α(y) + g. Since (−2) factors commute with α,
α((−2)−κ(x)x) = α((−2)−κ(y) y), so (−2)−κ(x)+κ(y)x − y = (−2)−h(x−y)x − y = 0 since α

is 1-1. However h((−2)z x) = (−2)zh(x) = h(x) for any z ∈ Z3, since (−2) is the identity
on Z3, so

h(x − y) = h
(
(−2)−h(x−y)x − y

) = h(0) = 0

and so x = y and X = Y , hence (ψ, κ) is 1-1. Thus (ψ, κ) is an automorphism of D.

This group on the set Z3 × G × Hom(G, Z3) × Aut(G) is of order 32n+3m+1|AutG| for
G = Zn

3 × Zm
9 , and is the full automorphism group except for the special case G = Z3,

due to the extra symmetry between G and the label set Z3. It is readily shown that the full
automorphism group of STS(9) is isomorphic to Hol(Z3 × Z3). However, this is a special
case of the final result:

Theorem 4.2 Let Dn be the STS of order 3n formed on the elements of the group G =
(Z3)n consisting of the direct product of n copies of Z3, where the blocks are all triples
{x, y, z}, x �= y �= z such that x + y + z = 0. Then the full automorphism group of Dn is
isomorphic to Hol(G).

Proof: The proof is very similar to that of Theorem 3.2.

The design Dn is of course the affine geometry AG(n, 3).
As an illustration of the results of this and the previous section, we will consider four

STS(81)s, and calculate the sizes of their automorphism groups.
Let G1 = Z27, G2 = Z3 × Z3 × Z3, G3 = Z3 × Z9, and G4 = Z3 × Z3 × Z3 × Z3. Then

the Bose constructions on G1, G2, and G3 are all of order 81, as is the affine geometry on G4.
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Firstly, however, we need to know |Aut(G)| for G = Zn
3 , and G = Z3 × Z9. For the

former, the result is well-known, see for example [2, p. 128], as the order of GL(n, Z3):

|Aut(G)| =
i=n−1∏

i=0

(3n − 3i )

For G3 = Z3 × Z9, Aut(G) is readily seen to be the group of all 2 × 2 matrices of form:

[
a c

3b d

]

where a, b, c ∈ Z3, and d ∈ Z9, and the determinant is non-zero modulo 3. The order of
this group is 108.

Consider first the Bose design on G1. By Theorem 3, the automorphism group of this
design is standard, since the group has an element of order 27. The order of the automorphism
group of the design is then

3|Z27||Aut(Z27)| = 3 · 27 · 18 = 1458.

The design on G2 has an non-standard automorphism group of order

37|Aut(G2)| = 37(33 − 1)(33 − 3)(33 − 9) = 2187 · 26 · 24 · 18 = 24, 564, 384.

The design on G3 also has an non-standard automorphism group of order

36|Aut(G3)| = 36 · 108 = 78, 732.

Finally, the design on G4, being the affine geometry AG(4, 3), has by 4.2 the automor-
phism group Hol(G4), which has order

|G4| · |Aut(G4)| = 34 · (34 − 1) · (34 − 3) · (34 − 32) · (34 − 33) = 1, 965, 150, 720
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