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Abstract. A spin model (for link invariants) is a square matrix W with non-zero complex entries which satisfies
certain axioms. Recently it was shown that tWW−1 is a permutation matrix (the order of this permutation matrix
is called the “index” of W ), and a general form was given for spin models of index 2. Moreover, new spin models,
called non-symmetric Hadamard models, were constructed. In the present paper, we classify certain spin models
of index 2, including non-symmetric Hadamard models.
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1. Introduction

The notion of spin model was introduced by Vaughan Jones [8] to construct invariants
of knots and links. A spin model is essentially a square matrix W with nonzero entries
which satisfies two conditions (type II and type III). Jones restricted his consideration to
symmetric matrices. The notion of a spin model was generalized to the non-symmetric case
by Kawagoe et al. [9], and it was further generalized by Bannai and Bannai [1].

Recently, François Jaeger and the author [7] proved that, for every spin model W , its
transpose tW is obtained from W by permutation of rows, and called the order of this
permutation the “index” of W . Moreover, it was shown that every spin model of index 2
takes the following form:

W =




A A B −B

A A −B B

−t B t B C C
t B −t B C C


, (1)

where A, B, C are square matrices of equal sizes. Using this form, a new infinite class of
spin models of index 2, called the non-symmetric Hadamard models, was constructed.

Two spin models are said to be equivalent when one is obtained from another by simul-
taneous permutation of rows and columns. It is clear that equivalent spin models give the
same link invariant (see [8]). In the present paper, we classify up to equivalence spin models
of index 2 when the matrix A is a Potts model (that is, when A has constant non-diagonal
entries). See Sections 2 and 3 for terminology.
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Theorem 1.1 Let W be a spin model having the form (1) with A a Potts model. Then W
is equivalent to at least one of the following spin models:

(i) Non-symmetric Hadamard model.
(ii) Tensor product of A with the following spin model:




1 1 η −η

1 1 −η η

−η η 1 1

η −η 1 1


, where η4 = −1.

(iii) A spin model of size 16, having the form (1) with A = C a Potts model, and

B =




r r ir−1 −ir−1

r r −ir−1 ir−1

ir−1 −ir−1 r r

−ir−1 ir−1 r r


,

where r is a nonzero complex number, and i2 = −1.

Remark 1.2 It is not difficult to verify that for all nonzero complex numbers r , any matrix
of the form (1) with A, B, C as in Theorem 1.1(iii) is a spin model.

In Section 2, we review basic terminology for spin models and association schemes. In
Section 3, we describe some known facts concerning non-symmetric spin models of index 2.
The proof of Theorem 1.1 will be given in Section 4. In Section 5, a symmetric version of
Theorem 1.1 is given.

2. Preliminaries

For more details concerning spin models and association schemes, the reader can refer to
[6–8] and [2, 3].

Let X be a finite non-empty set. We denote by MatX (C) the set of square matrices with
complex entries whose rows and columns are indexed by X . For W ∈ MatX (C) and x ,
y ∈ X , the (x, y)-entry of W is denoted by W (x, y).

W ∈ MatX (C) is said to be of type II if W has nonzero entries and satisfies the type II
condition:

∑
x∈X

W (α, x)

W (β, x)
= |X |δα,β (for all α, β ∈ X ). (2)

Let W − be defined by W −(x, y) = W (y, x)−1 (x , y ∈ X ). Then (2) can be written as
W W − = |X |I (I denotes the identity matrix). Therefore any type II matrix W is non-
singular with W −1 = |X |−1W −. This implies (W −)W = |X |I . Hence if W is a type II
matrix, then its transpose tW is also a type II matrix.



SPIN MODELS 7

Let D denote one of the square roots of |X |. A spin model on X with loop variable D is
a type II matrix W ∈ MatX (C) which satisfies the type III condition:

∑
x∈X

W (α, x)W (β, x)

W (γ, x)
= D

W (α, β)

W (α, γ )W (γ, β)
(for all α, β, γ ∈ X ). (3)

It is known (see [9]) that, under the type II condition, (3) is equivalent to the following
identity:

∑
x∈X

W (γ, x)

W (α, x)W (β, x)
= D

W (α, γ )W (γ, β)

W (α, β)
(for all α, β, γ ∈ X ). (4)

Setting β = γ in (4),

∑
x∈X

1

W (α, x)
= DW (β, β). (5)

Since β does not appear in the left-side of (5), the diagonal entry W (β, β) is a constant
(independent of the choice of β) which is called the modulus of W .

Observe that, for any spin models Wi on Xi with loop variables Di (i = 1, 2), their tensor
(Kronecker) product W1 ⊗ W2 is a spin model with loop variable D = D1 D2.

For W ∈ MatX (C) and for a permutation σ of X , let W σ be defined by W σ (α, β) =
W (σ (α), σ (β)) for α, β ∈ X . Observe that if W is a spin model, then W σ is also a spin
model. Two spin models W , W ′ are said to be equivalent if W ′ = W σ for some permutation
σ of X .

A (class d) association scheme on X is a partition of X × X with nonempty relations R0,
R1, . . . , Rd , where R0 = {(x, x) | x ∈ X} which satisfy the following conditions:

(i) For every i in {0, 1, . . . , d}, there exists i ′ in {0, 1, . . . , d} such that Ri ′ = {(y, x) |
(x, y) ∈ Ri }.

(ii) There exist integers pk
i j (i , j , k ∈ {0, 1, . . . , d}) such that for every (x, y) ∈ Rk , there

are precisely pk
i j elements z such that (x, z) ∈ Ri and (z, y) ∈ R j .

(iii) pk
i j = pk

ji for every i , j in {0, 1, . . . , d}.

For x ∈ X , let Ri (x) denote the set of y such that (x, y) ∈ Ri . Observe that |Ri (x)| = p0
i i ′

for all x ∈ X , so |Ri (x)| is a constant which is independent of the choice of x ∈ X . We call
|Ri (x)| the valency of Ri .

In [5, 6, 11], it was shown that every spin model can be constructed on some association
scheme. More precisely, let W be a spin model on X , then there exists an association scheme
R0, R1, . . . , Rd on X and constants t0, t1, . . . , td such that W (x, y) = ti for all (x, y) ∈ Ri

(i = 0, 1, . . . , d).
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3. Spin models of index 2

In the present section, we recall some results of [7] which we need in the proof of
Theorem 1.1.

Let W ∈ MatX (C) be a spin model. By [7] Proposition 2, tW W −1 is a permutation matrix.
So, there is a permutation σ of X such that tW (x, y) = W (σ (x), y) for all x , y ∈ X . The
order of σ is called the index of W . By [7] Proposition 7, when W has index 2, X can be
ordered and split into 4 blocks Y1, Y2, Y3, Y4 of equal sizes, so that W takes the following
form:

W =

Y1 Y2 Y3 Y4

Y1

Y2

Y3

Y4




A A B −B

A A −B B

−t B t B C C
t B −t B C C




with A, C symmetric. (6)

We may regard Yi (i = 1, 2, 3, 4) as copies of a set Y , and A, B, C as matrices in MatY (C).
As is easily verified, any spin model of the form (6) has index 2. In [4], the assertion of

[7] Proposition 7 has been generalized to any index.
Now let W be any matrix of the form (6). By [7] Proposition 8, W is a spin model with

loop variable 2D, where D2 = |Y |, if and only if the following (i), (ii) hold.

(i) A, C are spin models with loop variable D and B is a type II matrix.
(ii) The following identities hold for all α, β, γ in Y :

∑
y∈Y

A(α, y)B(y, β)

B(y, γ )
= D

B(α, β)

C(β, γ )B(α, γ )
, (7)

∑
y∈Y

C(α, y)B(β, y)

B(γ, y)
= D

B(β, α)

A(β, γ )B(γ, α)
, (8)

∑
y∈Y

B(y, β)B(y, γ )

A(α, y)
= −D

C(β, γ )

B(α, β)B(α, γ )
, (9)

∑
y∈Y

B(β, y)B(γ, y)

C(α, y)
= −D

A(β, γ )

B(β, α)B(γ, α)
. (10)

A Potts model takes the form aI + b(J − I ) for some constants a, b, where I denotes
the identity and J the all 1’s matrix. It is known (and not difficult to see) that a = −u3,
b = u−1 for some complex number u satisfying −u2 − u−2 = D, where D denotes the
loop variable.
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A non-symmetric Hadamard model takes the form (6) with A = C a Potts model and
B = ηH , where H is a Hadamard matrix (i.e., a type II matrix with entries ±1) and
η4 = −1.

4. Proof of Theorem 1.1

Lemma 4.1 Let W be a spin model of the form (6). If W takes precisely two values on
(Y1 ∪ Y2) × (Y3 ∪ Y4), then B = ηH for some Hadamard matrix H and for some η with
η4 = −1.

Proof: Observe that B takes the values in {η, −η} for some η. Hence H := η−1 B has
entries ±1, so that H is a Hadamard matrix. Setting β = γ in (9),

∑
y∈Y

η2 H (y, β)2

A(α, y)
= −D

C(β, β)

η2 H (α, β)2
,

and this becomes

(−η4)
∑
y∈Y

1

A(α, y)
= DC(β, β).

On the other hand, since A is a spin model, the following identity holds by (5):

∑
y∈Y

1

A(α, y)
= DA(β, β).

The above two identities together with A(β, β) = C(β, β) (these are equal to the modulus
of W ) implies −η4 = 1.

Lemma 4.2 Let D, u be numbers such that D2 = |Y |, −u2 − u−2 = D. Let W be a
matrix of the form (6) with A = C = −u3 I + u−1(J − I ). Then W is a spin model if and
only if the following (i), (ii) hold:
(i) B is a type II matrix.

(ii) The following identities hold for all α, β, γ ∈ Y :

∑
y∈Y

B(y, β)B(y, γ ) = (1 + u−4)

(
B(α, β)B(α, γ ) + uA(β, γ )

B(α, β)B(α, γ )

)
, (11)

∑
y∈Y

B(β, y)B(γ, y) = (1 + u−4)

(
B(β, α)B(γ, α) + uA(β, γ )

B(β, α)B(γ, α)

)
. (12)
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Proof: As recalled in Section 3, W is a spin model if and only if B is type II and
Eqs. (7)–(10) hold. We begin by showing that Eqs. (7) and (8) necessarily hold. Since
A = C = −u3 I + u−1(J − I ) and D = −u2 − u−2, the identity (7) becomes

(−u3)
B(α, β)

B(α, γ )
+ u−1

∑
y∈Y−{α}

B(y, β)

B(y, γ )
= (−u2 − u−2)

A(β, γ )

B(α, β)

B(α, γ )
.

Since B is a type II matrix, we have
∑

y∈Y B(y, β)B(y, γ )−1 = |Y |δβ,γ . So the above
becomes

(−u3 − u−1)
B(α, β)

B(α, γ )
+ u−1(−u2 − u−2)2δβ,γ = (−u2 − u−2)

A(β, γ )

B(α, β)

B(α, γ )
.

Now verify this equation in each case of β = γ and β �= γ . The identity (8) can be verified
in a similar way.

Next we show that (9) is equivalent to (11). The identity (9) becomes

−u−3 B(α, β)B(α, γ ) + u
∑

y∈Y−{α}
B(y, β)B(y, γ ) = (u2 + u−2)

A(β, γ )

B(α, β)B(α, γ )
,

and this becomes

(−u−3 − u)B(α, β)B(α, γ ) + u
∑
y∈Y

B(y, β)B(y, γ ) = (u2 + u−2)
A(β, γ )

B(α, β)B(α, γ )
.

This is equivalent to (11). In a similar way, we can see that (10) is equivalent to (12).

Remark 4.3 Observe that the identity (12) is obtained from (11) by replacing B with t B.
Therefore if (11) implies some equation, then the equation also holds when B is replaced
with t B.

We fix the following notation for the rest of this section.
Let X be a finite set which is partitioned as X = Y1 ∪ Y2 ∪ Y3 ∪ Y4, where Yi (i = 1, 2,

3, 4) are copies of a set Y with |Y | = n ≥ 2. Fix complex numbers D and u such that

D2 = n, −u2 − u−2 = D. (13)

Let W be a spin model of the form (6) with A a Potts model:

A = −u3 I + u−1(J − I ). (14)

Lemma 4.4 A = C.

Proof: Set X1 = Y1 ∪ Y2, X2 = Y3 ∪ Y4, S1 = (X1 × X1) ∪ (X2 × X2) and S2 =
(X1 × X2) ∪ (X2 × X1). Since W takes the form (6), W (x, y) = W (y, x) for all (x, y) ∈ S1,
and W (x, y) = −W (y, x) for all (x, y) ∈ S2.



SPIN MODELS 11

Let R0, R1, . . . , Rd be an association scheme such that W (x, y) = ti for all (x, y) ∈ Ri

(i = 0, 1, . . . , d). Observe that ti = W (x, y) = W (y, x) = ti ′ for any (x, y) ∈ Ri ∩ S1, and
ti = W (x, y) = −W (y, x) = −ti ′ for any (x, y) ∈ Ri ∩ S2 (i = 0, 1, . . . , d). This means
that each relation Ri is contained in S1 or S2, so that S1 is partitioned into disjoint union of
some Ri ’s: say S1 = R0 ∪ R1 ∪ · · · ∪ R
. Since A is given by (14) and since W takes the
form (6), t0 = ts = −u3 for some s ∈ {1, . . . , 
}, and ti = u−1 for all i ∈ {1, . . . , 
} − {s}.
Observe that R0 and Rs have valency 1.

Now pick any x ∈ X2, and observe that, for each y ∈ X2, W (x, y) = ti for some
i ∈ {0, 1, . . . , 
}. So, when y runs over X2, W (x, y) takes twice the value −u−3 and 2n − 2
times the value u−1. This implies A = C .

Lemma 4.5 Let B ′ ∈ MatY (C) be obtained from B by permutation of columns (or rows).
Let W ′ be the matrix of the form (6) with B replaced by B ′. Then W ′ is a spin model which
is equivalent to W .

Proof: There is a permutation π of Y such that B ′(x, y) = B(x, π (y)) for all x , y ∈ Y .
Let σ be a permutation of X such that σ (y) = y for y ∈ Y1 ∪ Y2 and σ (y) = π (y) for
y ∈ Y3 ∪Y4. Since A (=C) has the form (14), A is invariant under the action of σ . Moreover
permutation of colums of B corresponds to permutation of rows of t B. Now we can see that
W σ = W ′, so that W ′ is a spin model which is equivalent to W .

Lemma 4.6 Let B ′ be obtained by changing signs of each entry of a column (or a row)
of B. Let W ′ be the matrix of the form (6) with B replaced by B ′. Then W ′ is a spin model
which is equivalent to W .

Proof: There is β ∈ Y such that B ′(x, β) = −B(x, β) and B ′(x, y) = B(x, y) for all
x ∈ Y and for all y ∈ Y − {β}. Let σ be a permutation of X which fixes all elements of X
but which exchages β in Y3 with β in Y4. Since W takes the form (6), C is invariant under
σ . Hence W σ = W ′.

Remark 4.7 Observe that we used only (6) in the proof of Lemma 4.6. Therefore
Lemma 4.6 can be applied to any spin model of index 2.

By Lemmas 4.5 and 4.6, we may freely permute the columns (or the rows) of B, and we
may change signs of any column (or row).

Lemma 4.8
(i) For all α, β ∈ Y,

∑
y∈Y

B(y, β)2 = (1 + u−4)

(
B(α, β)2 − u4

B(α, β)2

)
. (15)

(ii) For all α, β, γ ∈ Y with β �= γ,

∑
y∈Y

B(y, β)B(y, γ ) = (1 + u−4)

(
B(α, β)B(α, γ ) + 1

B(α, β)B(α, γ )

)
. (16)
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Proof: Immediate from (11).

In the following, let T ∈ MatY (C) denote the entrywise-product square of B:

T (x, y) = B(x, y)2 (x, y ∈ Y ).

Lemma 4.9 Let t be an entry of T . Then every entry of T is contained in {t, −u4t−1}.

Proof: Since α does not appear in the left-side of (15), the right-side does not depend on
the choice of α. Pick any α, α′, β, β ′ ∈ Y , and set t = T (α, β), t ′ = T (α′, β), t ′′ = T (α′, β ′).
Then t − u4t−1 = t ′ − u4t ′−1, and this becomes (t − t ′)(t t ′ + u4) = 0, so t ′ ∈ {t, −u4t−1}.
Using (15) for t B, we can conclude that t ′′ ∈ {t ′, −u4t ′−1}. Hence t ′′ ∈ {t, −u4t−1}.

Lemma 4.10 Suppose t = −u4t−1 for some entry t of T . Then W is a non-symmetric
Hadamard model.

Proof: Obtained from Lemmas 4.9 and 4.1.

In the rest of this section, we assume that, for all entries t of T ,

t �= −u4t−1, (17)

and both t and −u4t−1 appear in T .

Lemma 4.11 Let t be an entry of T . Suppose that t (respectively −u4t−1) appears m
times (respectively m ′ times) in a column or row of T . Then

m = (1 + u−4)(t2 + u8)

t2 + u4
, (18)

m ′ = (1 + u4)(t2 + 1)

t2 + u4
. (19)

Proof: From Lemma 4.9 and (15),

mt + m ′(−u4t−1) = (1 + u−4)(t − u4t−1).

Use m + m ′ = n = (−u2 − u−2)2 to get m and m ′.

Lemma 4.12 Let α, α′, β, β ′ ∈ Y such that α �= α′, β �= β ′. Set p = B(α, β),
q = B(α, β ′), r = B(α′, β), s = B(α′, β ′). Then at least one of the following (i), (ii) holds.
(i) pqrs = 1,

(ii) pq = rs, pr = qs, p2 = s2, and q2 = r2.
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Proof: Since α does not appear in the left-side of (16), the right-side of (16) does not
depend on the choice of α. So

B(α, β)B(α, β ′) + 1

B(α, β)B(α, β ′)
= B(α′, β)B(α′, β ′) + 1

B(α′, β)B(α′, β ′)
,

and this implies

(B(α, β)B(α, β ′) − B(α′, β)B(α′, β ′))(B(α, β)B(α, β ′)B(α′, β)B(α′, β ′) − 1) = 0.

Hence either pq = rs or pqrs = 1 holds. Applying (16) for t B, we get pr = qs or prqs = 1.
Hence if pqrs �= 1, then both pq = rs and pr = qs hold, and these imply p2 = s2 and
q2 = r2.

Lemma 4.13 Suppose n = 2. Then, up to permutation and sign change, B = ηA for
some η with η4 = −1.

Proof: We have u8 = −1 by our assumption 2 = n = (−u2 − u−2)2. Set T (1, 1) = t .
Since both t and t ′ = −u4t−1 appear in T , and since t appears m times in each column (or
row) of T by Lemma 4.11 (where m is given by (18)), T takes the following form:

T =
(

t −u4t−1

−u4t−1 t

)
.

From (15), we have t + (−u4t−1) = (1 + u−4)(t − u4t−1). This implies t2 = u4, and so
t = ±u2. If t = −u2, then t ′ = −u4(−u2)−1 = u2. So we may assume t = u2 by permuting
columns of T if necessary. Hence

T =
(

u2 u−6

u−6 u2

)
.

This implies B(1, 1) = ±u, B(1, 2) = ±u−3, B(2, 1) = ±u−3, and B(2, 2) = ±u. By
changing signs of columns if necessary, we may assume that B(1, 1) = u and B(1, 2) =
−u−3. By changing signs of the second row if necessary, we may assume that B(2, 2) = u.
Using u8 = −1 and Lemma 4.12, we get B(2, 1) = −u−3. Thus

B =
(

u −u−3

−u−3 u

)
.

Setting η = −u−2, we get B = ηA.

We assume n ≥ 3 in the rest of this section.
By a 2-block we mean a 2 × 2 submatrix of T .
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Lemma 4.14 Let t be an entry of T . Suppose that some 2-block contains three t’s and
one t ′ = −u4t−1. Then, up to permutation,

T = iu6 I + iu−2(J − I ) (i2 = −1).

Proof: Let p, q , r , s be the entries of B which appear in the same position of the 2-block.
We apply Lemma 4.12 for these p, q, r , s. We may assume p2 = q2 = r2 = t and s2 = t ′.
Since p2 �= s2, we have pqrs = 1 by Lemma 4.12. Hence 1 = p2q2r2s2 = t3(−u4t−1), so
that t2 = −u−4, and so t = iu−2 for some i with i2 = −1. Thus we get t ′ = −u4t−1 = iu6.

By (19), the multiplicity m ′ of t ′ in a column of T is given by

m ′ = (1 + u4)(−u−4 + 1)

(−u−4 + u4)
= 1.

Hence t ′ = iu6 appears precisely once in each column of T , and all the other entries
are equal to t = iu−2. Now permute columns so that each t ′ comes to the diagonal
position.

Lemma 4.15 Let t be an entry of T . Suppose some 2-block contains three t’s and one
t ′ = −u4t−1. Then, up to permutation and sign change,

B = −ηu3 I + ηu−1(J − I ) = ηA,

for some η with η4 = −1.

Proof: By Lemma 4.14, the diagonal entries of B are ±ηu3 for some η with η2 = i .
By changing signs of columns if necessary, we may assume that B(1, 1) = −ηu3 and
B(1, y) = ηu−1 for all y ∈ Y − {1}. By changing signs of rows if necessary, we may
assume that B(y, y) = −ηu3 for all y ∈ Y .

Now pick α, β ∈ Y with 1 �= α �= β, and set B(α, β) = εηu−1 (ε = ±1). It is enough
to show that ε = 1. Observe that u8 �= 1, since iu6 �= iu−2 by our assumption (17).

First we consider the case β = 1. We have B(1, 1) = B(α, α) = −ηu3 and B(1, α) =
ηu−1. If B(1, 1)B(1, α)B(α, 1)B(α, α) = 1, then we get

1 = (−ηu3)(ηu−1)(εηu−1)(−ηu3) = εη4u4 = −εu4,

and this implies u8 = 1, a contradiction. Hence, by Lemma 4.12, we must have B(1, 1)
B(1, α) = B(α, 1)B(α, α), and this implies ε = 1.

Next we consider the case β �= 1. We have B(1, α) = B(1, β) = ηu−1 and B(α, α) =
−ηu3. If B(1, α)B(1, β) = B(α, α)B(α, β), then we get (ηu−1)2 = (−ηu3)(εηu−1), and
this implies u8 = 1, a contradiction. Hence, by Lemma 4.12, we must have

1 = B(1, α)B(1, β)B(α, α)B(α, β) = (ηu−1)2(−ηu3)(εηu−1),

and this implies ε = 1.
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Lemma 4.16 Let t be an entry of T . Suppose that every 2-block contains an even number
of t’s. Then n = 4, u4 = 1, and T takes the following form up to permutation:

T =




t t −t−1 −t−1

t t −t−1 −t−1

−t−1 −t−1 t t

−t−1 −t−1 t t


.

Proof: We may assume T (1, 1) = T (2, 1) = t from our assumption n ≥ 3. Since ev-
ery row of T contains t ′ = −u4t−1, we may assume T (1, 2) = t ′. Since every block
contains an even number of t ′, we have T (2, 2) = t ′. Since t �= t ′, we get t2t ′2 =
B(1, 1)B(1, 2)B(2, 1)B(2, 2) = 1 by Lemma 4.12. Hence u8 = 1, so that u4 = ±1.
Since n = (−u2 − u−2)2 = u4 + u−4 + 2, we must have u4 = 1 and n = 4. We also have
t ′ = −t−1. From (18), t appears precisely

m = (1 + u−4)(t2 + u8)

t2 + u4
= (1 + 1)(t2 + 1)

t2 + 1
= 2

times in every column (or row) of T . Now it is clear that T takes the above form after
permuting columns (or rows).

Lemma 4.17 Let t be an entry of T . Suppose that every 2-block contains even number
of t . Then B takes the following form up to permutation and sign change:

B =




r r ir−1 −ir−1

r r −ir−1 ir−1

ir−1 −ir−1 r r

−ir−1 ir−1 r r


,

where i2 = −1, and r is a nonzero complex number.

Proof: We may assume that T takes the form given in Lemma 4.16. Set B(1, 1) = r .
Then the entries of B corresponding to t in T are contained in {r, −r}, and the entries
of B corresponding to −t−1 in T are contained in {r ′, −r ′}, where r ′ = ir−1 (i2 = −1).
By changing signs of columns (or rows) if necessary, we may assume that B(1, 2) = r ,
B(1, 3) = r ′, B(1, 4) = −r ′, B(2, 1) = r , B(3, 1) = r ′, B(4, 1) = −r ′.

If B(2, 2) = −r , then we get 1 = B(1, 1)B(1, 2)B(2, 1)B(2, 2) = −r4, so that t = r2 =
−r−2 = −t−1, contradicting t �= t ′. Hence B(2, 2) = r . Using the type II condition (for t B):∑4

y=1 B(y, 1)B(y, 2)−1 = 0, we get B(3, 2) = −r ′ and B(4, 2) = r ′. We get also B(2, 3) =
−r ′ and B(2, 4) = r ′ by type II condition.

By the type II condition (2),
∑4

y=1 B(y, 3)B(y, 4)−1 = 0, so B(3, 3) = B(3, 4) and
B(4, 3) = B(4, 4). Also by the type II condition,

∑4
y=1 B(3, y)B(4, y)−1 = 0, so B(3, 3) =

B(4, 3). Hence B(3, 3) = B(3, 4) = B(4, 3) = B(4, 4). When B(3, 3) = −r , change signs of
the third row and the fourth row, and permute these two rows.
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This completes the proof of Theorem 1.1.

5. Symmetric version

By [7] Proposition 9, we have the following correspondence between non-symmetric spin
models of index 2 and some symmetric spin models.

Lemma 5.1 Let A, B, C be three matrices in MatY (C) with A, C symmetric, and let η,

D be numbers such that η4 = −1, D2 = |Y |. Then




A A B −B

A A −B B
t B −t B C C

−t B t B C C


 (20)

is a (symmetric) spin model with loop variable 2D if and only if




A A ηB −ηB

A A −ηB ηB

−ηt B ηt B C C

ηt B −ηt B C C




is a (non-symmetric) spin model with loop variable 2D.

In [10], the author constructed symmetric Hadamard models, which takes the form (20),
where A = C is a Potts model and B = ωH for some Hadamard matrix H and for some
ω with ω4 = 1.

From Theorem 1.1 and Lemma 5.1, we obtain:

Corollary 5.2 Let W be a spin model having the form (20) with A a Potts model, and C
symmetric. Then W is equivalent to at least one of the following spin models:

(i) Symmetric Hadamard model.
(ii) Tensor product of A with the following spin model:




1 1 ω −ω

1 1 −ω ω

ω −ω 1 1

−ω ω 1 1


, where ω4 = 1.
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(iii) A spin model of size 16, having the form (20) with A = C a Potts model, and

B =




r r r−1 −r−1

r r −r−1 r−1

r−1 −r−1 r r

−r−1 r−1 r r


,

where r is a nonzero complex number.

Remark 5.3 It is not difficult to verify that for all nonzero complex numbers r , any matrix
of the form (20) with A, B, C as in Corollary 5.2(iii) is a spin model.

6. Conclusion

Theorem 1.1 will be useful in the classification of non-symmetric spin models on a d-class
association scheme with small d . It will be of great interest to classify spin models of the
form (6) when B is a scalar multiple of an Hadamard matrix. Another interesting case is
when A is constructed on some association scheme of class d = 3.
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