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Abstract. The wreath product of finite association schemes is a natural generalization of the notion of the
wreath product of finite permutation groups. We determine all irreducible representations (the Jacobson radical)
of a wreath product of two finite association schemes over an algebraically closed field in terms of the irreducible
representations (Jacobson radicals) of the two factors involved.
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1. Introduction

In general, representation theory is a valuable tool for the study of association schemes. In
this article, we consider the representations of the wreath product of association schemes. We
consider the association scheme as defined in [1], but we do not assume the commutativity
of it. Historically, this is also called a homogeneous coherent configuration. Here we will
consider irreducible representations of wreath products of association schemes.

Let X and Y be association schemes. Then we can define the wreath product X � Y of X

and Y. Let F be an algebraically closed field, and let FX, FY, and F(X � Y) be the adjacency
algebras of X, Y, and X � Y over F , respectively. We define representations of F(X � Y) in
terms of irreducible representations of FX and FY. They are also irreducible with some
exceptions. Next we determine the Jacobson radical of F(X � Y) and its dimension. Then we
can conclude that every irreducible representation of F(X � Y) is defined from an irreducible
representation of FX or FY. Also we will describe all irreducible characters of the wreath
product. In K. See and S. Y. Song [5], they wrote that they can calculate the character
table of the wreath product of association schemes. But they assume the commutativity of
association schemes. In the non-commutative case, there are some difficulties.

2. Preliminaries

Let X and Y be association schemes, in the sense of [1], with adjacency matrices {A0, . . . ,

Ad} and {B0, . . . , Bh}, respectively. We suppose that A0 and B0 are the identity matrices.
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We denote by n and n′ the sizes of matrices Ai and B j , respectively. We keep these notations
throughout this paper. In [5], the wreath product X � Y of X and Y is defined as follows.
(Some notations differ from [5], but they are essentially the same.) We consider the set of
matrices

{A0 ⊗ B0, . . . , Ad ⊗ B0, Jn ⊗ B1, . . . , Jn ⊗ Bh},

where Jn is the all one matrix of degree n. Then the wreath product X � Y of X and Y is
defined by the above matrices as adjacency matrices. It is easy to verify that it satisfies the
definition of an association scheme. This can be considered as a generalization of the wreath
product of transitive finite permutation groups. Let G and H be transitive finite permutation
groups on the sets X and Y , respectively. Then we can define association schemes X(G, X )
and X(H, Y ) by [1, II, Example 2.1]. Also we can define the wreath product G � H of G
and H [4, Section 1.2]. The group G � H is transitive on the set X × Y , and the association
scheme X(G � H, X × Y ) is isomorphic to X(G, X ) � X(H, Y ).

Let F be a field. We define the adjacency algebra FX of X over F by

FX =
d⊕

i=0

F Ai

as a matrix algebra over F . Since Ai is a 01-matrix, this definition has meaning. Clearly
the dimension of FX is d + 1. A representation of FX is a matrix representation of FX,
namely an algebra homomorphism from FX to the full matrix ring of some degree over F .
A representation of FX is irreducible if the corresponding right FX-module has no proper
submodule.

We state here some facts about finite dimensional algebras. From here, we always assume
that the field F is algebraically closed. Let A be a finite dimensional algebra over F . The
Jacobson radical Rad(A) of A is the intersection of all maximal right ideals of A.

Proposition 2.1 ([2, Proposition 3.1.9]) The Jacobson radical Rad(A) of A is a nilpotent
(two-sided) ideal containing all nilpotent right and left ideals.

The right socle Soc(A) is the sum of all irreducible right A-submodules of A. Then, for
any x ∈ Soc(A) and y ∈ Rad(A), we have xy = 0.

It is well known that A/Rad(A) is semisimple. Since F is algebraically closed, we have

A/Rad(A) ∼=
r⊕

i=1

Mdi (F),

where di ’s are the degrees of irreducible representations of A. So we have the following.

Proposition 2.2 Let S1, . . . , Sr be all non-equivalent irreducible representations of A. Then
dimF A = ∑r

i=1(deg Si )2 + dimF Rad(A).
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3. Irreducible representations

The adjacency algebra F(X � Y) of the wreath product X � Y has a basis

{A0 ⊗ B0, . . . , Ad ⊗ B0, Jn ⊗ B1, . . . , Jn ⊗ Bh}.

So dimF F(X � Y) = d +h +1. In this section, we determine all irreducible representations
of F(X � Y) in terms of irreducible representations of FX and FY. Let S1, . . . , Sr be all
non-equivalent irreducible representations of FX, and let T1, . . . , Ts be all non-equivalent
irreducible representations of FY. We denote by ki the valency of Ai , and denote by k ′

j the
valency of B j . The map Ai �→ ki defines a representation of FX of degree 1. We assume
that S1 is this representation, and also assume that T1 : B j �→ k ′

j . Note that Jn = ∑d
i=0 Ai

and FJn is a one-dimensional FX-module affording the representation S1. So Sµ(Jn) = 0
for µ �= 1.

For µ �= 1, we put{
S̃µ(Ai ⊗ B0) = Sµ(Ai )

S̃µ(Jn ⊗ B j ) = 0,

and extend this linearly. Note that the definition of S̃µ(Jn ⊗ B0) = ∑d
i=0 S̃µ(Ai ⊗ B0)

is duplicated. But, since µ �= 1, we have
∑d

i=0 S̃µ(Ai ⊗ B0) = Sµ(Jn) = 0. So S̃µ is
well-defined. Also we define{

T̃ν(Ai ⊗ B0) = ki E

T̃ν(Jn ⊗ B j ) = nTν(B j ),

where E is the identity matrix of degree deg Tν . In this case,
∑d

i=0 T̃ν(Ai ⊗ B0) = nE =
nTν(B0).

Lemma 3.1 The maps S̃µ (µ �= 1) and T̃ν defined above are representations of F(X � Y).

Proof: By direct calculations, we have the result. �

Lemma 3.2 The representations S̃µ (µ �= 1) and T̃1 are irreducible. If char F � n or char
F = 0, then T̃ν is irreducible. Moreover they are non-equivalent to each other. (Note that,
if char F | n, then T̃ν (ν �= 1) is reducible.)

Proof: Since Sµ is irreducible over an algebraically closed field F , we have ImSµ =
M�(F), where � = deg Sµ. Now ImS̃µ ⊇ ImSµ, so we have ImS̃µ = M�(F). This means
that S̃µ is irreducible. The representation T̃1 has the degree one, so it is irreducible.

If char F � n or char F = 0, then n �= 0 in F . So T̃ν is irreducible by the similar argument
as above. �

In the rest of this section, we will show that irreducible representations in Lemma 3.2 are
all irreducible representations.
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Lemma 3.3 Assume that char F � n or char F = 0, and put

I = Rad(FX) ⊗ B0 + Jn ⊗ Rad(FY).

Then the set I is a nilpotent ideal of F(X � Y) and dimF I = dimF Rad(FX) + dimF

Rad(FY). (In fact, I is the Jacobson radical of F(X � Y). This will be shown in the Proof
of Theorem 3.4.)

Proof: Firstly, we note that Ai ⊗ B0 commutes with Jn ⊗ B j for any i and j .
For α ∈ Rad(FX), we have (α ⊗ B0)(Jn ⊗ B j ) = 0, since Jn is in the socle of FX. Also,

for β ∈ Rad(FY), we have (Ai ⊗ B0)(Jn ⊗ β) = ki Jn ⊗ β ∈ I . Thus I is an ideal of
F(X � Y).

If Rad(FX)� = 0 and Rad(FY)m = 0, then

I �+m =
�+m∑
i=0

(Rad(FX)i ⊗ B0)(Jn ⊗ Rad(FY)�+m−i ) = 0.

So I is nilpotent.
Since dimF Rad(FX) = dimF Rad(FX) ⊗ B0, dimF Rad(FY) = dimF Jn ⊗ Rad(FY),

and Rad(FX) ⊗ B0 ∩ Jn ⊗ Rad(FY) = 0, we have dimF I = dimF Rad(FX) + dimF

Rad(FY). �

Theorem 3.4 Suppose that char F � n or char F = 0. Then S̃2, . . . , S̃r , T̃1, . . . , T̃s are all
non-equivalent irreducible representations of F(X � Y).

Proof: We use Propositions 2.1 and 2.2. By Lemma 3.3, we have

dimF F(X � Y) ≥
r∑

µ=2

(deg S̃µ)2 +
s∑

ν=1

(deg T̃ν)2 + dimF Rad(F(X � Y))

≥
r∑

µ=2

(deg S̃µ)2 +
s∑

ν=1

(deg T̃ν)2 + dimF I

= (dimF FX− dimF Rad(FX)−1)+ (dimF FY− dimF Rad(FY))

+ (dimF Rad(FX) + dimF Rad(FY))

= dimF FX + dimF FY − 1 = dimF F(X � Y).

This completes the proof. (Also we can conclude that I = Rad(F(X � Y)).) �

Lemma 3.5 Assume that char F | n, and put I = Rad(FX) ⊗ B0 + Jn ⊗ FY. Then
the set I is a nilpotent ideal of F(X � Y) and dimF I = dimF Rad(FX) + dimF FY − 1.
(In fact, I is the Jacobson radical of F(X � Y).)

Proof: We note that (Jn)2 = 0, in this case. It is easy to verify that I is a nilpotent ideal
of F(X � Y). Since Rad(FX) ⊗ B0 ∩ Jn ⊗ FY = F(Jn ⊗ B0), we have the result. �
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Theorem 3.6 Suppose that char F | n. Then S̃2, . . . , S̃r , T̃1 are all non-equivalent irre-
ducible representations of F(X � Y).

Proof: The proof is similar to the proof of Theorem 3.4. �

As a consequence of Theorem 3.4 and 3.6, we have the following corollary. (We note
that a general criterion of the semisimplicity of an adjacency algebra is discussed in [3,
Theorem 4.2].)

Corollary 3.7 The algebra F(X � Y) is semisimple if and only if both FX and FY are
semisimple.

Proof: If char F | n, then both FX and F(X � Y) are not semisimple. If char F � n, then
the assertion holds by Theorem 3.4 and its proof. �

4. Irreducible characters

In this section, we describe all irreducible characters of X � Y over the complex number
field C. The character means the trace function of a representation. Since the adjacency
algebra of an association scheme over C is always semisimple, this is easy by Theorem 3.4.

Let χ1, . . . , χr be all irreducible characters of CX, and let ϕ1, . . . , ϕs be all irreducible
characters of CY. Suppose χ1(Ai ) = ki and ϕ1(B j ) = k ′

j . We define

{
χ̃µ(Ai ⊗ B0) = χµ(Ai )

χ̃µ(Jn ⊗ B j ) = 0,

for µ �= 1 and

{
ϕ̃ν(Ai ⊗ B0) = kiϕν(B0)

ϕ̃ν(Jn ⊗ B j ) = nϕν(B j ).

Then we have the following.

Theorem 4.1 In the above notations, χ̃2, . . . , χ̃r , ϕ̃1, . . . , ϕ̃s are all irreducible characters
of C(X � Y).

Appendix

Professor A. Munemasa pointed out that the result in this article holds for more general
situations. Let F be an algebraically closed field, and let A and B be finite dimensional
F-algebras. Suppose A has a central element e such that Fe is a two-sided ideal of A, and
that e2 = e or e2 = 0. Put C = A⊗1+e⊗ B ⊂ A⊗F B. If e2 = e, then A is a direct sum of
two-sided ideals A(1 − e) and Ae = Fe. In this case, we have C ∼= A(1 − e) ⊕ B. If e2 = 0,
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then e ⊗ B is contained in the Jacobson radical of C , so the irreducible representations of
C are the same as those of A. Our main results Theorem 3.4 and 3.6 are easy consequences
of these facts.
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