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Abstract. We study several questions about amorphic association schemes and other strongly regular decompo-
sitions of the complete graph. We investigate how two commuting edge-disjoint strongly regular graphs interact.
We show that any decomposition of the complete graph into three strongly regular graphs must be an amorphic
association scheme. Likewise we show that any decomposition of the complete graph into strongly regular graphs
of (negative) Latin square type is an amorphic association scheme. We study strongly regular decompositions of
the complete graph consisting of four graphs, and find a primitive counterexample to A.V. Ivanov’s conjecture
which states that any association scheme consisting of strongly regular graphs only must be amorphic.
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1. Introduction

In this paper we tackle several questions about so-called amorphic association schemes. Such
an association scheme has the property that all of its graphs are strongly regular. Moreover,
they are all of Latin square type, or all of negative Latin square type. For background on
amorphic association schemes, we refer the reader to the expository paper [6].

To study the relevant questions on amorphic association schemes, we introduce more
general strongly regular decompositions of a complete graph. These are decompositions
of the edge set of a complete graph into spanning subgraphs that are all strongly regular.
A trivial example is given by a strongly regular graph and its complement, which form
a strongly regular decomposition of a complete graph consisting of two graphs. Such a
decomposition is also an amorphic association scheme (trivially).

An important role in this paper is played by commutative decompositions. These are de-
compositions for which the adjacency matrices of all graphs in the decomposition commute.
In Section 3 we therefore investigate how two commuting edge-disjoint strongly regular
graphs G1 and G2 interact algebraically, and characterize the case when the commutative
decomposition {G1, G2, G1 ∪ G2} is an association scheme. We also give examples of all
possible cases.

One of our main goals in this paper is to show that any decomposition of a complete
graph into three strongly regular graphs is an amorphic association scheme. This surprising
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fact was claimed to be true by Gol’fand et al. [7], but no proof was given. Now two quite
different proofs are available. One is contained in Section 4; for the other proof see [6]. The
result generalizes a result by Rowlinson [13] and independently Michael [12] who showed
that any decomposition of a complete graph into three isomorphic strongly regular graphs
is an association scheme.

In Section 5 it is shown that any strongly regular decomposition consisting of Latin
square type graphs only, or of negative Latin square type graphs only, is also an amorphic
association scheme. This generalizes a result by Ito et al. [9] who showed that any association
scheme consisting of (negative) Latin square type graphs only is amorphic.

Since a strongly regular decomposition of a complete graph into three graphs necessarily
is an amorphic association scheme, the next case to investigate would be decompositions
into four strongly regular graphs. In the general (not necessarily commutative) case it seems
hard to characterize such decompositions. We have only one (!) non-commutative example
(on 6 vertices), which we found by classifying the decompositions into four strongly regular
graphs of which at least three are disconnected.

In the commutative case with four graphs Theorem 5 reduces the number of cases con-
siderably. The commutative case is also of interest because of A.V. Ivanov’s conjecture (cf.
[10, Problem 1.3]). This conjecture states that any association scheme consisting of strongly
regular graphs only must be amorphic. Already in [5] counterexamples to this conjecture
were found, but these were all imprimitive. Theorem 5 helped us to find a first primitive
counterexample to the conjecture, which was also one of the main goals of the research
which led to this paper.

2. Preliminaries

In this paper we consider simple undirected graphs without loops, unless otherwise in-
dicated. A decomposition of a graph is defined as an edge-decomposition into spanning
subgraphs, i.e. a partition of the edge set of the original graph into graphs on the same ver-
tex set. More formally, we say that {G1, G2, . . . , Gd} is a decomposition of a graph G if for
any two adjacent vertices in G, there is exactly one i for which the two vertices are adjacent
in the graph Gi , and the vertex set of Gi is the same as the one of G, for all i . For any graph
G1, the graph and its complement G2 = G1 form a (trivial) decomposition of a complete
graph. Association schemes are other examples of decompositions of the complete graph.
A decomposition is called strongly regular if all graphs in the decomposition are strongly
regular graphs.

2.1. Strongly regular graphs and restricted eigenvalues

A strongly regular graph G with parameters (v, k, λ, µ) is a non-complete graph on v

vertices which is regular with valency k, and which has the property that any two adjacent
vertices have λ common neighbours, and any two non-adjacent vertices have µ common
neighbours. It is well known that the adjacency matrix of a strongly regular graph has two
or three distinct eigenvalues, depending on whether the graph is disconnected or not. Since
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G is regular with valency k, it has the all-ones vector j as an eigenvector with eigenvalue k.
To unify the cases where G is connected and where it is not, we introduce the concepts
of restricted eigenvalues and multiplicities. We say that a regular graph (and its adjacency
matrix) has a restricted eigenvalue θ if it has an eigenvector for θ which is orthogonal to
the all-ones vector j (i.e., these are all eigenvalues except the valency in case the graph is
connected, and all eigenvalues if the graph is not connected). The restricted multiplicity
for a restricted eigenvalue θ is the dimension of its eigenspace intersected with j⊥. It now
follows that a regular graph is strongly regular if and only if it has two distinct restricted
eigenvalues, say r and s. It is well known that for a strongly regular (v, k, λ, µ) graph the
restricted eigenvalues r and s follow from the equations r + s = λ − µ and rs = µ − k.
The restricted multiplicities f for r and g for s are given by the equations f = − k+(v−1)s

r−s
and g = k+(v−1)r

r−s . If G is connected then these numbers are the usual multiplicities for a
strongly regular graph.

A strongly regular graph is of Latin square type or of negative Latin square type if there
are integers n and t (positive or negative, depending on the “type”) such that the graph has
n2 vertices, valency t(n − 1), and restricted eigenvalues n − t and −t .

We remark finally that the complement of a strongly regular graph is also strongly reg-
ular, hence a strongly regular graph and its complement form a (trivial) strongly regular
decomposition of a complete graph. For more information on strongly regular graphs we
refer the reader to [4].

2.2. Commutative decompositions and association schemes

We call a decomposition of a complete graph commutative if the adjacency matrices Ai , i =
1, 2, . . . , d of all graphs in the decomposition commute. It follows that in a commutative
decomposition of a complete graph all graphs are regular, since each adjacency matrix
Ai , i = 1, 2, . . . , d commutes with the all-ones matrix J = I + A1 + · · · + Ad .

A (d-class) association scheme is a decomposition {G1, G2, . . . , Gd} of a complete graph
such that there are ph

i j , h, i, j = 1, . . . , d, called the intersection numbers, such that for any

two vertices x and y adjacent in Gh , there are ph
i j vertices z that are adjacent to x in Gi and

adjacent to y in G j . It follows that an association scheme is a commutative decomposition,
and hence that all graphs in the decomposition are regular. Because of this regularity we
can extend the definition of the ph

i j to h, i, j = 0, 1, . . . , d, if we define G0 as the graph
consisting of a loop at each vertex (with adjacency matrix A0 = I ).

If Ai denotes the adjacency matrix of Gi , then the conditions of the association scheme
translate into Ai A j = A j Ai = ∑d

h=0 ph
i j Ah for i, j = 0, 1, . . . , d. This implies that a

decomposition {G1, G2, . . . , Gd} of a complete graph is an association scheme if and only
if the vector space 〈A0 = I, A1, A2, . . . , Ad〉 forms an algebra (i.e. is closed under taking
products) over the real number field. This algebra is called the Bose-Mesner algebra of the
association scheme. We remark that in the literature more general definitions of association
schemes are being used. In this respect we add that the association schemes in this paper
will always be symmetric and hence commutative.

Association schemes are generalizations of strongly regular graphs in the sense that a
decomposition of a complete graph into a graph and its complement is an association scheme
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if and only if the graph is strongly regular. For more information on association schemes
we refer the reader to [1] or [3].

Now consider a commutative decomposition with adjacency matrices Ai , i = 1, 2, . . . , d,
and let A0 = I . Since the matrices Ai commute, they can be diagonalized simultaneously, and
hence they have a common basis of (mutually orthogonal ) eigenvectors. It follows that the
vector space R

v can be decomposed into maximal common eigenspaces Vi , i = 0, 1, . . . , t
(for some t). Since all graphs are regular, one of these maximal common eigenspaces is
〈 j 〉, which will be denoted by V0. Let Ei be the idempotent matrix representing the orthog-
onal projection onto the eigenspace Vi , for i = 0, 1, . . . , t , then Ei E j = δi j Ei . Moreover,
we can express the matrices Ai in terms of the matrices E j , i.e. Ai = ∑t

j=0 Pji E j for
i = 0, 1, . . . , d , where Pji is the eigenvalue of Ai on the eigenspace Vj . The matrix P
is called the eigenmatrix of the decomposition. The following lemma characterizes the
association schemes among the commutative decompositions.

Lemma 1 Let {G1, G2, . . . , Gd} be a commutative decomposition of a complete graph
with idempotents E j , j = 0, . . . , t, and eigenmatrix P as defined above. Then t ≥ d with
equality if and only if the decomposition is an association scheme. If t = d, then P is
nonsingular.

Proof: Let A = 〈A0 = I, A1, A2, . . . , Ad〉, and E = 〈E0, E1, . . . , Et 〉. Since Ai =∑t
j=0 Pji E j for i = 0, . . . , d it follows that A ⊆ E, hence we have that d ≤ t (since

clearly the matrices Ai , i = 0, 1, . . . , d are linearly independent).
We claim that E is the smallest algebra containing A. This shows that A is an algebra if and

only if t = d , which proves the first part of the lemma. If t = d, then P is the matrix which
transforms one basis of the algebra into another (since also the matrices E j , j = 0, 1, . . . , t
are linearly independent), and hence P is nonsingular.

To prove the claim, we first remark that clearly E is an algebra. The remainder of the
proof is similar to the argument in [1, Theorem 3.1]. Fix i . Because of the maximality of
the common eigenspaces Vj , there is a k( j) such that Pjk( j) �= Pik( j), for each j �= i . Now
the matrix F = ∏

j �=i (Ak( j) − Pjk( j) I ) is contained in each algebra containing A, and hence
also in E. Moreover, F vanishes on each Vj , j = 0, 1, . . . , t except on Vi . This means that
Ei is a multiple of F , and hence that Ei is contained in each algebra containing A. Since
this holds for all i , the claim is proven.

2.3. Fusions and amorphic association schemes

A decomposition {H1, . . . , He} of some graph G is called a fusion of a decomposition
{G1, . . . , Gd} of G if for all i , the edge set of Hi is the union of the edge sets of some of
the graphs G j .

An association scheme is called amorphic if any of its fusions is also an association
scheme. It follows that each of the graphs in an amorphic association scheme must be
strongly regular. Thus amorphic association schemes are strongly regular decompositions
of a complete graph. Moreover, it was shown in [7] that in an amorphic association scheme
with at least three graphs all graphs are of Latin square type, or all graphs are of negative
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Latin square type. For more information on amorphic association schemes we refer the
reader to [6].

The following association schemes are in some cases amorphic, and they will play an
important role in Section 6. Let q = pm , where p is prime, and let d be a divisor of q − 1. The
d-class cyclotomic association scheme on vertex set GF(q) is defined as follows. Let α be
a primitive element of GF(q). Then two vertices are adjacent in graph G j if their difference
equals αdi+ j for some i , for j = 1, . . . , d. Note that in some cases this association scheme
is non-symmetric, but these association schemes will not be used in this paper. It was proven
by Baumert et al. [2, Theorem 4] that, for d > 2, the cyclotomic scheme is amorphic if and
only if −1 is a power of p modulo d.

3. Commuting strongly regular graphs and three-class association schemes

Suppose we have two edge-disjoint strongly regular graphs G1 and G2 on the same ver-
tex set. Assume that the two graphs are not complementary, so that there is a remaining
nonempty third graph G3 = G1 ∪ G2 with adjacency matrix A3 = J − I − A1 − A2,
where A1 and A2 are the adjacency matrices of G1 and G2, respectively. We would
like to know when these three graphs form a 3-class association scheme. It is clear that
a necessary condition for this is that the matrices A1 and A2 commute. Examples of
noncommuting A1 and A2 are not hard to find, for example, take the triangular graph
T (5) and the graph consisting of five vertex-disjoint edges which are not in the trian-
gular graph (a matching in the Petersen graph, the complement of T (5)). These two
graphs leave two vertex-disjoint 5-cycles as the third graph. This example is particu-
larly interesting since it shows that although the third graph is part of some 3-class ass-
ociation scheme (the wreath product of K2 and C5), it does not form one with G1

and G2.
Is the property that G1 and G2 (i.e. A1 and A2) commute sufficient for G1, G2, and G3

to form an association scheme? Before answering this question we first need the following
lemma. This lemma, which in a sense tells us how G1 and G2 interact algebraically, will
also play an important role in Section 6.

Lemma 2 Let G1 and G2 be edge-disjoint strongly regular graphs on v vertices, with Gi

having adjacency matrix Ai , valency ki , and restricted eigenvalues ri and si , for i = 1, 2.
If A1 and A2 commute, then A1 + A2 has restricted eigenvalues ϑ1 = s1 + s2, ϑ2 = s1 +r2,

ϑ3 = r1 + s2, and ϑ4 = r1 + r2, with respective restricted multiplicities

m1 = vr1r2 − (k1 − r1)(k2 − r2)

(r1 − s1)(r2 − s2)
, m2 = −vr1s2 − (k1 − r1)(k2 − s2)

(r1 − s1)(r2 − s2)
,

m3 = −vs1r2 − (k1 − s1)(k2 − r2)

(r1 − s1)(r2 − s2)
, m4 = vs1s2 − (k1 − s1)(k2 − s2)

(r1 − s1)(r2 − s2)
.

If moreover ri > si for i = 1, 2, then m2 > 0 and m3 > 0.
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Proof: Since A1 and A2 commute, they have a common basis of eigenvectors. Clearly, this
is also a basis of eigenvectors for A1 + A2. The all-ones vector j is a common eigenvector
with eigenvalues k1, k2, and k1 + k2, respectively. It is also clear that A1 + A2 has restricted
eigenvalues ϑi , i = 1, . . . , 4, as stated. Now let mi be the restricted multiplicity of ϑi ,
for i = 1, . . . , 4 (more precisely, m1 is the dimension of the intersection of the restricted
eigenspaces of s1 (of A1) and s2 (of A2), etc.), and let gi be the restricted multiplicity of the
restricted eigenvalue si of the matrix Ai , for i = 1, 2. From the equations m1 + m2 = g1,
m1 + m3 = g2, m1 + m2 + m3 + m4 = v − 1 and (k1 + k2)2 + m1(s1 + s2)2 + m2(s1 +
r2)2 + m3(r1 + s2)2 + m4(r1 + r2)2 = v(k1 + k2) (which follows from the trace of (A1 +
A2)2), and the property that gi = vri +ki −ri

ri −si
for i = 1, 2, the multiplicities mi , i = 1, . . . , 4

follow.
If moreover r1 > s1 and r2 > s2, then (k1 − r1)(k2 − s2) > vr1s2 (since s2 < 0 ≤ r1 ≤ k1),

hence m2 > 0. Similarly m3 > 0.

We remark furthermore that if ri > si , then we also have that ϑ1 < ϑi < ϑ4 for i = 2, 3,
and that ϑ2 = ϑ3 if and only if r1 − s1 = r2 − s2. In this case the restricted multiplicity of
ϑ2 = ϑ3 is of course m2 + m3.

An immediate consequence of Lemma 2 is the following corollary, which will be used
in Theorem 3.

Corollary 1 Let G1 and G2 be edge-disjoint strongly regular graphs, both of Latin square
type or both of negative Latin square type. If the adjacency matrices of the two graphs
commute, then their union G1 ∪ G2 is also strongly regular of Latin square type, or negative
Latin square type, respectively.

Proof: There are integers n, t1, and t2 (positive or negative, depending on the “type” of the
graphs) such that the number of vertices is n2, and Gi has valency ti (n − 1) and restricted
eigenvalues ri = n − ti and si = −ti , for i = 1, 2. It follows from Lemma 2 that the
multiplicity m4 equals zero. It thus follows that G1 ∪ G2 has valency (t1 + t2)(n − 1) and
restricted eigenvalues n − t1 − t2 and −t1 − t2, hence it is also a strongly regular graph of
Latin square type or negative Latin square type graph, respectively.

Now we shall answer our earlier question.

Theorem 1 Let G1 and G2 be commuting, edge-disjoint strongly regular graphs on v

vertices, with valencies k1 and k2 < v − 1 − k1, and restricted eigenvalues r1 > s1 and
r2 > s2, respectively. Then {G1, G2, G1 ∪ G2} is an association scheme if and only ifvr1r2 =
(k1 − r1)(k2 − r2) or vs1s2 = (k1 − s1)(k2 − s2).

Proof: Let A1, A2, A3 = J − I − (A1 + A2) be the adjacency matrices of G1, G2, and
G3 = G1 ∪ G2, respectively. Since Gi is regular for i = 1, 2, 3, and A1 and A2 com-
mute, it follows that the decomposition {G1, G2, G3} is commutative. Moreover, G3 has
valency k3 = v − 1 − k1 − k2 and restricted eigenvalues θi = −1 − ϑi with restricted
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multiplicities mi , i = 1, . . . , 4 (where the ϑi are the restricted eigenvalues of A1 + A2,
as given in Lemma 2). Now let V0 = 〈 j 〉, and let Vi be the restricted eigenspace cor-
responding to the eigenvalue ϑi of A1 + A2, for i = 1, . . . , 4 (more precisely, V1 is
the intersection of the restricted eigenspaces of s1 (of A1) and s2 (of A2), etc.). The
eigenmatrix of the commutative decomposition (as defined in Section 2.2) is thus
given by

P =




1 k1 k2 k3 = v − 1 − k1 − k2

1 s1 s2 θ1 = −1 − s1 − s2

1 s1 r2 θ2 = −1 − s1 − r2

1 r1 s2 θ3 = −1 − r1 − s2

1 r1 r2 θ4 = −1 − r1 − r2




.

Consequently, since m2 and m3 are positive (by Lemma 2), we find from Lemma 1 that at
most one of the multiplicities m1 and m4 can be zero, and if indeed one of them is, then
{G1, G2, G3} is a 3-class association scheme. The result now follows from the expressions
for m1 and m4 in Lemma 2.

The theorem we just proved allows us to make a first step towards proving that any strongly
regular decomposition of a complete graph consisting of three graphs is an amorphic asso-
ciation scheme.

Corollary 2 A commutative strongly regular decomposition {G1, G2, G3} of a complete
graph is an amorphic association scheme.

Proof: From the proof of Theorem 1 it follows that G3 = G1 ∪ G2 has two restricted
eigenvalues only if m1 = 0 or m4 = 0. Hence the decomposition is an association scheme.
Moreover, from the definition of amorphic schemes it follows easily that any 3-class asso-
ciation scheme in which all graphs are strongly regular is amorphic.

In the next section we shall generalize this corollary, and prove that any strongly regular
decomposition with three graphs is an amorphic association scheme.

The following examples of commuting strongly regular graphs G1 and G2 show that there
are indeed cases where the decomposition {G1, G2, G3 = G1 ∪ G2} is not an association
scheme. Moreover, they show that the number of distinct eigenvalues of G3 is not a criterion
for forming a scheme.

We just saw that the case where G3 is strongly regular gives an amorphic scheme.
However, in the following infinite family of examples G3 has three distinct eigenvalues
also, and the graphs do not form a scheme (G3 will be disconnected). Let A1 and A2

be the following adjacency matrices of the Clebsch graph and the lattice graph L2(4),
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respectively:

A1 =




O J − I I I

J − I O I I

I I O J − I

I I J − I O


 and

A2 =




J − I I K K

I J − I K K

K K J − I I

K K I J − I


,

where all submatrices are 4 × 4, and K is a symmetric permutation matrix with zero diago-
nal. These matrices commute, and the corresponding graphs have no edges in common. By
taking H1 = J − 2(A1 + I ) and H2 = J − 2A2 we have two commuting regular symmetric
Hadamard matrices with constant diagonal (cf. [4]), which have no entry −1 in common.
Now define H ′

1 = H⊗t ⊗ H1 and H ′
2 = H⊗t ⊗ H2, for t = 0, 1, . . . , where

H =




1 −1 1 1

−1 1 1 1

1 1 1 −1

1 1 −1 1


,

and⊗denotes the Kronecker product (and superscript⊗t the t-th Kronecker power), then H ′
1

and H ′
2 are also commuting regular symmetric Hadamard matrices with constant diagonal,

which have no entry −1 in common (we leave the technical details to the reader). Now
define A′

1 = 1
2 (J − H ′

1) − I and A′
2 = 1

2 (J − H ′
2), so that two vertices are adjacent if there

is a −1 in the corresponding entry of the Hadamard matrix. Now also A′
1 and A′

2 commute,
and the graphs defined by them are edge-disjoint, and both are strongly regular on v = 4t+2

vertices (cf. [4]). Moreover, A′
1 has eigenvalues k1 = 22t+3 − 2t+1 − 1, r1 = 2t+1 − 1 and

s1 = −2t+1 − 1, while A′
2 has eigenvalues k2 = 22t+3 − 2t+1, r2 = 2t+1 and s2 = −2t+1.

From this, it follows that the corresponding eigenmatrix is the following.

P =




1 22t+3 − 2t+1 − 1 22t+3 − 2t+1 k3 = 2t+2

1 −2t+1 − 1 −2t+1 θ1 = 2t+2

1 −2t+1 − 1 2t+1 θ2 = 0

1 2t+1 − 1 −2t+1 θ3 = 0

1 2t+1 − 1 2t+1 θ4 = −2t+2




with multiplicities m0 = 1, m1 = 2t+1 − 1, m2 = 2t+2(2t+1 − 1), m3 = 22t+3, m4 = 2t+1,
hence the graphs do not form a scheme. Here G3 has 3 distinct eigenvalues, in fact it is the
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disjoint union of (strongly regular) complete bipartite graphs. Note that in this example G1

is of negative Latin square type, while G2 is of Latin square type.
Next, we shall construct infinite families of examples of commuting strongly regular

graphs, where G3 has 4 or 5 eigenvalues. In the latter case it is clear that the graphs cannot
form an association scheme. In the first case we have examples forming schemes, and
examples not forming schemes.

Consider a generalized quadrangle GQ(q −1, q +1), with q = 2e, as constructed by Hall
[8], that is, with points those of the affine space AG(3, q) and lines those of q + 2 parallel
classes (spreads) of lines in AG(3, q) corresponding to a hyperoval O in PG(2, q) (the
linear representation T ∗

2 (O), cf. [14]). Take the line graph of this generalized quadrangle
(vertices are lines, being adjacent if they intersect), which has v = (q + 2)q2 vertices,
valency k1 = q(q + 1), and restricted eigenvalues r1 = q and s1 = −q. From the defini-
tion, it is clear that it has a partition of the vertices into q + 2 cocliques of size q2. This
partition is regular (equitable), meaning that the induced subgraph on the union of two
cocliques is regular. This implies that when we take as second graph G2 the corresponding
disjoint union of q2-cliques, then G1 and G2 commute. Since G2 has valency k2 = q2 − 1
and restricted eigenvalues r2 = q2 − 1, s2 = −1, it follows that the corresponding
eigenmatrix is

P =




1 q(q + 1) q2 − 1 k3 = q3 − q

1 −q −1 θ1 = q

1 −q q2 − 1 θ2 = q − q2

1 q −1 θ3 = −q




with multiplicities m1 = m3 = 1
2 (q + 2)(q2 − 1) and m2 = q + 1. Since m4 = 0 the three

graphs form an association scheme, with G3 having 4 distinct eigenvalues (unless q = 2,
in which case it has 3 distinct eigenvalues).

Small adjustments of the previous construction will give us the other two cases. First,
we shall refine the partition into q + 2 cocliques “plane-wise”, that is, take a first parallel
class (a coclique), and partition it into q parallel “planes”. Since the set of all lines forms
a generalized quadrangle, there is a unique other parallel class that can be partitioned into
the “same planes”, and we do so (again, we skip the technical details). Repeating this
procedure with the remaining q parallel classes we find a partition of the vertex set into
(q + 2)q cocliques of size q , which is again regular. The partition gives us as the second
graph G ′

2 a disjoint union of q-cliques, which commutes with G ′
1 = G1, the line graph of

the generalized quadrangle. Since G ′
2 now has valency k ′

2 = q −1 and restricted eigenvalues
r ′

2 = q − 1 and s ′
2 = −1, we have eigenmatrix

P =




1 q(q + 1) q − 1 k ′
3 = q3 + q2 − 2q

1 −q −1 θ ′
1 = q

1 −q q−1 θ ′
2 = 0

1 q −1 θ ′
3 = −q

1 q q−1 θ ′
4 = −2q



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with multiplicities m ′
1 = m ′

3 = 1
2 (q + 2)q(q − 1), m ′

2 = 1
2 (q2 + 3q), and m ′

4 = 1
2 (q2 +

q − 2). Thus the three graphs do not form an association scheme; in this case G ′
3 has 5

distinct eigenvalues.
The constructed partition into cocliques by “planes” also allows us to partition the lines

regularly into 1
2 (q + 2)q cocliques of size 2q (simply reunite pairs of parallel “planes”

consistently). This gives a graph G ′′
2 which also commutes with G ′′

1 = G1, and which has
valency k ′′

2 = 2q − 1 and restricted eigenvalues r ′′
2 = 2q − 1 and s ′′

2 = −1. Thus we obtain
the eigenmatrix

P =




1 q(q + 1) 2q − 1 k ′′
3 = q3 + q2 − 3q

1 −q −1 θ ′′
1 = q

1 −q 2q − 1 θ ′′
2 = −q

1 q −1 θ ′′
3 = −q

1 q 2q − 1 θ ′′
4 = −3q




with multiplicities m ′′
1 = m ′′

3 = 1
4 (q + 2)q(2q − 1), m ′′

2 = 1
4 q2 + q, and m ′′

4 = 1
4 q2 − 1,

and hence also here the three graphs do not form an association scheme, unless q = 2 (in
which case m4 = 0); in these examples G ′′

3 has 4 distinct eigenvalues.

4. Decompositions into three strongly regular graphs

In this section we shall consider decompositions of the complete graph into three strongly
regular graphs. We shall prove that such decompositions must be (amorphic) association
schemes. This generalizes the result of Rowlinson [13] and independently Michael [12]
that any decomposition of a complete graph into three isomorphic strongly regular graphs
forms an amorphic association scheme. The proof given here is based on techniques from
linear algebra. An independent proof based on noncommutative algebra and representation
theory is given in [6].

Theorem 2 Let {G1, G2, G3} be a strongly regular decomposition of a complete graph.
Then {G1, G2, G3} is an amorphic association scheme.

Proof: Let Gi have parameters (v, ki , λi , µi ), restricted eigenvalues ri and si , and adja-
cency matrix Ai , for i = 1, 2, 3. Denote by E(ri ), E(si ) the restricted eigenspaces of ri ,
si , respectively, that is, the spaces of corresponding eigenvectors orthogonal to the all-ones
vector. Let fi = dim E(ri ) and gi = dim E(si ) denote the restricted multiplicities of the
eigenvalues, then fi = − ki +(v−1)si

ri −si
and gi = ki +(v−1)ri

ri −si
, for i = 1, 2, 3. Without loss of gen-

erality we rearrange the eigenvalues such that fi ≥ 1
2 (v − 1) (hence we do not necessarily

have that ri > si ).
Our goal is to show that the graphs have a common basis of eigenvectors, hence that

the decomposition is commutative, since then we have an association scheme by
Corollary 2.
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The all-ones vector j is a common eigenvector of the graphs with eigenvalues k1, k2, and
k3, respectively. Therefore, from now on we only have to consider restricted eigenvectors,
i.e. eigenvectors in the (v − 1)-dimensional subspace j⊥ of R

v .
First we suppose that ri and r j , i �= j do not have a common eigenvector. Then necessarily

fi + f j = dim E(ri )+dim E(r j ) = dim(E(ri )+ E(r j )) ≤ v−1, hence fi = f j = 1
2 (v−1).

But then ki = k j = 1
2 (v − 1) (if fi = 1

2 (v−1) then it follows that ki = − 1
2 (v−1)(ri +si ) =

1
2 (v−1)(µi −λi ), hence ki is a multiple of, and hence equal to, 1

2 (v−1)). Thus the remaining
graph is empty, which gives a contradiction. So in the remainder of the proof we may assume
that ri and r j do have a common eigenvector.

Now, suppose that some ri and s j (i �= j) have a common eigenvector. Then −1−ri − s j

is an eigenvalue of Ah (with the same eigenvector), where h �= i, j . First suppose that this
eigenvalue is rh , i.e. −1−ri −s j = rh . Since we know that ri and r j also have an eigenvector
in common, it follows that −1 − ri − r j is also an eigenvalue of Ah , and this eigenvalue
must then equal sh . Also r j and rh have an eigenvector in common, and it now follows that
−1 − r j − rh = si . From these equations we find that ri − si = r j − s j = rh − sh , and then

fi = −ki + (v − 1)si

ri − si
= −v − 1 − k j − kh + (v − 1)(−1 − r j − rh)

ri − si

= k j + (v − 1)r j

r j − s j
+ kh + (v − 1)rh

rh − sh
= g j + gh,

and so gi = f j + fh − (v−1). Since si = −1−r j −rh , we have that E(r j )∩ E(rh) ⊂ E(si ).
However, the previous computation shows that dim E(si ) = f j + fh −(v−1) ≤ dim E(r j )+
dim E(rh) − dim(E(r j ) + E(rh)) = dim(E(r j ) ∩ E(rh)), hence E(si ) = E(r j ) ∩ E(rh).
Similarly we find that E(s j ) = E(ri ) ∩ E(rh) and E(sh) = E(ri ) ∩ E(r j ). Now (use
that fi = g j + gh) it is clear that each eigenvector of Ai is also an eigenvector of A j ,
and consequently also of Ah . Hence A1, A2, and A3 commute, so we have an association
scheme.

Secondly, suppose that −1 − ri − s j = sh . Then −1 − ri − r j = rh , and so rh − sh = s j −
r j . Now

gh = kh + (v − 1)rh

rh − sh
= v − 1 − ki − k j + (v − 1)(−1 − ri − r j )

rh − sh

= ki + (v − 1)ri

r j − s j
+ k j + (v − 1)r j

r j − s j
= ri − si

r j − s j
gi + g j .

Because of the symmetry of j and h, we may assume without loss of generality that gh > g j

(equality cannot occur by the previous computation). If r j and sh do not have a common
eigenvector, then f j + gh ≤ v − 1. However, f j + gh > f j + g j = v − 1, which is a
contradiction. So r j and sh do have a common eigenvector, and then −1 − r j − sh = si ,
which together with the other equations gives that ri − si = r j − s j , and gh = gi + g j .
Now we find similarly as before that E(rh) = E(ri ) ∩ E(r j ), E(si ) = E(r j ) ∩ E(sh) and
E(s j ) = E(ri ) ∩ E(sh), and that the adjacency matrices commute, proving that we have an
association scheme.
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In the remaining case, which will need a different approach, ri and r j do have common
eigenvectors, and ri and s j do not have common eigenvectors, for all i, j . Consequently
fi + g j ≤ v − 1, and also f j + gi ≤ v − 1. But fi + g j + f j + gi = 2(v − 1), hence
we have equality, and so fi = f j . Thus f1 = f2 = f3 and g1 = g2 = g3. It is also clear
from the assumptions that r1 + r2 + r3 = −1, and since (r1 − s1)g1 = k1 + (v − 1)r1 =
v − 1 − k2 − k3 + (v − 1)(−1 − r2 − r3) = −k2 − (v − 1)r2 − k3 − (v − 1)r3 =
−(r2 − s2)g2 − (r3 − s3)g3 = −(r2 − s2 + r3 − s3)g1, so that r1 − s1 + r2 − s2 + r3 − s3 = 0,
also s1 + s2 + s3 = −1. Moreover, we see that r1 − s1 + r2 − s2 �= 0, a property which we
shall use later on. Now, finally, we need some combinatorics.

Let πh
i j be the average number of vertices that are adjacent in Gi to vertex x , and in G j to

vertex y, over all pairs (x, y) that are adjacent in Gh , for i, j, h ∈ {1, 2, 3}. The parameters
πh

i j naturally resemble the intersection numbers ph
i j of an association scheme. Obviously

we have the equations πh
i j = πh

ji , π
h
i1 +πh

i2 +πh
i3 = ki −δhi , πh

ii = µi if h �= i , and π i
i i = λi .

By counting ordered “(i, j, h)-triangles”, we find that khπ
h
i j = kiπ

i
h j .

Using these equations we derive that π1
23π

3
31 = k2

k1
π2

13
k1
k3

µ3 = π2
13

k2
k3

π2
33 = π2

13π
3
23. From

the equations π3
12 + π3

13 = k1 − µ1, π3
12 + π3

23 = k2 − µ2, π3
31 + π3

32 = k3 − 1 − λ3

we derive that 2π3
12 = k1 − µ1 + k2 − µ2 − (k3 − 1 − λ3), 2π3

31 = k1 − µ1 − (k2 −
µ2) + k3 − 1 − λ3, and 2π3

32 = −(k1 − µ1) + k2 − µ2 + k3 − 1 − λ3. Similarly,
we find that 2π1

23 = −(k1 − 1 − λ1) + k2 − µ2 + k3 − µ3, and 2π2
13 = k1 − µ1 −

(k2 − 1 − λ2) + k3 − µ3. After plugging these into the equation π1
23π

3
31 = π2

13π
3
23,

replacing the parameters by the eigenvalues (ki − µi = −ri si and λi − µi = ri +
si ), and using that r3 = −1 − r1 − r2 and s3 = −1 − s1 − s2, we find an equation
which is equivalent to the equation (r1s2 − s1r2)(r1 − s1 + r2 − s2) = 0 (this argu-
ment is similar to that of [7, Lemma 4.5]). We mentioned before that the second factor
in nonzero, hence we have that r1s2 = s1r2. But then also k1r2 = − f1r1r2 − g1s1r2 =
− f2r1r2 − g2r1s2 = k2r1, and so r1 and r2 have the same sign. Similarly r1 and r3

have the same sign, which gives a contradiction to the fact that r1 + r2 + r3 = −1.
Thus this final case cannot occur, and so in all possible cases we have an association
scheme.

In Section 5 we shall prove that also any decomposition into (possibly more than three)
strongly regular graphs of Latin square type, and any decomposition into strongly regular
graphs of negative Latin square type forms an amorphic association scheme.

5. Decompositions of (negative) Latin square type

It was shown in [7] that in an amorphic association scheme (with at least three graphs) all
graphs are of Latin square type, or all graphs are of negative Latin square type. We will
show that there are no other strongly regular decompositions of a complete graph in which
all graphs are of Latin square type, or in which all graphs are of negative Latin square type.
This extends the result by Ito et al. [9] who showed that any association scheme in which all
graphs are strongly regular of Latin square type, or in which all graphs are strongly regular
of negative Latin square type, is amorphic.
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Theorem 3 Let {G1, G2, . . . , Gd} be a strongly regular decomposition of the complete
graph on v vertices, such that the strongly regular graphs Gi , i = 1, 2, . . . , d are all of Latin
square type or all of negative Latin square type. Then the decomposition is an amorphic
association scheme.

Proof: Let Ai be the adjacency matrix of Gi , which has valency ki and restricted eigen-
values ri > si , for i = 1, 2, . . . , d . We shall give a proof for the case where all graphs are
of Latin square type. The case of negative Latin square type is similar; only the roles of ri

and si have to be interchanged.
First we note that the all-ones vector j is a common eigenvector of the strongly regular

graphs Gi with respective eigenvalues ki , for i = 1, 2, . . . , d.
The Latin square type graph Gi has the property that the restricted multiplicity of the

positive resticted eigenvalue ri is equal to the valency ki of the graph; the negative restricted
eigenvalue si has multiplicity li = v − 1 − ki .

Now we fix j . Then v − 1 − k j = ∑
i �= j ki = (d − 1)(v − 1) − ∑

i �= j li , so
∑

i �= j li =
(d − 2)(v − 1) + k j . From repeatedly using the observation that dim(A ∩ B) = dim(A) +
dim(B) − dim(A + B) ≥ dim(A) + dim(B) − (v − 1) when A and B are subspaces of j⊥,
it thus follows that dim(

⋂
i �= j E(si )) ≥ k j , where E(si ) denotes the restricted eigenspace

of si as eigenvalue of Ai , for i = 1, 2, . . . , d. In other words, the matrices Ai , i �= j
have a common eigenspace of dimension at least k j with respective eigenvalues si . On this
common eigenspace the matrix A j = J − I − ∑

i �= j Ai has eigenvalue −1 − ∑
i �= j si ,

which must be equal to r j (since si ≤ −1 for all i), and which has restricted multiplicity k j .
Hence the dimension of the common eigenspace is exactly k j . Since the above holds for all
j = 1, 2, . . . , d , it follows that R

v can be decomposed into d +1 common eigenspaces, and
that the decomposition {G1, G2, . . . , Gd} is commutative. It then follows from Lemma 1
that the decomposition is an association scheme.

Since, by Corollary 1, the union of any two commuting edge-disjoint Latin square
type (or negative Latin square type) graphs is again a Latin square type (negative Latin
square type, respectively) graph, it follows from the above that any fusion of the asso-
ciation scheme is again an association scheme, hence the original association scheme is
amorphic.

It would be natural to ask if a mixture of Latin square type graphs and negative Latin square
type graphs is possible in a decomposition of a complete graph, and if so, if these (can) form
an association scheme. In the next section we shall see examples of (commutative) decom-
positions which indeed contain such a mixture. These decompositions are not association
schemes.

6. Decompositions into four strongly regular graphs

A decomposition of a complete graph into three strongly regular graphs necessarily is an
association scheme. Next, we consider the case of decompositions of a complete graph into
four strongly regular graphs.
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6.1. Three disconnected graphs

First, we shall classify the decompositions in which at least three of the four strongly regular
graphs are disconnected. First of all, we have the Latin square schemes L1,1,1(n), for n > 2.
Such an amorphic association scheme is constructed from a Latin square of side n as follows.
The vertices are the n2 cells of the Latin square. In the first graph, two cells are adjacent
if they are in the same row, in the second graph if they are in the same column, and in the
third graph if they contain the same entry. The fourth graph is the remainder.

Secondly, there is a family of examples consisting of the following: one graph is the
complete multipartite graph K4,4,...,4, and the other three graphs are matchings. These four
graphs form an association scheme, the wreath product of a complete graph and L1,1,1(2).
We note that this association scheme is not amorphic.

Finally, there is one example on 6 vertices, in which all four graphs are disconnected:
three of the four are matchings, and the fourth is the disjoint union of two triangles. In this
example the matchings do not commute, hence it does not give rise to an association scheme.

Theorem 4 Let {G1, G2, G3, G4} be a strongly regular decomposition of the complete
graph on v vertices into four strongly regular graphs, of which at least three are discon-
nected. Then the decomposition is the above example on 6 vertices, or the wreath product
(association scheme) of a complete graph and L1,1,1(2), or a Latin square association
scheme L1,1,1(n), n > 2.

Proof: Without loss of generality we assume that G1, G2, and G3 are disconnected,
say Gi is the disjoint union of ti complete graphs on ni vertices, for i = 1, 2, 3, where
n1 ≥ n2 ≥ n3 ≥ 2. The union of G1, G2, and G3, i.e. the complement of G4, is also
strongly regular, say with parameters (v = ti ni , k = n1 + n2 + n3 − 3, λ, µ), and restricted
eigenvalues r and s. By considering two adjacent vertices in Gi it follows that λ equals ni ,
ni − 1, or ni − 2, for i = 1, 2, 3, hence it follows that n3 ≥ λ ≥ n1 − 2.

The cases with n3 = 2 are easily checked: using the fact that kλ is even and the condition
that µ = k(k−1−λ)

v−1−k is an integer (at most k) reduces the number of cases substantially. Since
there are no strongly regular graphs with parameters (8, 5, 2, 5), (16, 5, 2, 1), (12, 7, 2, 7),
or (36, 7, 2, 1), and since the unique strongly regular graph with parameters (10, 3, 0, 1), the
Petersen graph, does not decompose into three matchings, it subsequently follows that the
only possibilities are the cases n1 = n2 = n3 = 2, λ = 0, v = 6 and n1 = 3, n2 = n3 = 2,
λ = 2, v = 6, which both give rise to the stated example on 6 vertices; and the cases
n1 = n2 = n3 = 2, λ = 2, v = 4m, m > 1, which give rise to the wreath product of a
complete graph and L1,1,1(2).

Next, we assume that n3 ≥ 3. The graph Gi has eigenvalue −1 with multiplicity v − ti ,
for i = 1, 2, 3. Let Vi be the corresponding eigenspace of Gi for this eigenvalue −1.
Since dim(V1 ∩ V2 ∩ V3) ≥ dim(V1) + dim(V2) + dim(V3) − 2 dim( j⊥) ≥ v + 2 − 3t3 =
(n3 − 3)t3 + 2 > 0, it follows that G1, G2, and G3 have a common eigenvector with eigen-
value −1, hence their union has an eigenvalue s = −3. From the equations λ − µ = r + s
and µ − k = rs we now derive that µ = 3λ−k+9

2 , and hence that k + λ is odd.
The case n1 = n2 = n3 = n (k = 3n − 3), λ = n gives µ = 6. From the equation

µ(v − 1 − k) = k(k − 1 − λ) we now find that v = n2. It is clear now that in this case
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G1, G2, and G3 commute, and that the four graphs form a Latin square association scheme
L1,1,1(n), n > 2.

The case n1 = n2 = n3 = n (k = 3n − 3), λ = n − 2 gives µ = 3, and v = 2n2 − n.
This case leads to a contradiction as follows. Here the concepts adjacency and neighbour
refer to the union of G1, G2, and G3, unless otherwise specified. Let x, y, z be mutually
adjacent in G1. Let x2 be adjacent to x in G2. Since y and x2 are not adjacent (otherwise x
and y have more than n − 2 common neighbours), they have µ = 3 common neighbours.
One of these is x , the other two are, say, y2 and y3 which are adjacent to y in G2 and G3,
respectively. It follows that y3 and x2 must be adjacent in G1, and y2 and x2 must be adjacent
in G3. Similarly x2 and z have three common neighbours, one of them being x , and the
other two being, say, z2 and z3, which are adjacent to z in G2 and G3, respectively. Also
here it follows that z3 and x2 are adjacent in G1 (and hence y3 and z3 are adjacent in G1),
and z2 and x2 are adjacent in G3. Since y3 and z are not adjacent (otherwise y and z have
too many common neighbours), they should have three common neighbours. This gives a
contradiction, since y3 and z can have at most two common neighbours, z3 and y: any other
common neighbour should be adjacent to both y3 and z in G2, and hence y3 and z should
themselves be adjacent in G2, a contradiction.

The case n1 = n2 = n, n3 = n − 1 (k = 3n − 4), λ = n − 1 gives µ = 5 and
v = 6

5 n2 − n + 1
5 . On the other hand, since v = t1n = t3(n − 1), it follows that v is a

multiple of n(n − 1). This gives a contradiction, as is easily verified. The remaining three
cases go similarly.

Thus in any other example of a strongly regular decomposition with four graphs at least two
of these must be connected. We conjecture that except for amorphic association schemes
there are no strongly regular decompositions of a complete graph into four graphs of which
exactly two are connected.

6.2. Commuting strongly regular graphs

For a commutative strongly regular decomposition of a complete graph into four graphs we
have the following.

Theorem 5 Let {G1, G2, G3, G4} be a commutative strongly regular decomposition of
the complete graph on v vertices. Let Gi have valency ki and restricted eigenvalues ri and
si (where we do not assume that ri > si ), for i = 1, . . . , 4. Then {G1, G2, G3, G4} is (i) an
amorphic association scheme; or (ii) an association scheme in which three of the graphs,
say G2, G3, G4, have the same parameters and which has eigenmatrix given by

P =




1 k1 k2 k2 k2

1 s1 r2 r2 r2

1 r1 s2 s2 r2

1 r1 s2 r2 s2

1 r1 r2 s2 s2




; (1)
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or (iii) it is not an association scheme, in which case the eigenmatrix is given by

P =




1 k1 k2 k3 k4

1 s1 s2 r3 r4

1 s1 r2 s3 r4

1 s1 r2 r3 s4

1 r1 s2 s3 r4

1 r1 s2 r3 s4

1 r1 r2 s3 s4




, (2)

where possibly one row is removed.

Proof: Let Gi have adjacency matrix Ai , for i = 1, . . . , 4. First we assume that the
restricted eigenvalues satisfy ri > si for i = 1, . . . , 4. During the proof we shall see that
this assumption is not necessary, i.e. that we can interchange the role of the ri and si (for
all i simultaneously).

By using only the possible eigenvalues for A1, A2, and A3 we obtain the following
eigenmatrix for the decomposition:

P =




1 k1 k2 k3 v − 1 − k1 − k2 − k3 = k4

1 s1 s2 s3 −1 − s1 − s2 − s3 = θ1

1 s1 s2 r3 −1 − s1 − s2 − r3 = θ2

1 s1 r2 s3 −1 − s1 − r2 − s3 = θ3

1 s1 r2 r3 −1 − s1 − r2 − r3 = θ4

1 r1 s2 s3 −1 − r1 − s2 − s3 = θ5

1 r1 s2 r3 −1 − r1 − s2 − r3 = θ6

1 r1 r2 s3 −1 − r1 − r2 − s3 = θ7

1 r1 r2 r3 −1 − r1 − r2 − r3 = θ8




.

Since G4 is strongly regular, many of the eigenvalues θ j should coincide, and/or some of
the multiplicities m j = dim Vj ( j = 0, 1, . . . , 8) should be zero (in which case some of the
rows in P are deleted), where Vj is the eigenspace corresponding to the eigenvalue θ j of G4

(more precisely, V1 is the intersection of the restricted eigenspaces of s1 (of A1), s2 (of A2),
and s3 (of A3), etc.). On the other hand, by Lemma 1 at least five of the multiplicities mi

must be positive (one of them being m0 = 1); and if exactly five multiplicities are positive,
then the four graphs form a 4-class association scheme.

Now we assume without loss of generality that r1 − s1 ≥ r2 − s2 ≥ r3 − s3 ≥ r4 − s4 > 0.
Assume first that r1 − s1 = r2 − s2 = r3 − s3 ≥ r4 − s4 > 0. Then θ1 > θ2 = θ3 = θ5 >

θ4 = θ6 = θ7 > θ8. Since we must have two distinct values (r4 and s4) among the θ j with
positive multiplicity m j (of which there are at least four), there are a few possibilities.
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• The positive multiplicities are m1, m2, m3, m5. After removing the rows of P correspond-
ing to the zero eigenspaces (V4, V6, V7, V8), this gives eigenmatrix

P =




1 k1 k2 k3 k4

1 s1 s2 s3 θ1 = r4

1 s1 s2 r3 θ2 = s4

1 s1 r2 s3 θ3 = s4

1 r1 s2 s3 θ5 = s4




.

From the eigenmatrix of this association scheme it follows that fusing any two of the
strongly regular graphs gives another strongly regular graph. From this it easily follows
that the association scheme is amorphic (case (i)). Similarly the case where the positive
multiplicities are m4, m6, m7, m8 leads to an amorphic association scheme (with the roles
of the ri and si interchanged).

• The positive multiplicities are m1, m4, m6, m7. But now r4 −s4 = θ1 −θ4 = r2 −s2 +r3 −
s3 > r4 − s4, which is a contradiction. Similarly the case where the positive multiplicities
are m2, m3, m5, m8 leads to a contradiction.

• The positive multiplicities are among m2, m3, m5, m4, m6, m7. After removing the rows
of P corresponding to the zero eigenspaces V1 and V8, we obtain eigenmatrix

P =




1 k1 k2 k3 k4

1 s1 s2 r3 θ2 = r4

1 s1 r2 s3 θ3 = r4

1 s1 r2 r3 θ4 = s4

1 r1 s2 s3 θ5 = r4

1 r1 s2 r3 θ6 = s4

1 r1 r2 s3 θ7 = s4




,

which is of the form (2) (case (iii)). From this we derive that r4 − s4 = r1 − s1 =
r2 − s2 = r3 − s3. Now the multiplicities m2, . . . , m7 can be expressed easily in terms of
the other parameters. For example, m7 is the dimension of the intersection of the restricted
eigenspaces of r1 and r2, hence m7 = vs1s2−(k1−s1)(k2−s2)

(r1−s1)(r2−s2) , according to Lemma 2.
Now suppose that in this case we have an association scheme. Then two of the multi-

plicities m2, . . . , m7 must be zero. Without loss of generality we may take one of these
to be m7. Since, again by Lemma 2, any eigenvalue ri has a common eigenvector with
s j , j �= i , it follows that the other zero multiplicity must be m2. But in this case the
eigenmatrix of the association scheme would be singular, which is a contradiction.

Hence, in this case at most one of the multiplicities m2, . . . , m7 can be zero, and we
do not have an association scheme. We remark that this case is symmetric with respect
to the roles of the ri and si .

Next, assume that r1 − s1 = r2 − s2 > r3 − s3 ≥ r4 − s4 > 0. Then θ1 > θ2 >

θ3 = θ5 > θ4 = θ6 > θ7 > θ8. Since at least four multiplicities must be positive, these
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must be m3, m5, m4, m6. Hence this case would give an association scheme. However, the
corresponding eigenmatrix is singular, which is a contradiction.

Finally, we assume that r1 − s1 > r2 − s2 ≥ r3 − s3 ≥ r4 − s4 > 0. Then θ1 > θ2 ≥ θ3 >

θ5, θ4 > θ6 ≥ θ7 > θ8. Also here at least 4 multiplicities must be positive, which gives the
following possibilities.

• The positive multiplicities are m2, m3, m6, m7, and θ2 = θ3 and θ6 = θ7. But then
r4 − s4 = θ2 − θ6 = r1 − s1 > r4 − s4, which is a contradiction.

• The positive multiplicities are m4, m5, m6, m7, and θ4 = θ5 and θ6 = θ7. From this it
follows that r1 − s1 = r2 − s2 + r3 − s3 and r2 − s2 = r3 − s3 = r4 − s4.

Since s1 and s j have no common eigenvector, for j = 2, 3, 4, we find that vr1r j =
(k1 − r1)(k j − r j ), for j = 2, 3, 4 (see Lemma 2). From this we can derive that

r2

k2
= r3

k3
= r4

k4
.

Moreover, it follows that

m4 = vr1s j − (k1 − r1)(k j − s j )

(r1 − s1)(r j − s j )
= vshs j − (kh − sh)(k j − s j )

(rh − sh)(r j − s j )
for

j, h = 2, 3, 4, j �= h.

From this it follows that

vr1(si − s j ) = (k1 − r1)(ki − si − (k j − s j )) and

vsh(si − s j ) = (kh − sh)(ki − si − (k j − s j ))

for {i, j, h} = {2, 3, 4}. Since the signs of the right hand sides of these two equations are
the same, while the signs of the left hand sides are opposite, it follows that in one of the
equations both sides must be zero. If ki − si �= k j − s j , then k1 −r1 = 0, and then si = s j ,
but then kh = sh , a contradiction. Thus ki − si = k j − s j , and then also si = s j , and
ki = k j . Hence k2 = k3 = k3, s2 = s3 = s4, and also r2 = r3 = r4. Now the eigenmatrix
is of the form (1) (case (ii)).

• The last case, the one with positive multiplicities m2, m3, m4, m5 is similar to the pre-
vious one, and leads to the eigenmatrix (1) (case (ii)), where the ri and si are inte-
rchanged.

Examples of commutative strongly regular decompositions with four graphs which are not
association schemes can be constructed as follows. Let GF(32m) be the vertex set, where
m is even, and let α be a primitive element in this field. Consider the cyclotomic amorphic
4-class association scheme on GF(32m). Two distinct vertices are adjacent in G j if their
difference is of the form α4i+ j for some i ( j = 1, . . . , 4). The graphs G1, . . . , G4 are
(isomorphic) strongly regular graphs of negative Latin square type with valency 32m−1

4 , and
restricted eigenvalues 3m−1

4 and 3m−1
4 − 3m . The union of G2 and G4 is the Paley graph on

32m vertices: two vertices are adjacent if their difference is a square.
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Next, let d = 3m + 1, and consider the cyclotomic amorphic d-class association scheme
on GF(32m). Two distinct vertices are adjacent in Hj if their difference is of the form αdi+ j

for some i ( j = 1, . . . , d). The graphs H1, . . . , Hd are (disconnected) strongly regular
graphs of Latin square type with valency 3m − 1, and restricted eigenvalues 3m − 1 and −1.
The union of H2, H4, . . . , Hd is the same as the union of G2 and G4 (the Paley graph on
32m vertices).

It is easy to show that all graphs Gi and Hj (i.e., their adjacency matrices) commute, hence
{G1, G3, H2, H4, . . . , Hd} is a commutative strongly regular decomposition of a complete
graph. Moreover, so is any of its fusions of the form {G1, G3, K1, K2}. Note that such a
fusion consists of two strongly regular graphs of negative Latin square type (G1 and G3),
and two of Latin square type (K1 and K2).

For m = 2 there are two possible fusions of {H2, H4, . . . , H10} consisting of two graphs.
For the corresponding decompositions {G1, G3, K1, K2}, the respective P-matrices (of the
form (2) with one row deleted since m2 = 0) are the following.

P =




1 20 20 8 32

1 −7 2 −1 5

1 −7 2 8 −4

1 2 −7 −1 5

1 2 −7 8 −4

1 2 2 −1 −4




and P ′ =




1 20 20 16 24

1 −7 2 −2 6

1 −7 2 7 −3

1 2 −7 −2 6

1 2 −7 7 −3

1 2 2 −2 −3




.

An example of a non-amorphic association scheme with four strongly regular graphs
was already given by the wreath product of a complete graph and L1,1,1(2). Indeed, its
eigenmatrix

P =




1 v − 4 1 1 1

1 −4 1 1 1

1 0 −1 −1 1

1 0 −1 1 −1

1 0 1 −1 −1




is of the form (1). We remark that this association scheme is a counterexample of A.V.
Ivanov’s conjecture [10, Problem 1.3] that any association scheme in which all graphs are
strongly regular must be amorphic. Already in [5] counterexamples of this conjecture were
found, and it was suggested that maybe Ivanov had intended to conjecture the above for
primitive association schemes. We shall show next that also this weaker conjecture is false.

If a counterexample for the conjecture has four graphs, then the eigenmatrix must be
of the form (1). We found by computer that there are only 7 “feasible” parameter sets for
a primitive association scheme of the form (1) on at most 2048 vertices, the smallest one
having 288 vertices. Besides these we found an infinite series of “feasible” parameter sets:
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it has 8t vertices and eigenmatrix

P =




1 23t − 4 − 3 · 22t − 3 · 2t 22t + 2t + 1 22t + 2t + 1 22t + 2t + 1

1 −4 − 3 · 2t 1 + 2t 1 + 2t 1 + 2t

1 −4 + 2t 1 − 2t 1 − 2t 1 + 2t

1 −4 + 2t 1 − 2t 1 + 2t 1 − 2t

1 −4 + 2t 1 + 2t 1 − 2t 1 − 2t




.

We shall construct an association scheme which has this eigenmatrix for t = 4. It is obtained
as a fusion scheme of the 45-class cyclotomic scheme on GF(4096). Consider in this field
a primitive element α satisfying α12 = α6 + α4 + α + 1. Two distinct vertices are adjacent
in Hj if their difference is of the form α45i+ j for some i ( j = 1, . . . , 45). De Lange [11]
found that G2 = H45 ∪ H5 ∪ H10 is a strongly regular graph with valency k2 = 273
and restricted eigenvalues r2 = 17 and s2 = −15. Clearly G3 = H15 ∪ H20 ∪ H25 and
G4 = H30 ∪ H35 ∪ H40 are isomorphic to G2. Moreover, the union of these three graphs
is one of the graphs in the 5-class cyclotomic amorphic association scheme on GF(4096).
Hence the complement G1 of this union is strongly regular, and it has valency k1 = 3276
and restricted eigenvalues r1 = 12 and s1 = −52. Since r1 − s1 �= r2 − s2 it now follows
from Theorem 5 that the four strongly regular graphs G1, . . . , G4 form a primitive 4-class
association scheme which is not amorphic.
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